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In this paper, we consider a Timoshenko system in one-dimensional bounded do-
main with infinite memory and distributed time delay both acting on the equation of
the rotation angle. Without any restriction on the speeds of wave propagation and
under appropriate assumptions on the infinite memory and distributed time delay
convolution kernels, we prove, first, the well-posedness and, second, the stability
of the system, where we present some decay estimates depending on the equal-
speed propagation case and the opposite one. The obtained decay rates depend on
the growths of the memory and delay kernels at infinity. In the nonequal-speed
case, the decay rate depends also on the regularity of initial data. Our stability re-
sults show that the only dissipation resulting from the infinite memory guarantees
the asymptotic stability of the system regardless to the speeds of wave propaga-
tion and in spite of the presence of a distributed time delay. Applications of our
approach to specific coupled Timoshenko-heat and Timoshenko-wave systems as
well as the discrete time delay case are also presented. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891489]

. INTRODUCTION

Letg: Ry — Riand f : Ry — Rbe given functions. We consider the following Timoshenko
system:

p1gu(x, 1) — ki(px(x, 1) + ¥ (x, 1)), =0,
102‘(//1‘1()69 t) - kaxx(xv t) +k1(¢x(xv t) + I;//.()69 t))

+00

+o0
+/ g Vx(x, t — s)ds + fY(x,t —s)ds =0,
0 0

©0,1) =¢(0,1) =(L,t) =y(L,1) =0,
p(x,0) = @o(x), @:(x,0) = @i1(x),
Y(x, =) = Yolx, 1), Yi(x, —1) = Y1(x, 1),

where (x, 1) €]0, L[xR, (9o, Yo, @1, Y1) are given initial data belonging to a suitable space, (¢,
Yr) is the state (unknown) of (1.1), L, p1, p2, k1, and k, are positive constants. A subscript y denotes
the derivative with respect to y. We also use the prime notation to denote the derivative when the
function has only one variable. The infinite integrals depending on g and f represent, respectively,
the infinite memory and the distributed time delay terms. This type of systems has been introduced
in Ref. 44. It describes the transverse vibration of a thick beam of length L, where ¢ is the transverse
displacement of the beam, — v is the rotation angle of the filament of the beam, and p1, p,, k1, and
ky account for some physical properties of the beam (see, for example, Refs. 23 and 24).

(1.1)
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Our objective here is to prove the well-posedness and investigate the asymptotic behavior as
time goes to infinity of solutions of (1.1) under appropriate assumptions on the convolution kernels
gandf.

The questions related to well-posedness and stability/instability of evolution equations with
delay and/or memory have attracted considerable attention in recent years and many researchers
have shown that the memory plays the role of a damper, whereas the time delay can destabilize a
system that was asymptotically stable in the absence of time delay. The main problem concerning the
stability in the presence of memory is determining the largest class of kernels g which guarantee the
stability and the best relation between the decay rate of g and the asymptotic behavior of solutions of
the considered system. Because a small delay time can be a source of instability (see, for example,
Ref. 28), to stabilize a hyperbolic system involving input delay terms, additional control terms (like
memory or frictional damping) will be necessary. Let us recall some works related to the subject of
the present paper.

In the absence of time delay term (i.e., f = 0), a large amount of the literature is available on
Timoshenko-type systems** with (finite or infinite) memory or frictional damping, addressing the
issues of the existence, uniqueness, smoothness, and asymptotic behavior in time; see, for example,
Refs. 2,4,5,8,9,16-19, 25, and 26, and the references cited therein. In these papers, it was shown
that the dissipation given by the memory term is strong enough to stabilize the system, and various
decay estimates (exponential, polynomial, or others) have been obtained depending on the regularity
of the initial data, the growth of g at infinity and the relation

ki ko

= (1.2)
L1 P2

and the opposite one. The equality (1.2) means that the first two equations of (1.1) have the same

[k [k
speeds of wave propagation =L and —2, respectively. Similar stability results are known in the
P1 2

literature for other hyperbolic evolution equations with memory; see, for example, Ref. 14 and the
references cited therein. The idea of proof consists in considering some integral and/or differenial
inequalities involving g and/or some of its derivatives as a characterization of the growth of g at
infinity from which the decay rate of the solution is deduced.

When the second equation of (1.1) is replaced by

P2 (x, 1) — kpWrex (X, 1) + ki (@x(x, 1) + ¥ (x, 1)) (1.3)

+/ g Wx(x, t — 8)ds + w1 (x, 1) + pahi(x, 1 — 1) =0,
0

where 1), (2, and 7 are fixed non-negative constants, the stability of Timoshenko system was
proved in Ref. 35 under the assumption 0 < u; < w;. The decay rate of solution obtained in
Ref. 35 depends on the one of g. This result shows that the dissipation resulting from both finite

t
memory g($)Yyx(x, t — s)ds and frictional damping pu;v,(x, f) is strong enough to stabilize
0

Timoshenko system in presence of a constant discrete time delay w,¥,(x, t — t) provided that the
coefficient of the delay is smaller or equal than the one of the damping. Similar stability results for
various hyperbolic evolution equations with frictional damping and time delay exist in the literature,
in this regard, we refer the reader to Refs. 3,6,7,21,27-31, and 32.

As far as we know, the problem of stability of Timoshenko system with infinite memory and
distributed time delay considered in this paper has never been treated in the literature. The stability
of the following abstract hyperbolic equation with infinite memory and discrete or distributed time
delay:

+0o0
uy (1) + Au(t) — f 2($)Au(t — s)ds + pu,(t — t)ds =0 (1.4)
0
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and

+00 +oo
u,(t) + Au(t) — / g(s)Bu(t — s)ds + fu(t —s)ds =0 (1.5)
0 0

was studied in, respectively, Refs. 15 and 20, and several decay estimates were proved depending
on the growth of g and f at infinity, and the connection between the operators A and B. But
(1.4)(1.5) do not include (1.1), since the operators A and B are supposed to be definite positive in
Refs. 15 and 20.

Unlike the discrete time delay models, which ignore the inherent memory effects, the distributed
time delay considered in this paper do take into account the whole (infinite) past history of the
solution. More precisely, we are in presence of an indefinite frictional damping which depends on
all previous states (the past information is stored and used later). This is what makes the present
case more realistic. In fact, the discrete case will be a special case which corresponds to the Dirac
delta distribution kernel (at some time 7).

According to the known results cited above, one main question naturally arises: is it possible
for the memory term, which plays solely the role of dissipation in (1.1), to play the same role
as a robust controller against the delay and stabilize (1.1), and is it possible to get the decay rate
of solutions explicitly in term of, in particular, the connection between the delay and the memory
kernels? As far as we know, this situation has never been considered before in the literature. In this
paper, we shall prove, regardless of the speeds of wave propagation and under some appropriate
assumptions on g and f, that (1.1) is well-posed in an appropriate underlying space, and that the only
dissipation generated by the infinite memory guarantees the asymptotic stability of (1.1) in spite of
the presence of a distributed time delay. Moreover, the decay rate of solutions is explicitly found in
terms of the growths of g and f at infinity. When (1.2) does not hold, the decay rate depends also
on the regularity of initial data and, so, it can be improved by choosing initial data regular enough.
The proof is based on the semigroup theory for the well-posedness, and the energy method for the
stability. We introduce new functionals to get crucial estimates on the distributed time delay and
the infinite memory, and overcome subsequently the difficulties generated by the nondissipativeness
character of our system (1.1). Moreover, we will appeal to some ideas and arguments in Refs. 20
and 36-43. These ideas will, in particular, allow us to deal with some arbitrary decaying kernels
without assuming explicit conditions on their derivatives. The approach presented in this paper can
be applied to the case of finite memory and/or discrete time delay as well as other Timoshenko-type
systems.

The plan of the paper is as follows. In Sec. II, we present our assumptions on g and f, and
state and prove the well-posedness of (1.1). Section III is devoted to the statement and proof of the
asymptotic stability results of (1.1) under some additional assumptions on g and f. Section IV will
be devoted to some applications to the coupled Timoshenko-heat and Timoshenko-wave systems as
well as to the discrete time delay case. Finally, in Sec. V, we discuss some general comments and
issues.

