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Entropy production and mesh refinement — Application to
wave breaking

L. YUSHCHENKO, F. GOLAY, M. ERSOY

Université de Toulon, IMATH, EA 2134, 83957 La Ga@kdex, France

Résumé :

Nous proposons une stratégie adaptative de résolutumérique de systémes hyperboliques de lois de
conservations basée sur la densité de productionémigiue d’entropie (qui caractérise I'erreur commgsur
l'inégalité entropique). Cette densité de productioumérique d’entropie s’avére étre une informaten
posteriori pertinente pour déterminer les zonesndaillage a raffiner ou déraffiner en fonction de la
régularité de la fonction. Cependant, lors des jgaures de raffinement, la taille des cellules dimimt, la
condition de CFL conduit a des pas de temps trégicéfs. Nous proposons donc un algorithme de grs
temps local qui améliore considérablement les tedapsalcul. Cette approche est validée en 1D sarods
tests classiques. Puis nous présentons une agphcab d'écoulement a surface libre. En effet, gracune
formulation bi-fluide eulérienne faiblement commibe, on obtient un systéme hyperbolique de leis d
conservation facilement parallélisable avec unirgffnent par blocs.

Abstract :

We propose an adaptive numerical scheme for hygfierbonservation laws based on the numerical dgnsi
of entropy production (the amount of violation loé theoretical entropy inequality). Thus it is usedan a
posteriori error which provides information on theeed to refine the mesh in the regions where
discontinuities occur and to coarsen the mesh ia thgions where the solutions remain smooth.
Nevertheless, due to the CFL stability conditioa ttme step is restricted and leads to time consgmi
simulations. Therefore, we propose a local timegiteg algorithm. This approach is validated in ttase of
classical 1D numerical tests. Then, we present aapplication. Indeed, according to an eulerian loiid
formulation at low Mach, an hyperbolic system ohsgrvation laws allows an easily parallelizationdan
mesh refinement by “blocks”.

Keywords . Hyperbolic systems, finite volume, local mesh refement, numerical density of entropy
production, local time stepping, wave breaking.

1 Introduction

The present study deals with the numerical simatif multi-fluid flows such as wave propagatingave
breaking and impacting on structure. Numerical $athons of these processes generally involve the
complete resolution of the Navier-Stokes equationsoth air and water phases. This approach islwide
used for its physical relevancy, but its cost inmig of cpu-time remains a major drawback. Three-
dimensional simulations still require a significagffort in software development and mesh refinement
technique on powerful computers [4, 27, 15, 13, 28]. Simplified models based on ipidé theory or
shallow-water equations [10, 4, 5] can be usecttluce the cpu-time. Unfortunately, they are noe aol
adequately represent the complex free surface dgsaotcurring during wave breaking. An alternative
intermediate formulation is used here, aiming tgbgsically more relevant than shallow-water modeid
less cpu-time consuming than the full Navier-Stokesulations. The model is based on a fast 3D two
phases flow solver: viscous effects are negleateidaa artificial compressibility approach is usedding to

an hyperbolic system of conservation laws. Thisiidation, combined with explicit time integraticallows

an efficient parallel implementation. Our model Hasen successively validated on experimental and
numerical test cases [11], improved by the selactb an isothermal model [8] and recently tested on
breaking wave problem over a sloping bottom witkd a&rithout roughness elements [24]. In order to keep
accurate simulation in a reasonable cpu-time, rielisvant to use adaptive mesh refinement techriigsed

on an efficient criterion. Recent developments ptbthat the numerical production of entropy is ayve
powerful error ‘like’ indicator [9, 21, 2223]. This approach leads to a super-convergentnseh].
Coupled to a local time stepping scheme, it alldwssignificantly reduce the computational time. The
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method is recalled in the first part of the pafére second part concerns the numerical validatigdghe case
of one dimensional test. Application on a wave kirgga problem is shown in the third part while thzestl
section is dedicated to conclusion and prospects.

2 Entropy production

We are interested in numerical integration of noadr hyperbolic systems of conservation laws effdrm
(express here in 1d for the sake of simplicity).

ow  of (w) N
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ot ox ) (1)

w(0,X) =w, (x), xOR.

wherew R*xR - RY stands for the vector state ahdR®: - R the flux function.

