Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay

Aissa Guesmia 1
1 EDP - Equations aux dérivées partielles
IECL - Institut Élie Cartan de Lorraine
Abstract : In this paper, we consider a Timoshenko system in 1-dimenstional bounded domain with infinite memory and distributed time delay both acting on the equation of the rotation angle. Without any restriction on the speeds of wave propagation and under appropriate assumptions on the infinite memory and distributed time delay convolutions kernels, we prove, first, the well-posedness and, second, the stability of the system, where we present some decay estimates depending on the equal-speed propagation case and the opposite one. The obtained decay rates depend on the growths of the memory and delay kernels at infinity. In the non equal-speed case, the decay rates depends also on the regularity of initial data. Our stability results show that the only dissipation resulting from the infinite memory guarantees the asymptotic stability of the system regardless to the speeds of wave propagation and in spite of the presence of a distributed time delay. Applications of our approach to specific coupled Timoshenko-heat and Timoshenko-wave systems as well as the discrete time delay case are also presented.
Type de document :
Article dans une revue
Journal of Mathematical Physics, American Institute of Physics (AIP), 2014, 55 (8), 〈10.1063/1.4891489〉
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01281853
Contributeur : Aissa Guesmia <>
Soumis le : mercredi 2 mars 2016 - 21:09:10
Dernière modification le : jeudi 11 janvier 2018 - 06:26:21
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 07:17:24

Fichier

JMP14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Aissa Guesmia. Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay. Journal of Mathematical Physics, American Institute of Physics (AIP), 2014, 55 (8), 〈10.1063/1.4891489〉. 〈hal-01281853〉

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

73