Il. WELL-POSEDNESS

In this section, we state our assumptions on g and f, and prove the global existence, uniqueness,
and smoothness of the solution of (1.1). We assume that

(A1) The function g is of class C'(R, R.), nonincreasing and satisfies

+00
8o = / g(8)ds < k. 2.1)
0

Moreover, for some positive constant 6,

—g'(s) < 6og(s), Vs eR,. (2.2)
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(A2) The function fis of class C 1(R+, R) and satisfies, for some positive constant «,

|f()] <agls) and [f'(s)] <agls), VseR,. (2.3)

Following a method devised in Ref. 5, we consider a new auxiliary variable n to treat the infinite
memory and distributed time delay terms, and formulate the system (1.1) in the following abstract
linear first-order system:

where
{% = (@. V. 90 Vi)
Uo = (9o, Yo(-, 0), @1, Y1 (-, 0), o))" € 2,
A = (Hy 10, LD)” x (L?(10, LD)® x L2(R+, Hy(10, LD)
and
{ (. t,8) =P, 1) — Y.t —s), 0s)
no(x, s) = n(x, 0, s) = Yo(x, 0) — Yolx, 5).

The set LE(RJF, HO1 (10, L])) is the weighted space with respect to the measure g(s)ds defined by

L +0o0
2R, HI(0, LD) = {w R #00LD. [ sudsdsax < +oo}
0 0

and endowed with the classical inner product

L +00
(v, w2, Hjq0,LD) = / / g(s)vx(x, SHwy(x, s)dsdx.
o Jo

The operators % and < are linear and given by

%’(wl, wy, W3, Wy, w5)T = <0, O, 0, ”];!OO Wy, Eows)T (26)
and
wi w3
w»y W4
dws | =] Hwntw) |, 2.7
Wy W4
ws —Wss — €QWs + W4
where
Wy = L(kz — 80)Waxx — ﬁ(wlx + wy) — ||f”oow4
2 02 P2

P
1 —+00 1 +o0

+ —f g(S)wsy (s)ds — — f()wss(s)ds,
P2 Jo P2 Jo

2
€ = — 800 (2.8)
4| flloo

and ¢ is the smallest positive constant satisfying (Poincaré’s inequality)

L L
f w?(x)dx < co / w(x)dx, Yw e H} (0, L[) (2.9)
0 0
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(eo is well defined positive constant, since ||f] o > 0. Otherwise, f = 0 and then no distributed time
delay is considered in (1.1), which is a well studied case in the literature; see the Introduction). The
domains 2(%) and 2(/) of A and 7, respectively, are given by (%) = H# and

W = (wy, wa, w3, wg, ws)" € #, ws(0) =0
wss € Ly(Ry, Hy(10, L[), ws, wy € Hy(10, L), wy € H*(10, L)

D) = oo , (2.10)
o= gownec+ [ gusito)ds € 1200, LD
0
since, thanks to the Cauchy-Schwarz inequality and the first inequality in (2.3),
+00
wss € LY(R, Hy (10, L)) = f©ws(s)ds € L*(10, L]). (2.11)
0
We use the classical notations 2(27%) = #, 9(/'") = P(o/) and
A"y = (W € D" ), dW € DA™ ")), n=273,--,
endowed with the classical graph norm
Wl germ = D> N*W | . (2.12)
k=0
On the other hand, keeping in mind the definition of n in (2.5), we have
r)l(xy t’ S) + ns(x7 t5 S) = Wt(xa t)7
n0,t,5) =n(L,t,5)=0, (2.13)
n(x,t,0)=0.
Therefore, we conclude from (2.6), (2.7), and (2.13) and the equality
ns(x,t,8) =Y, (x,t —s) (2.14)

that the systems (1.1) and (2.4) are equivalent.
Thanks to (2.1), it is well-known that # endowed with the inner product, for W =
(Wi, wa, w3, wy, ws)" and W = (dy, W, B3, W4, Ws)",

L
(w.w),, = /0 (k2 — go)wax () W2y (x) + ky(wix(x) + w2 (X)) (W1x(x) + W2(x))) dx

L
+/ (P1w3(X)W3(x) + p2wa(X)Wa(x))dx + (ws, Ws) 12w, 1} (0, L)
0

is a Hilbert space and (<) C ¢ with dense embedding, since, using contradiction arguments,
this inner product generates on .5¢ a norm equivalent to the one of

A = (H'(J0, LDY* x (L*(10, LD)Y* x Ly (R, H'(10, LD);
that is, there exist two positive constants d; and d, satisfying, for all W € 72,
Wl < IWlle = 2| Wl (2.15)

The well-posedness of problem (2.4) is ensured by the following theorem:

Theorem 2.1. Assume that (A1)-(A2) hold. Then, for any n € N and %y € ("), the system
(2.4) has a unique solution satisfying

U € M C* Ry, 2("7H)). (2.16)

Proof. To prove Theorem 2.1, we use the semigroup approach. So, first, we show that the linear
operator 7 is dissipative. Indeed, let W = (wy, wa, w3, wy, ws)! € D(27), then
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(AW, W) 5 (2.17)
L
= / (k2 — go)wax (X)war (x) + k1w (x) + wa(x)(wix(x) + wa(x))) dx
0
L
+ f (ki (wix(x) + wa(x)xw3(x) — k(Wi (x) + wa(x))wa(x)) dx
0
L
+ [ G = gowses = 1l it
0
L +oo +00
+ / </ 8(S)wsyx(x, s)ds — J($)wss(x, S)dS> wa(x)dx
0 0 0
L +00
+ / f 8(s)(—wss(x, ) — €ows(x, 8) + walx))ywsy(x, s)dsdx.
o Jo
It is clear that by integrating by parts with respect to s and using the fact that

lim g(s)wsy(x,s) = lim f(s)ws(x,s) =0
§—>+00 §—>+00

(due to (A1), (2.3) and (2.9)) and ws(x, 0) = 0 (definition of (7)), we find

L +o00 1 L 400
— / / gwsi(x, $wss(x, $)dsdx = 5 / / g (Hw (x, s)dsdx. (2.18)
0 0 0 0

Note that, thanks to (2.2) and the fact that g is nonincreasing and ws € L3 (R, Hy (10, L[)),

L pr+oo L p+4oo
/ / g (w3, (x, s)ds| = —/ / g (s)w? (x, s)ds
o Jo o Jo

L +00
< 90/ / g()w3, (x, s)ds
0 0

< +00,

so the integral in the right hand side of (2.18) is well defined. Moreover,
L +00 L +o00
- [ wa(x) fFwss(x, s)dsdx = / w4(x) f(Hws(x, s)dsdx. (2.19)
0 0 0 0
Consequently, inserting (2.18) and (2.19) in (2.17) and integrating by parts with respect to x, we get
1 L p+oo
(AW, W), = 5/ / g'(s)w? (x, s)dsdx
0o Jo
L +0o0
+ f wa(x) f(Hws(x, s)dsdx (2.20)
0 0

L L 400
1l [ i —a [ [ gwud o asa
0 0 0

Now, using Young’s inequalities, (2.9) and the second inequality in (2.3) imply that (e¢ and ¢y are
defined, respectively, in (2.8) and (2.9)),

L +00
f wa(x) f(Hws(x, s)dsdx 2.21)
0 0
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L +o0 L +00
¢ _CO||f”°°/ / gewi(dsdx + = /eoi/ / g&wi(x, s)dsdx
2V eg Jo Jo 2V ol flleo Jo Jo
a [cogoll flloo /L ) a [€ogoco /L/+°° )
- [ wi(x)dx + = | —— g(s)ws, (x, s)dsdx
A 2V 1flle Jo Jo ;

L L +o00
Il flloo f wi(x)dx + € f / g(s)w? (x, s)dsdx.
0 0 0

IA

Finally, combining (2.20) and (2.21), and using the fact that g is nonincreasing, we obtain

1 L +00
(AW, W), < 3 / / g'(s)w? (x, s)dsdx <0, (2.22)
0 0

which means that <7 is dissipative.
Next, we shall prove that Id — < is surjective. Indeed, let F = (f1, fo. f3, fa, f5)| € ., we
show that there exists W = (wy, wa, w3, wa, ws)! € D() satisfying

(Id — o)W =F, (2.23)
which is equivalent to

w3 =w; — fi,
Wy = wy — fo,
prwi — ki(wix + wo)x = p1(f1 + f3),

~+00
(02 + [ fllow)w2 — (k2 — go)warx + ki(wix + w2) — / g(S)wsyy(s)ds (2.24)
0

+00

+ Fwsg()ds = (02 + || flloo) 2 + P2 fa,
0
wsy + (1 + eg)ws = wo + f5 — fo.