Solving Equation (1) with high accuracy is a chadimg problem since it is well-known that solutiaren

and will breakdown at a finite time, even if théiad data are smooth, and develop complex strectsinock

wave interactions). In such a situation, the unigss of the (weak) solution is lost and is recavdrg

completing the system (1) with an entropy inequatitthe form:
os(w) N oy(w) <0,

ot 1)

where (s,¢/) stands for a convex entropy-entropy flux pair. sThiequality allows to select the physical

relevant solution. Moreover, the entropy satisfiesonservation equation only in regions where theti®on
is smooth and an inequality when the solution dg&lshocks. In simple cases, it can be provedthigat
term missing in (2) to make it an equality is adgimass.

)

Numerical approximation of Equations (1) with (Badls to the so-called numerical density of entropy
production, which is a measure of the amount ofation of the entropy equation (as a measure ofdta!
residual as in [3, 12, 14]). As a consequence, rthmerical density of entropy production provides
information on the need to locally refine the méslg. if the solution develops discontinuitiest@icoarsen
the mesh (e.g. if the solution is smooth and wefiraximated) as already used by Puppo [21, 22 a2d]
Golay [9]. Even if the shocks are well-capturedcoarse grid using finite volume scheme, such indicia
able (as shown in Puppo [23]) not only to provideefficienta posteriorierror, but also to reproduce the
gualitative structure of the solution and to pilbe adaptive scheme. Explicit adaptive schemeswvaike
known to be time consuming due to a CFL stabildpdition. The cpu-time increases rapidly as thelmgs
refined. Nevertheless, the cpu-time can be siguitly reduced using the local time stepping albami{see
e.g. [17, 26, 2, 18, 6]).

The numerical scheme is presented in details inifgJuding the local time stepping scheme, themes
refinement procedure by dyadic tree. The readefaamd more details about the 3d approach in [, 24

3 One-dimensional test case

We now present some results usingdbaptive multi scale schenmfdumerical solutions are computed using
the one-dimensional gas dynamics equations fol ghesa

ap,opu_o opu 0(p+p) | opE O(pE+ p)u

ot ox ot 0x ot ox
where p,u, p,y, E are respectively the density, the velocity, thespure, the ratio of the specific heats (set
to 1.4) and the total energy =&+ u”/2 (wheree¢ is the internal specific energy). Using the conatve
variablesw = (p,,ou,,oE)T, we classically define the entropy lsgw) = —pln( p/,oy) and the entropy flux
by ¢(w) =us(w).

In what follows, we perform several numerical teg¥e will refer AB1 as the first order scheme, A&2the
second order Adams-Basforth scheme, RK2 as thendamaler Runge-Kutta scheme. AB2 and RK2 use a
MUSCL reconstruction. Moreover, all computations arade with a dynamic grid. We also use the cafj "M

=0, p=¢-1pc (3



when the local time stepping algorithm is employéalgr;1ax stands for the average number of cells used
during a simulation of an adaptive mesh refinenseheme with a maximum leve] . .
We consider the Shu and Osher's problem [25] witfal conditions

(3.857143, 2.629369, 10.3333)x<

(.1, P)(O.X) :{(1+ 0.2sin(5& ), O, 1), x >0.

and the computational domain[ix1] with prescribed free boundary conditions (cfl=@24&imulation time
0.18s, initial number of cells 500 and 4 levelsrash refinement). As a reference solution, we caenfhe
solution on a uniform fixed grid (20000 cells) witie RK2 scheme. This solution being computed verg
fine fixed grid, as predicted by the theory, thengiy of entropy production is almost concentrag¢dhe
shocks. Even if small productions are present betv@e5< X< 0.75, one can consider such a solution as an
“exact" one.
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FIG. 1 — Shu Osher test case

On figure 1, we plot the density of the referenckition, the one by AB1, AB2 and RK2 schemes arir th
numerical density of entropy production. Startingnfi 500 cells, the adaptive schemes lead to versecl
solutions for each scheme and the numerical dep$igntropy production vanishes everywhere wheee th
solution is smooth and every solution fit to thderence solution. However, focusing closely to the
oscillating area betweed.5< x< 0.7, one can observe that the standard classificatfomethods holds:
AB1, AB2 and RK2. Table 1 summarizes the computatibthe total entropy productioR (integral of (2)

in time and space), the discréfenorm of the error on the density, the cpu-time, dkerage number of cells

and the maximum number of cells at final time slinell-known that the AB2 scheme is less stablelessl
accurate than the RK2 scheme. Nonetheless, iaheefvork of the local time stepping, for almost shene
accuracy the AB2M scheme computes 3 times fastar tithe RK2 which correspond to a significant gain i
time.

