Stability Analysis for Impulsive Systems: 2D Vector Lyapunov Function Approach

Hector Ríos 1 L Hetel 2 Denis Efimov 1
1 NON-A - Non-Asymptotic estimation for online systems
CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189, Inria Lille - Nord Europe
2 SyNeR - Systèmes Non Linéaires et à Retards
CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : This paper contributes to the stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. The result is illustrated for the exponential stability of linear impulsive systems based on LMIs. The obtained results provide some notions of minimum and maximum dwell-time. Some examples illustrate the feasibility of the proposed approach.
Document type :
Reports
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.inria.fr/hal-01280321
Contributor : Denis Efimov <>
Submitted on : Monday, February 29, 2016 - 12:47:09 PM
Last modification on : Friday, March 22, 2019 - 1:35:02 AM
Long-term archiving on : Sunday, November 13, 2016 - 5:29:26 AM

File

_TechnicalReport.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01280321, version 1

Citation

Hector Ríos, L Hetel, Denis Efimov. Stability Analysis for Impulsive Systems: 2D Vector Lyapunov Function Approach. [Research Report] Inria Lille - Nord Europe. 2016. ⟨hal-01280321⟩

Share

Metrics

Record views

361

Files downloads

262