We note that the last equation in (2.24) with ws(0) = 0 has the unique solution

ws(s) = e (1T f MO (wy + f5(y) — fo)dy
0

= (1)t (1 — e 1F0%) gy 4 o=+ / FON(f5(y) = fa)dy. (225
0

Next, plugging (2.25) into the fourth equation in (2.24), we get

- k x + y = + s
prwr — ki(wix + w2)x = p1(f1 fs) (226
bwy — liwae, +ki(wix +wo) = f,
where
+o00
L =ky—go+(1+€) 'go—(1+€)! / g(s)e Ireorgs,
0
+00
L=p+ 1 fllc+ f(s)e~ e gy
0
and

400 K
F=2+Ifllec)fo+ p2fs+ (1 + ) \ f(s)e e ( / IOV (f5(y) — fz)dy) ds

0
+o0

—+00 K
- F$)(f5(s) — fo)ds + fo g(s)e e ( f) e(HEO)y(fs(Y)—fz)xxd)’) ds.
(
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It remains only to prove that (2.26) has a solution (w;, w;) € (HO1 o, L[))z. Then, substituting in
(2.25) and the first two equations in (2.24), we obtain W € (&) satisfying (2.23). Since [; > k;
— go > 0 (according to (2.1)) and

Lz 241 fllo = I1fllo > p2 >0,

1+ ¢

we see that the operator

(v = prwy — ki(wix + wa)x
wy Lwy — hwye, + ki(wix +wy) |7
is self-adjoint linear positive definite. Considering the variational formulation of (2.26), and applying
the Lax-Milgram theorem and classical regularity arguments, we conclude that (2.26) has a unique

solution (w;, wy) € (HO1 o, L[))2 satisfying the third and fourth equations of (2.24), since (2.25).
Therefore, using (2.11),

+00
(k2 - gO)w2xx + / g(s)wSxx(s)ds € Lz(]ov LD
0

This proves that Id — </ is surjective. Finally, we note that (2.22) and (2.23) mean that —7 is a
maximal monotone operator. Hence, using Lummer-Phillips theorem (see Ref. 34), we deduce that
&7 is an infinitesimal generator of a linear Cy-semigroup on 7.

On the other hand, as the linear operator Z (defined in (2.6)) is Lipschitz continuous, it
follows that .o/ + 4 also is an infinitesimal generator of a linear Cy-semigroup on J# (see Ref. 34:
Chap. 3 — Theorem 1.1). Consequently, (2.4) is well-posed in the sense of Theorem 2.1 (see
Refs. 22 and 34). |

lll. ASYMPTOTIC STABILITY

In this section, we investigate the asymptotic behavior of the solution of (2.4) by the use of
the energy method. We produce suitable Lyapunov functionals and prove some decay estimates
depending on the asymptotic behavior of g, the connection between g and f, and the regularity of
initial data.

A. Additional assumptions and stability results
Our asymptotic stability results hold under the following additional assumptions:

(A3) The function g satisfies

+0o0
8o = f g(s)ds >0 3.1
0

and one of the following two conditions holds:
36, > 0, g'(s) < —0ig(s), VseRy (3.2)

or there exists a positive nonincreasing function & : Ry — R% of class C(R ., RY ) such that

+00
gt —s) > %‘(t)f gt —s)dr, Vt e Ry, Vs €[0,1],

g'(s) <0, Vs € Ry.

(3.3)

(A4) There exists a positive even function y : R — R of class C(R, R? ) and nonincreasing on
R, and a positive function 8 : R, — R7 of class C(R ., R%) such that

+00

Bo 1= B(s)ds < +o0 (3.4
0
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and

If() < e 7DB(s)g(s), Vs e Ry, (3.5)

where

3
7(s) = 2/ y(t)dt, VseR,. (3.6)
0
Moreover, when (1.2) does not hold, we assume also that fis of class C 3(R+, R) and satisfies,
for some positive constant &,

|f"(9)] <ag(s) and [f"(s)] <ag(s), VseR,. (3.7

Remark 3.1. The condition (2.2) implies that the decay rate of g is at most of exponential type.
The conditions (3.2) and (3.3) include, respectively, the class of functions g which converge to zero
at least exponentially or less than exponentially. When

lim &(r) > 0,

t—+00

the first inequality in (3.3), introduced in Refs. 39 and 42, implies that g converges to zero at least
exponentially but it does not involve the derivative of g. We distinguish the cases (3.2) and (3.3)
because they lead to different kinds of decays.

Theorem 3.2. Assume that (A1)—(A4) hold. Then there exists a positive constant § independent
of f such that, if

+00
/0 |f($)lds < o, (3.8)

then, we have the following stability results:

(i) Equal speed propagation and exponential decay of g: if (1.2) and (3.2) hold, then, for any
Uy € D(), there exist positive constants 8; and 8, such that

1% @)% < 8e7"%0, Vi e Ry, (3.9)

where

(1) = / min(1, y(s)}ds. (3.10)
0

(ii) Nonequal speed propagation and exponential decay of g: if (1.2) does not hold and (3.2)
holds, then, for anyn =2, 3, --- and U € D(A"), there exists a positive constant 81 such that

1% )15 < Vi € R, (3.11)

1
(1401

(iii) Equal speed propagation and arbitrary decay of g: if (3.2) does not hold, and (1.2) and
(3.3) hold, then, for any %y € Y(&), there exist positive constants §; and 8, such that

L t +o00
1% ()15 < 87170 (1+/ / e51¢<f>f g(r)ng(x,r—s)drdsdx> ,VteR,, (3.12)
0 0 K
where

o(1) :/0 min{1, y(s), E(s)}ds. (3.13)
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B. Examples and comments

Let us illustrate our decay estimates (3.9), (3.11), and (3.12) by the following simple examples
(some of them were given in Ref. 20 for (1.5)):
1. Equal speed propagation and exponential decay of g: (1.2) and (3.2) hold

Let us consider the class g(s) = ape™*"*, with a1, @, > 0. Then (A1) and (3.1) hold provided
that o5 is small enough so that (2.1) holds. This class satisfies (3.2) with 8 = «.
32.1.1.If

|f()] < Pae P g(s), Vs e Ry, (3.14)

for some constants 81, 82, p > 0 with B8, small enough so that (3.8) holds, then (3.5) is satisfied
with B(s) = fre PO+,

y(s) = q(B1 — Po)2ls| + D77, (3.15)

any Bo €10, 81[ and g = min {p, 1} (so y is positive on R and nonincreasing on R, ), and therefore,
(3.9) gives, for some positive constants ¢’ and ¢”,

1% ()% < ¢"e V" Vi e R,
3.2.1.2.If
|f($)] < Boe P+ 6(5) Vs e R, (3.16)

for some constants 81, 2 > 0, and p > 1 with 8, small enough so that (3.8) holds, then (3.5) holds
with B(s) = 1333*/30(1n(s+1))”’
(In2|s| + D))"~ . o
—P)T— if [s] > —(eP~ ! — 1) := 50,
YORE KT Ist = 3¢ ) 1= 50

p(B1— Bo)(p — DPte! =P =¢ if |s] € [0, so],

(3.17)

B3 = B2e°® and any B € 10, B[ (so y is positive and continuous on R, and nonincreasing on R ),
and therefore, (3.9) gives, for some positive constants ¢’ and ¢”,

% ()% < e M+ vr e R,

32.13.If

Bi
(s +1r

for some constants 81 > 0 and p > 1 with 8, small enough so that (3.8) holds, then (3.5) holds with
B(s) = o

[f(s)] < g(s), VseR,, (3.18)

(3.19)

and any By € 10, p — 1[ (so 8 is integrable on R ), and therefore, (3.9) gives, for some positive
constants ¢’ and ¢,

1% 1% <"t + 1), VteR,.