P 10~ Pret Il cpu-time N Maximum number of cells
AB1 0.288 0.0474 181 1574 2308
AB1M 0.288 0.0480 120 1572 2314
AB2 0.287 0.0275 170 1391 2023
AB2M 0.286 0.0274 108 1357 1994
RK2 0.285 0.0208 299 1374 2005

Table 1: Comparison of numerical schemes of orderdL2

4 Dambreak problem
We now present one result computed using the isotei-fluid model [8]:



[
ot
p=n+6[o-(g0. +1-0)p,)]

where ¢ denotes the fraction of water. We define the gmytiay

o opd . .. = .. 09  _
+d =0, —+d O u+ ph= , —+Ul¢g=0
iv(o0) o iv(oud U+ ph=p7 p ¢ %)

s=2pt + Eplp) - ¢~ Pu)¢

and the entropy flux by
w=(s+ o= la-p)o)u=( 3o + go( w41 |1

Instead of octree meshing, we use cartesian blaeshing. The computational domain is splitted in ynan
"blocks" which are devoted to a parallel processcakding to the average entropy production and thas

mesh refinement level N, each block is meshed itadesian Wa)(ZN'lnXXZN'lnyx 2“'1nz) cells. The
interface between two blocks is therefore, mosheftime, a hon conforming one.

The model is applied to the classical dambreakiodplpm with an obstacle (as described by Koshizoka
[16]). The computational domain (584 mm x 584 mr.% mm) is splitted in 321 blocks which will be
dispached on 120 cores. The air-water interfacevei described according to the mesh refinement
procedure which follow the high values of the nuwcarproduction of entropy. Let us denofg the

numerical density of entropy production (2) aﬁgits average value over the domain at time t. If the
average value op,over a block is less than 2% ﬁ the block is coarsened. And if the average value

p,over a block is more than 20% @f , the block is refined. According to [6] the lewafl two adjacent
blocks never exceeds 2 in order to avoid osciltetid-igures 2 (resp. 3) represent the resultsCa2$<(resp.
t=0.4s). Without any restriction, the maximum numbgcells is between 70000 and 100000 duringhedl t
simulation for an elapsed computing time about &r&oln this simulation each block is meshed in a
Cartesian way witt2 02" cells in the x and y direction and always 1 celttie z direction. It leads to a
mesh size from 12mm to 0.75mm in this example.

(@) (b) (©)

(d)

FIG. 2 — Dambreak with block remeshing at t=0.a% Mesh; (b) Density (air-blue, water-red); (c) Bign
of numerical entropy production (equation (2): greero, blue-negative values); (d) Mesh refinenhev|
per block (1 to 5); (e) Experiment [16]; (f) Megfinement criterion per block.
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FIG. 3 — Dambreak with block remeshing at t=0.4¥ Mesh; (b) Density (air-blue, water-red); (c) Biyn
of numerical entropy production (equation (2): greero, blue-negative values); (d) Mesh refinenhevd|
per block (1 to 5); (e) Experiment [16]; (f) Megfinement criterion per block.

5 Conclusion

In this paper, we use a first and second order oastin space and time which are coupled with aptada
algorithm employing local time stepping. In thisaptive numerical scheme the grid is locally refired
coarsened according to the entropy indicator. $g¢vermerical tests have been performed and show an
impressive improvement with respect to uniform giden if a large number of cells is used.

All numerical tests also show that the numericailsity of entropy production combined with the prepd
mesh refinement parameter is a relevant local @ndbcator (everywhere where the solution remaioattn)
and discontinuity detector: large shocks and @il solutions are very well-captured. Moreoveg, lvave
shown that the implementation of the local timeppteg algorithm can significantly reduces the
computational time keeping the same order of acgurapplied to complex air-water flows, it is a acate
and powerful numerical tool. This approach can\enamproves by balacing more efficiently the tagks
the parallel process.
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