2. Nonequal speed propagation and exponential decay of g: (1.2) does not
hold and (3.2) holds

The estimate (3.11) gives a decay rate of polynomial type for the solution of (2.4), where the
decay rate depends on the regularity of initial data 2.
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3. Equal speed propagation and arbitrary decay of g: (3.2) does not hold,
and (1.2) and (3.3) hold

Let us consider the classes (3.14), (3.16), and (3.18) of £, and the following three classes of g
which satisfy (3.3) and do not satisfy (3.2).
323.1.If

g(s) = ax(s + 1) lemH, (3.20)

for some constants oy, oy > 0, and r € ]0, 1[. Then (A1) and (3.1) hold provided that o, is small
enough so that (2.1) holds. On the other hand, (3.3) holds with £(s) = &y (s + 1)" ~ !, and therefore,
(3.12) holds with

t
/ &(s)ds incase (3.14) withr < p,
0
pt)=1"°
/ y(s)ds incase (3.14) with r > p, and in cases (3.16) and (3.18).
0

If, for example, for some positive constants Ay and My,

L
x, 8)dx < Mye'™™ )", s e Ry, .
3 (x, 9)dx < Mpe™T 1 vs e R (3.21)
0
then (3.12) implies that, for some positive constants ¢’ and ¢”, and for all r € R,

¢"e=¢ (™ case (3.14),
1% )% < § e @D ip case (3.16), (3.22)

'+ 1) in case (3.18).

3232 If

g(s) _ - +(¥62r71 (IH(S + er—])))‘—1e—al(ln(S-‘re'—l))r’ (323)

for some constants «, oy > 0, and r > 1. Then (A1) and (3.1) hold provided that «, is small
enough so that (2.1) holds. On the other hand, (3.3) holds with £(s) = ra;(s + ¢" ~ )~ !(In(s +
¢~ 1)~ !, and therefore, (3.12) holds with

t
/ &(s)ds incase (3.14), and in case (3.16) with r < p,
0
o)=1{"°
/ y(s)ds incase (3.18), and in case (3.16) with r > p.
0

If, for example, for some positive constants Ay and My,

L
/ Ye (x, s)dx < Mo(s + D™, Vs e Ry, (3.24)
0
then (3.12) implies that, for some positive constants ¢’ and ¢”, and for all r € R,

¢/ e~ G+ in case (3.14),
1% (t)]1% < { e~ <D™ in case (3.16), (3.25)

'+ 1) in case (3.18).

3.2.33.If

gls)=ai(s+1)7", (3.26)

for some constants «; > 0 and r > 1. Then (A1) and (3.1) hold provided that «; is small enough so
that (2.1) holds. On the other hand, (3.3) is satisfied with £(s) = ( — 1)(s + 1)~ ', and therefore,

(3.12) holds with ¢() = / E(s)ds.
0
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If, for example, for some positive constants Ay and My,
L
/ Ve (x,8)dx < My(In(s +2)), Vs e Ry, VseRy, (3.27)
0

then (3.12) implies that, for some positive constants ¢’ and ¢/, and for all € R,

C//(t + 1)*(‘/ ifr > 2,
S < , 3.28
[ ()”JZ’ = {C//(t+1)0 if r <2. ( :

The estimate (3.28) in case 1 < r < 2 does not imply the strong stability of (2.4),

Jim 1% @0)I%, = 0. (3.29)

The lim,_, o || % (t)||éf in (3.12) depends on the connection between the growths at infinity of g, f,

L
and f Wi (x, )dx.
0

C. Proof of Theorem 3.2

We start our proof by giving the modified energy functional £ associated with any weak solution
of (2.4) (corresponding to initial data % € .%7),

1
E(t):= Eu%(r)néf. (3.30)

Let % € 9(/"™), where ny = 1 if (1.2) holds, and ny = 2 if (1.2) does not hold, so that all the
calculations below are justified. From (2.4), (2.6), (2.14), (2.19), and (2.20) we get

+o0
E'(t) == / / g(s)nx(x t,s)dsdx —/ Y (x, t) f(S)l//;(x t —s)dsdx. (3.31)

Note that, in contrast to the situation of absence of delay and/or presence of frictional damping
considered in the literature (as in (1.3)), we are unable to determine the sign of £’ from (3.31), and
therefore, the system (2.4) is not necessarily dissipative with respect to E at this stage.

On the other hand, using Cauchy-Schwarz inequality, the following classical inequalities hold,
forall v € C(R 4, R) (see, for example, Refs. 16 and 26),

+o0o
(/ g(s)v(s)ds)
0
+00 2
</ g’(s)v(s)ds)
0

Inequalities (3.32) and (3.33) will be repeatedly used in the proof. Also, we will denote by cs a
positive constant depending on some parameter §.

In order to prove (3.9), (3.11), and (3.12) we prove briefly several lemmas. Lemmas 3.3-3.9
and 3.11 are known in case f = 0 (see, for example, Refs. 2,8,17, 19,25, and 26), while the ones
3.10 and 3.12-3.14 are introduced in the present paper to cope with the new situation due to the
distributed time delay and the nondissipativeness character of (1.1).

2 +00
< g / g(s)v*(s)ds (3.32)
0

and

+o0
—g(0) / g ($Hv3(s)ds. (3.33)
0

Lemma 3.3. The functional

L +00
L) := —pzf wz(x,t)/ g(s)n(x, 1, s)dsdx,
0 0
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satisfies, for all § > 0,

L
@) < fo (—pa(go — OV (x, 1) + 8 (Yi(x, 1) + (o (x, 1) + ¥(x, 1)?)) dx

L +00
+cs / / (g(Imi(x,t,5) — g'()ni(x,t,5)) dsdx (3.34)
0 0

L +o00 400
+ / < FY(x, t — S)dS> (/ g(sn(x, 1, s)ds) dx.
0 0 0

Proof. The proof is identical to the one given in Refs. 25 and 26 in case f = 0. Indeed, by
differentiating /;, using the second equation in (1.1) and the first one in (2.13), and integrating by
parts, we get

L L +o00 400
I[(r) = —,ozgo/ lﬂlz(x, t)dx + / < fOY(x, t — s)ds> (/ glsn(x, ¢, s)ds) dx
0 0 0 0

L +00 2 L +00
+/ (/ g(S)nx(x,t,S)dS> dx —gof llfx(x,t)/ g, (x, t, s)dsdx
0 0 0 0

L +00 L +00
s / Vil ) / ¢, 1, )dsdx + ko / Y1) / oI (x. 1, $)dsdx
0 0 0 0
L +00
s / (2. 1) + P(x. 1) / g()n(x. 1. s)dsdx.
0 0
Applying Cauchy-Schwarz inequality, (2.9) and Young’s inequality
b<d Z 4 1b2 Va,beR, Vd >0
- — >
a — 2a 2d 9 a? 9 9

to the last four terms of the above equality, and using (3.33), we get

L F)
L) < /0 <—pz(go — OV (x, 1) + waoc, 1)+ 8(pu(x, 1) + Y (x, r))z) dx

L +00 +o00
+ f < fOY(x, t — s)ds> </ glsn(x, ¢, s)ds) dx
0 0 0
L p+oo L 400 2
—cs / / g’(t)ni(x, t,s)dsdx + cs / </ g (x,t, s)ds) dx
0 0 0 0

L +00
—80/ lﬂx(x,t)/ g (x, t, s)dsdx.
0 0

(3.35)

Again, applying Cauchy-Schwarz and Young’s inequalities to the last term in (3.35), and using
(3.32), we find (3.34).
In case (3.3), we will consider another manipulations for the last two terms in (3.35). |

Lemma 3.4. The functional

L
I(1) = —/0 (p1o(x, D@y (x, 1) + papr (x, DY (x, 1)) dx
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satisfies, for some c¢1 > 0 (not depending on f),
L L
L) < - / (o167 (e, 1) + 29 (x. D) dx + ke / (o, 1) + Y (x, 1) dx
0 0
L L +00
+c / V2(x, Hdx + ¢ / / g (x, t, s)dsdx (3.36)
0 0o Jo

L +00
+ / ¥(x, f)/ f)Y,(x,t —s)dsdx.
0 0

Proof. Similar to the proof of Refs. 2,8,25, and 26 in case f = 0, by differentiating I, using the
first two equations in (1.1) and integrating by parts, we find

L L
L) = — / (P192(x, 1) + p2W(x, 1))dx + ky / (o (x, 1) + ¥ (x, 1))*dx
0 0

+00

L L
+ (k2 — go)/ Yi(x, Hdx + / Y(x, 1) FY(x, t —s)dsdx (3.37)
0 0 0

L +00
+ / Y (x, t)/ gy (x, t, s)dsdx.
0 0

The use of Young’s inequality and (3.32) for the last term in (3.37) leads to (3.36). |

Lemma 3.5. The functional

L k L
L) : = p / Y (x, 1) (e (x, 1) + Y(x, 1) dx + j{—‘l" f Yo (x, D@ (x, dx
0 0
P L +00
-2 wn / g (x, 1 — s)dsdx
ki Jo 0

satisfies, for all ¢ > 0,

L 1 400 2
L) < pz./o ¥ (x, Ddx + % (kzwx(L, ) —/O 8 yx(L, 1 — S)dS>

1 +00 2
+ 5= <kz%(0, H— / g()Yx(0, 1 — S)dS)
2e 0

+ 2 (XL, 1) + 920, 1) —k ' 2q
5 (@l 9:00.0) —ki [ (pe(x, 1)+ Y(x, 1) dx
0 (3.38)

L +o00 L
- Cs/ / g MmA(x, t, )dsdx + 8/ @2 (x, t)dx
0 0 0
L +o0
—/ (ox(x, 1) + ¥ (x, 1)) fY(x, t —s)dsdx
0 0

k L
* (% B pz) / @ (x, DY (x, Ddx.
1 0

Proof. As in Ref. 2 in case f = 0, a simple differentiation of I3, using the first two equations in
(1.1) and the fact that

Y (X, 1 —5) = n(x, 1, 5), (3.39)
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and integration by parts give
L 01 L +00
5 =~k [ e+ venidx =2 oo [ gown - sdsdx
0 1 Jo 0

k t '
+ <i—]p1 —m)/o wt(x,t)%t(X,t)dx—sz/O V(X (@ (x, 1) + Y (x, 1))cdx

L +o00

+/0 <kzwxx(x,t)—/o g(S)I/fxx(x,t—S)dS> (ox(x, ) + ¥ (x, 1))dx
L +00

—/O < ; f(S)wf(x,t—S)dS> (pu(x, 1) + ¥ (x, 1))dx

L L +00
+ o2 / 2(x, dx — / (6. 1) + Y (x. 1)y / (W (v, 1 — s)dsdx
0 0 0

L ) Lo ik L
-k f (@u(x, D+ (x, ) dx+ps f w,(x,t)dx+(k——pz> / 015, Oras (v, D)
0 0 0

1

L -+00
- /0 (02, )+ (x, 1) /0 FOW(x, 1 —s)dsdx
—+00
+ (kzwx@, - /0 (s Wi(L, z—s>ds)gox<L, 9

—-+00 01 L -+00
—(kzwx(o,n— f g(s)x/fx(o,r—s>ds)¢x(o,r>+k— / 0:x, 1) f &) (x. £, s)dsdx.
0 1 J0 0

By using (3.33) and Young’s inequality for the last three terms in this equality, we get (3.38). W

To handle the boundary terms in (3.38), we proceed as in Ref. 2.

4
Lemma 3.6. Let m(x) := 2 — Zx. The functionals

L +o00
Ji@) = /02/ m(x) Y (x, 1) <kz%(x,t)—/ g(S)l/fx(x,t—S)dS> dx
0 0
and
L
1) = p / M) (x. . (e, )dx
0

satisfy, for all ¢ > 0 and for some c,, c3 > 0 (not depending neither on f nor on €),

L 400 2
Ji(t) < <1 + é) Yi(x, Ddx — <kz%(L, 1) — / gY(L, 1 — S)dS)
0

0

+00 2 L
- (kzlﬂx((), 1) —/ g(s)¥. (0,1 — S)dS) + Sklf (@ (x, 1) + Yr(x, 1) *dx
0 0
L p+oo L p+oo
+ 05/ / g (x, t, s)dsdx — cz/ / g (m*(x, t, )dsdx (3.40)
o Jo o Jo
+00

L L
tor / V2, Ddx — ko / moWee ) [ FWr 1 — s)dsdx
0 0 0

L +0oo +o0o
+ f m(x) (/ gy (x,t — s)ds) fY(x,t —s)dsdx
0 0 0
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and

Jj(6) < =k (93(L. 1) + ¢3(0. 1))
L (3.41)
+c3 / (@7 (e, )+ (@x(x, 1) + Y (x, ))* + Y i(x, 1)) dx.
0

Proof. As in Ref. 2 in case f = 0, differentiating J;, using the second equation in (1.1) and
(3.39), and integrating by parts, we find

L +00 +00
J((t)=/0m(x)<kzwxx(x,t)—/0 g(S)wxx(x,t—S)dS) (kzllfx(x,t)—fo g(S)wx(x,t—S)dS)dx

+00

L
- k1/ m(x)(@x(x, 1) + ¥ (x, 1)) (kzllfx(x, 9] —/ 8()x(x, 1 —S)dS> dx
0 0

L +o00 400
- / m(x)( f(S)llfr(x,t—S)dS) (kzvfxoc,r)— / g(sn/fx(x,r—s)ds) dx
0 0 0

+o00

L
+Pz/0 m(x)(x, 1) <k2¢xt(xvt)_/(; g(S)er(x,t—S)dS) dx

+00 2 +00 2
= - <k2%(L, 1) —/0 8)Yx(L, 1 — S)dS> - <k2%(0, 1) —/0 8()Yx(0, 1 — S)ds)
L +0o +00
—f m(x) < FY(x, 1 — S)ds) (kzlﬁx(x, 1) —/ 8()Yu(x, 1 — S)dS> dx
0 0 0

2k2,02 L 5 L oo ,
TEa fo 2, dx + 2 /0 mCY,Cx. 1) /0 ¢ (e, 1, )dsdx

2

2 L —+00
+= f <(k2—go)1/fx(x,f)+ / g(S)nx(x,t,S)dS) dx
0 0

+00

L
— ki /O m(x)(@x(x, 1) + ¥ (x, 1)) ((kz — 8o)Vu(x, 1) + /0 g()mx(x, 1, S)dS> dx.

Using Young’s inequality and the fact that |m(x)| <2 on ]0, L[, we get
+00
—kim(x)(px(x, 1) + ¥(x, 1)) ((kz — 80)V¥x(x, 1) +/ 8(mx(x, 1, S)dS>
0

+00

X 2
< eki(@x(x, 1) + Y (x,0)* + ;1 ((kz — 80)Wx(x, 1) + / g()mx(x, 1, S)dS> :
0

Developing the last term in this inequality, inserting it in the previous equality and using Young’s
inequality and (3.33), we find

L 400 2
Jit) < e (1 + é) / Yi(x, t)dx — (kzlﬁx(L, 1) — / gS)Yu(L, 1 — S)ds)
0 0
+00 2 L
- (kax(Os 1) —/ 8y (0, 1 — S)ds> + Cz/ Yl (x, )dx
0 0

L L “+00
+ ok / (0u(, 1) + Y(x, 0)Ydx — ¢ / f ¢ 1. s)dsdx
0 0 0
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2

1 L +00
+ (1 + —> / </ g(s)n.(x, t, s)ds) dx
&/ Jo 0

L +o00 +00
+ / m(x) <[ g (x, t — s)ds) fY(x,t — s)dsdx
0 0 0

(3.42)
L ~+00
o [ meocen [ o - sidsds
0 0
ky 2 L too
_280 _+_ I/fx(x,f) g(s)nx(-xvt’s)d*gdx~
& L 0 0
Applying again Young’s inequality to the last term in (3.42), and using (3.32), we get (3.40).
On the other hand, using Poincaré’s inequality (2.9) for ¥, we get
L L L
/ @r(x, dx <2 / (x(x, 1) + Y, )dx + 2¢o / vi(x, 1dx. (3.43)
0 0 0

Then, similarly, differentiating J,, using the first equation in (1.1), integrating by parts and using
Young’s inequality and (3.43), we obtain (3.41). |

Lemma 3.7. For any € € 10, 1], the functional

1 &
I4(t) .= I3(t) + 511(0 + z—klfz(l)

satisfies, for some c4 > 0 (not depending neither on f nor on ¢),

L L
L(t) < — (% — gc4) / (@ (x, 1) + Y (x, 1))’dx + 804/ @2(x, t)dx
0 0

L p+4o0
+C€[ / (g(s)nz(xatvs)—g/(s)nz(X,l,s))dsdx
L (3.44)

+00

L L
+ z—; / 1/ff(x, tydx + / J3(x, 1) fOY(x,t —s)dsdx
0 0 0

Cy4 L 2 plk2 L
+ . / Y (x, )dx + . P / @ (x, Y (x, )dx,
0 0

1

where

1 oo
Ji(x, 1) = —@(x,t) — Y(x, 1) — gm(x) (kzl//x(x, t) — / g Yx, t — sds) . (3.45)
0

Proof. Combining (3.38) and (3.40) and (3.41), we obtain (3.44).

Lemma 3.8. The functional

1
Is(t) := glz(t) + L(1)
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satisfies, for some cs > 0 (not depending on f),

L L
L) < —’% / (px(x, 1) + Y (x, 1) *dx + c5 / (e, 1) + Y l(x, 1)dx
0 0

L 0
+ Cs/ / (eI (x,1,5) — g' (I3 (x, 1, 5)) dsdx
0 0

o (L . (3.46)

L
- — <p,2(x, Hdx + / Ja(x, t) f)U(x, t — s)dsdx
16 Jo 0 0

piks L
+ . P / @i (x, DYy (x, t)dx,
1 0

where

1
Ja(x, t) := J3(x, t) + glﬂ(x, t). (3.47)

k
Proof. Estimates (3.36) and (3.44) with0 < ¢ < min { e } small enough imply (3.46).H

86‘4 ’ 16C4
Now, as in Ref. 2, we use a function w to get a crucial estimate.

Lemma 3.9. Let

X 1 L
w(x,t) = —/ Y(y, t)dy + I3 (/ Y(y, t)dy> X.
0 0

Then the functional

L
Io(t) = / (1 (e DY (x, 1) + P, D0 (x, ) dix
0

satisfies, for all &, € 10, 1[ and for some c¢ > 0 (not depending neither on f nor on €y),

kr—go [* c [,
(1) < ——/ Yix, dx + —/ Wi (x, Hdx
2 0 &1 Jo
L L 400
+ & / @Z(x, dx + Cé/ / g(mA(x, t, s)dsdx (3.48)
0 o Jo

L +00
_/ I/f(x,l)/ fY(x,t —s)dsdx.
0 0
Proof. The fact that —w,, = ¥, and w(0, t) = w(L, t) = 0 imply that

L L L
f w%(x, Hdx = / Ye(x, Hw(x, t)dx = —/ Y(x, Hwy(x, t)dx
0 0 0

L L
5</ wz(x,t)dx) < f wf(x,ndx) ,
0 0

which gives, using (2.9) for w, (note that w,(0, t) = w,(L, 1) = 0),

=
I—

L L L L
/ wi(x, Hdx < / wz(x, t)ydx and / wtz(x, Hdx < Co/ 111[2()6, t)dx. (3.49)
0 0 0 0

On the other hand,

L
—k1/0 (px(x, ) + ¥ (x, D) (wlx, 1) + Y(x, 1))dx (3.50)
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L 1 L

= —ki </ (px(x, 1) + Y (x, t))dX> <Z/ vy, l)dy)
0 0

= % </(; v(x, t)dx)

<0.

Therefore, as in Ref. 2 in case f = 0, by differentiating /s, using the first two equations in (1.1),
integrating by parts and using (3.49) and (3.50) and Young’s inequality for ¢, w,, we find

L L
1) < (ks — go) / Y2 dx + f Y2(x, Ddx
0 €1 Jo
L L +o00
+ & / (ptz(x, Hdx — / Y(x,t) fY(x, t — s)dsdx (3.51)
0 0 0

L +00
_/ WX(xat)/\ g(s)nx(-xvt5s)de-x-
0 0
The use of Young’s inequality and (3.32) for the last term in (3.51) gives (3.48). |

Now, we introduce a new functional /7 which plays a crucial role in dealing with the distributed
time delay.

Lemma 3.10. Let

L +o00 t
I(t) i= e 7® / / 7| £(s)] ( / e" Oy (x, r)dt) dsdx, (3.52)
0 0 t—s

where ¥ and y are defined in assumption (A4), and

y(t) = /O y(s)ds. (3.53)

The functional I satisfies

L L +o00
1) < g0)fo /0 Y2(x, dx — (O (1) /0 /0 Ot —dsdx,  (3.54)
where B is defined in (3.4).

Proof. First, thanks to (2.9), (2.14), and (3.5) we have (note also that g is nonincreasing and y
is increasing)
L +00 t
no< [ [ s ( | v r)dr) dsdx
0 0 t—s

L 400 t
= / B(s) (f gt — DY (x, ‘E)d‘c) dsdx
0 0 t—s

L 400 K
= Co/ B(s) (/ g (x, 1 — r)dr) dsdx
0 0 0

L +00 +00
< Co/ / B(s) (/ g(mm? (x, 1, t)dt) dsdx;
0 0 0

thus, due to (3.4) and the fact that 7, € LE(R+, H; (10, L])) (in virtue of (2.16) withn = 1),

B(0) = coBolln 1 M, oy (3.55)
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and therefore, the functional I; is well-defined. Moreover, using again (3.5), a simple and direct
differentiation gives

—+00 L
L) = =y (1) + ( / eﬂ”|f<s)|ds> / Y2(x, Hdx
0 0

L +00
_ / / e?(s)ﬂ?(t—s)—)?(f)|f(s)|wt2(x’ t — s)dsdx
0 0

+00

L
= —V(t)17(l)+( ; ﬂ(S)g(S)dS)/O i (x, )dx

(3.56)
L p4oo N N
_ / / eV SHVU==7 0| £(5) |2 (x, t — s)dsdx
0 Jo

L
= —J/(l)17(l)+g(0)ﬁo/o Y (x, dx

L +oo N N
_ [ / ey(s)w(tfs)fﬂf)|f(s)|wt2(x, t —s)dsdx.
0 0

On the other hand, the function h(t) := y(s) + p(t — s) — P(¢), for s > 0 fixed and 7 > 0, satisfies
W) =y — s) — y(@). Then h is nondecreasing, for ¢ > %, and it is nonincreasing, for ¢ < %,

because y is even and nonincreasing on R, . Therefore, h(r) > h(%) =0, and (3.54) follows at

once. ||

Now, let N, Ny, and N, be positive constants (which will be fixed latter on). We define the
functional

ZLi(t) .= NE@) + N 11(¢) + Is(t) + NoIg(t) + I(2). (3.57)

At this step, we distinguish three cases depending on (1.2) and (3.2)—(3.3).

1. Equal speed propagation and exponential decay of g: (1.2) and (3.2) hold

k
By combining (3.31), (3.34), (3.46), (3.48), and (3.54) taking § = ﬁ and using (3.2), we get
1

A0 (3.58)

(ko — go)NV2 ki L 01 L
< - (T —c5— g)/o Yi(x, t)dx — (E —81N2>/(; @7 (x, H)dx

kl L L +o00
-3 / (px(x, ) + Y¥(x, t))zdx — / / g(s)ni(x, t,s)dsdx
0 o Jo

k1 C6N2 L 2
- <,02(80N1 - g) o g(0)Bo — CS) fo Y (x, dx — y () I7(1)
N L +00 L +00
+ (— —ch_N2>/ / g (mA(x, 1, )dsdx —/ / | F)IWA(x, t — s)dsdx
2 o Jo o Jo

L oo piks L
+/ Js(x, 1) FY(x, t —s)dsdx + (k— - Pz)/ 0 (x, DY (x, dx,
0 0 1 0

where

+o0
Js(x,t) := Ja(x, 1) = Ny (x, 1) — Nop(x, t) + Ny f g(sIn(x, t, s)ds. (3.59)
0
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Due to (1.2), the last term in (3.58) vanishes. Now, we choose N, large enough such that

kr — go)N k
%—Cs—§l>0 (3.60)
(N, exists according to (2.1)), then we take &, € ]0, 1[ small enough so that
f—é — 81N2 >0

Next, we pick N so large such that

k] C6N2

02(goN1 — =) — —— —g(0)Bp —c5s > 0
8 €1

(N exists thanks to (3.1)). On the other hand, by the definition of the functionals E, I; — I, and
J1 — Jy, and the use of (2.15), (2.9) and Young’s inequality, there exists a positive constant ¢7 (not
depending neither on fnor on N) such that

INV (1) + Is(t) + NaIs(1)] < c7E(1), Vi€ Ry, (3.61)
which implies that
(N —cE@) = L(t) — (1) < (N +cE@), VieR,. (3.62)
Then, we choose N large enough such that
N > max{c7, 2¢cn, N, ) (3.63)
so E ~ % — I; holds and, from (3.58) and the definition of E, we obtain, for some cg > 0 (not

depending on f),

L 400
L(1) < —csE(1) —f / | F)IWY(x, t — s)dsdx
070 (3.64)

+00

L
- V(t)17(t)+f Js(x, 1) JYi(x, 1 — s)dsdx.
0 0

Similar to (3.61), from the definition of £ and J3 — Js, and using (2.9) and Young’s inequality, we
find that there exists a positive constant ¢y (not depending on f) such that

L
f J2(x, )dx < coE(2).
0

Therefore, applying Cauchy-Schwarz and Young’s inequalities, we get, for

+00 -1
€ =2 (/ |f(s)|ds> (3.65)
0

+00
af / | f(s)|ds = 0, then f = 0, and therefore, the two terms in (3.64) depending on f vanish),
0

L +o00
/ J5(x, 1) fY(x,t —s)dsdx (3.66)
0 0

L 400 2 % L %
</ < Ji(x, 1 — s)ds) dx) (/ J3(x, t)dx)
0 0 0

6/ +00 L +00 1 L
— (/ |f(s)|ds> / / |f(s)|¢,2(x,t —s)dsdx + — / Jsz(x, t)dx
2 \Jo o Jo 2¢" Jo

L +00 ) Co +00
< / f | fOIY (x, 1 — s)dsdx + ) </ If(S)IdS> E(1).
0 Jo 0

IA

A
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Hence, under condition (3.8) with

4
8 = -8 (3.67)
o

(noting that § is positive and does not depend on f) and by combining (3.64) and (3.66), we find,
for some c19 > 0,

L) < —c10E@t) — y(0)I7(t), VieRy. (3.68)
By combining (3.62) and (3.68), we obtain

L) < =8 min{l, y(0)} L), VieRy, (3.69)

where §; = min{ chc7, 1}. Then, an integration of the differential inequality (3.69) over [0, 7] gives

L) < Z(0)e D vr e Ry, (3.70)

where ¢ is defined in (3.10). Consequently, the choice (3.63) of N and the relations (3.30)(3.62)(3.70)
lead to

2 2.21(0) _
2 _9F 816(1)
1% (D1l 5 OF= N_C7§ﬁ(t)§ Voo :

240
which is the decay estimate (3.9) with §, = N—l()

vt e Ry,

— 7

2. Nonequal speed propagation and exponential decay of g: (1.2) does
not hold and (3.2) holds

To deal with the last term in (3.58) (which can not be absorbed by E) and get (3.11), we appeal
to some ideas of Refs. 1,8, and 13 based on the energies of high orders defined by

1
Ex(t) = En%(k)(r)néf, VU e DA*), k=0,--,n (3.71)

(so Ey = E). As for (3.31), E, satisfies

1 L +o00
E|(t) = 3 /0 /0 g(5)(@ n,)*(x, t, s)dsdx
(3.72)

+00

L
- / Ny (x, 1) &) Y (x, t — s)dsdx.
0 0

We start by proving two lemmas, where the first one is given in Ref. 8, while the second one is
introduced in the present paper to cope with some delay terms.

Lemma 3.11. For any ¢ > 0, we have

piks L
o P2 A @ (x, DY (x, t)dx (3.73)
<e p1ka B /L 2(x Ndx — 1 ,01_/62 B _
= kl P2 o (2o 69180 kl 02 1
0 k L p+oo
- i(gz p;i S / / g' (3 (x, 1, s)dsdx
0 1 0 0
1 |piks

L +o0
/ Y (x, 1) SV (x, 1 —s)dsdx.
0 0

- P

691g() k]
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+00
Proof. We proceed as in Ref. 8. By recalling that gg = / g(s)ds, we have
0

p1ka L
o — P2 ; O (x, DY (x, H)dx (3.74)
1 ,Olk2 L +00
= - _102 (pt(-xat) g(s)nxl(-xatas)de-x
g \ ki 0 0
1 k L +o00
Lo <,01 2 p2>/ @i (x, ,)/ g W (x,t — s)dsdx.
g \ ki 0 0
Using Young’s inequality and (3.32) (for v = 7,,), we get, for all ¢ > 0,
1 k +o00
B f oean) [ gt )dsd (3.75)
ki 0
- € | prka /L 2, )dx + 1 |pik2 //+°°() (. 1. 5)dsd
x,)dx + — | —— — s x,t,s)dsdx.
=2 A 2ego | ki P B8 Mt
Moreover, using (3.2) and (3.72) for k = 1, we get
1 k +00
2eg0 pllc, - g(s)ry, (x, 1, s)dsdx (3.76)
1 k
_ M — 0 Ei(t)
€tgo | ki
1 pik
— == / ZC0) " FWutx, 1 — s)dsdsx.
691g() k]

On the other hand, by integrating by parts with respect to s and using (3.39) and (3.33) (for v = n,)
and Young’s inequality, we have, for all ¢ > 0 (note also that n,(x, ¢, 0) = lim; _, 4 50 g(s)nx(x, 1, 5)
= 0 due to (2.13) and (2.16) forn > 1),

L +00
i (’Ol_kz — ,02> / (X, t)/ gV (x, t — s)dsdx (3.77)
80 k] 0 o
1 k L 400
B (% - p2> / (pt(x’ t)/ g(S)st(x, t, S)dsdx
1 0 0

1 (piky L too
=\ ) ) e | L Ot s)dsdx

€ | pik2 8(0) | pikz oo
<5 |5 /O oite o= 55 |52 2/ | g sdsas.
Inserting (3.75)—(3.77) into (3.74), we find (3.73). |
Lemma 3.12. The functional
+00
I3(t) —f Vi (x ( )llfz(x t)—/ f”(S)n(x,t,S)dS) dx (3.78)

satisfies (& is defined in (3.7)),

+00

L L
L(1) Sf Iﬂn(x,t) JVu(x, 1 —s)dsdx + <f¥g(0)+ %)/ Wi (x, Ddsdx
0

052890100/ / g(s)nx(x t,s)dsdx.

(3.79)
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Proof. From (2.14), we conclude that ng(x, ¢, s) = —¥u(x, t — ) (recall that 5y €
Lﬁ(]RJr, H; (10, L)), for any ¢ € Ry fixed, since % € Z(</™) with n > 2), and then

—+00

L +00 L
/ Y, 1) / POl 1 — s)dsdx = — / Vo) [ (e, 1. s)dsdx.
0 0 0 0

By integrating by parts with respect to s and using the fact that n,(x, 7, 0) = ¥ ,(x, ) (du to (2.14)),
n(x, 1, 0) = 0 (thanks to (2.13)) and limy _, 1 oof(s)n5(x, 1, s) = lim, _, | oof (s)n(x, 1, 5) = 0 (according
to (2.3) and (2.16) with n > 2), we get

+00

L
/ e [ e, —s)dsdx = / s ) (f(O)Im(x,t)— O f”(s>n<x,r,s>ds)dx

L +00
= Iy(1) + / Yi(x, 1) F(m(x, t, s)dsdx.
0 0

Again, using n(x, ¢, 0) = limy , | oof (s) = limy _, | oof/(s)n(x, ¢, s) = O (in virtue of (2.3), (2.13),
(3.7), and (2.16) with n > 1), and integrating by parts with respect to s, we find

1) = f ey W, t — s)dsdx
/ o | W 1) = (. £, $))dsdx
L
/ e [ " P, t — s)dsdx + £/0) / V2 (x, dx
0

/ Y (x, f) f”’(s)n(x t,s)dsdx.

On the other hand, using (2.3), we have

L L
£'(0) / Y2(x, t)dx < ag(0) / Y2 (x, t)dx.
0 0

Moreover, using (3.7), Young’s inequality, (3.32) (for v = |n|) and (2.9), we obtain

/ Y (x, T) f/”(s)n(x t,s)dsdx

1 v +o0
< —/ wtz(x, Hdx + @ goco / f g(s)nf(x, t,s)dsdx.
2 Jo 2 Jo Jo

Inserting these two inequalities in the previous equality, we arrive at

L +00 1 L
Ig(1) < / Vi (x, 1) S (x, t — s)dsdx + <0tg(0) + —) / W (x, Hdsdx
0 0 2/ Jo
(3.80)
dngCO L 400 )
+ — g(s)n;(x, t,s)dsdx.
2 o Jo
Applying (3.2) to the last term of (3.80) gives (3.79). |
Now, let us consider the functional
1 k
D(t) = 41() + no_ 02| (E1(2) + I(1)). (3.81)
€goth | ki

By combining (3.58), (3.73), and (3.79) we get
Z(0) (3.82)
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k L
P, )/ @2(x, dx
0

- P2

(k2 — go)N> ki /L 5 o1
<—-|——¢5— — Yix,t)dx — | — — 1Ny —
=< ( Cs 8) | ~(x, t)dx T 1N, — ¢ a

2

kl L L +00
- — / (pe(x, 1) + Y(x, 1))*dx — / / gmi(x, t, s)dsdx
8 Jo o Jo

kl C6N2 1 1 ,O]kz
— Ni——)— — 0 | |— -
<,02(go 1 8) - — (ag( )+ 2) I 02

N g(0) 55260) piks
+(=- + -
( 2 (2egg 2002) |k 7

L p+oo L +0o0
— / / |f(s)|1pt2(x, t —s)dsdx + / Js(x, 1) fOY(x,t —s)dsdx.
o Jo 0 0

L
— 8B — Cs) /0 W2(x, t)dx

L +o00
- ch.M) / / (), £, )dsdx — (O (1)
0 0

First, we choose N, as in (3.60), and then we take ¢ = ¢ and ¢; € 0, 1[ small enough so that
P1 pika
— — N. —_— — 0.
16 €] ( 2+ k 02 ) >
Next, we pick N; so large such that
k 1 1 1\ | p1k
pr gV — =) = = (coNa+ — (@g@) + = ) |52 — o2
8 &1 goth 2

(N; exists due to (3.1)). On the other hand, using (2.3) and (3.7), Young’s inequality, (3.32) (for
v = |n]) and (2.9), we find

1 0 L ~2 L +o00
o)) < 250 / v, D+ TE / / e(sn2(x, 1, )dsdx.
0 0 0

Consequently, in virtue of (2.15) and (3.30), there exists a positive constant ¢; (not depending neither

+00
on / | f(s)|ds nor on N) such that
0

> —80)Bo—cs >0

1
€001

pl_kz_p
ki 2

which implies that, for all # € R, using (3.62) and (3.81),

s(1)] = ¢7E(r), VteR,, (3.83)

piks
- — P

(N —c7 —&E@) < 560) — T

Ei(t)— L) <(N+c+E)E®). (3.84)

€800
Finally, we choose N large enough such that

5O 5‘ch> pik } (3.85)

5 5 P2
€gy  €of

N > max {C7+E7,2CN],N2+< 3
1

Therefore, from (3.82) and the definition of E, we obtain (3.64) for .% instead of %}, and some
+00
¢ > 0 (notdepending on | f(s)|ds) instead of cg. Thus, according to (3.66) and under condition

0
(3.8), where § is defined in (3.67) with ¢g instead of cg, we find, for some ¢y > 0,
(1) < =CloE@) —y (1) (1) < —¢10E(t), VtreR,. (3.86)
Before concluding (3.11), we prove this last lemma.

Lemma 3.13. There exist two positive constants ag and a, such that, for any %, € 9(<7'?%),

T
/ E@)dt <a;(E(S)+ E(S)), YO<S<T (3.87)
s



081503-26 Aissa Guesmia J. Math. Phys. 55, 081503 (2014)

and

E'(t) <agE(t), VteR,. (3.88)

Proof. By integrating (3.86) over [S, T], we get (note that % > 0 in virtue of (3.84) and (3.85))
T
510/ E(t)dt < £(8) — L(T) < £(S), YO<S<T. (3.89)
N
Moreover, (3.55) and (2.13) imply that
17(t) < CO,BO ” Ns (.X, t, ) ”iﬁ(RJwHol (10,L]))

2
=< COIBOHwI(X, t) - nt(X, t, .)”L%’(R%HOI(IO’LD)

2 2
=< 200,30 (”wt(xv t)||L§(R+,H0](|O,L[)) + ||77t(X7 t, .)||L§(R+,HJ(IO,L[)))

L L +o00
< 2c¢oBo (g()/ wft(x, t)dx +/ / g(s)n)zct(x, t, s)dsdx) ,
0 o Jo

and then, according to (3.71) fork =1,
80

I(t) < 4co By max {k 1} E\(1). (3.90)

Consequently, by substituting (3.90) and the right inequality of (3.84) in (3.89), we deduce (3.87)

with
+4c0,30max{ 8o , 1” .
ky — go

1 |pik2 p
— — M

€80t | ki

On the other hand, taking (3.31) and (2.14) in consideration, integrating with respect to s and using

the fact that n(x, #, 0) = lim; _, 4 of($)N(x, ¢, s) = 0 (thanks to (2.3), (2.9), (2.13), and (2.16) with n

> 1), we find

1
a, = ~—IIlaX{N+C7 + &7,
C10

+00

L
E'(t) < —/ I/fz(x,t) FOY(x, t — s)dsdx
< —/ Y (x, t) f(S)ns(x t,s)dsdx

/ Y (x, l) f(S)n(x t,s)dsdx,

hence, applying Young’s inequality and using (2.3) and (3.32) (for v = |n|) and (2.9),
1 L 2 L 400
E'() < > / Y2(x, Ddx + 250 f f g)2(x. 1, $)dsdx,
2 Jo 2 Jo Jo
which gives (3.88) with ay = max { P goco} m

Lemma 3.13 allows us to apply [Theorem 2.2 of Ref. 13: case f=1,m=1,a, =0,and n > 2]
and get (3.11) by continuity of E.

3. Equal speed propagation and arbitrary decay of g: (1.2) and (3.3) hold, and (3.2) does
not hold

We prove here the decay estimate (3.12) under condition (3.3), which allows g to have a general
decay at infinity that can be arbitrary close to }

In the cases of absence of delay and/or presence of frictional damping considered in the literature
(like (1.3)), the proof of the known stability estimates when g has an arbitrary decay is based on
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some differential inequalities on g involving at least its first derivative in order to express

L +00
/ / g(s)my(x, 1, 5)dsdx (3.91)
0 0

in term of

L 400
/ / gl(s)ni(x, t,s)dsdx,
0 0

and then use the nonincreasingness of E. This strategy seems not applicable in our case, since E is
not necessarily nonincreasing due to the last term in (3.31) generated by the distributed time delay.
Our proof is based on different manipulations of the term (3.91), the integral inequality in (3.3)
introduced and used in Refs. 36-39, and 40, which does not involve any derivative of g, and the use
of a new functional J¢ (defined in (3.100) below) that is able to absorb some memory terms without
passing by E'.
First, following the idea in Refs. 36-39, and 40, we see that

L +00
2/ Yelx, t) gy (x, t —s)dsdx (3.92)
0 0

L +00 L
= / / g(s) (t/fxz(x, t—s)— ni(x, t, s)) dsdx + go/ wf(x, t)dx.
o Jo 0

Second, for i € N*, we consider, as in Ref. 33, the set
Aj ={s e Ry, g(s) < —ig'(s)}, (3.93)
and we put
g = / g(s)ds. (3.94)
A
Note that g; > 0, otherwise, A7 = @ and then (3.2) is satisfied for 6, = %, which is the case of

exponential decay of g treated previously. On the other hand, thanks to the second inequality in
(3.3), we have lim;_, 4 o AY = N;jen+Af = @, and then

lim g = 0. (3.95)
i1—>+00

Next, we go back to (3.35), (3.37), (3.42), and (3.51). Clearly, we have

L “+00 L
/ %(x,t)/ 8« (x, 1, s)dsdx :/ %(XJ)/ gy (x, 1, s)dsdx
0 0 0 A;

L
+/ llfx(x,t)/ g (x,t, s)dsdx.
0 Af

Then, using Cauchy-Schwarz and Young’s inequalities for the two terms in the right hand side of
the above equality and the definition (3.94) of g;, we have, for any &, > 0,

L +00 L 20 L
/ Yo (x, t)/ gsnx(x, t,8)dsdx < 62/ Yi(x, H)dx + —/ / g (x, t, s)dsdx
0 0 0 4e2 Jo Ja,

X L L
* @ (/ Y (x, Ddx +/ / gMi(x. 1, S)dsdx).
0 o Jas

Using the definition (3.93) of A;, we obtain

L +o0
/ Ye(x, t)/ g(s)n(x, t, s)dsdx (3.96)
0 0
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L lgO L —+o00
< 62/ Yi(x, tdx — —/ / g (x, 1, s)dsdx
0 der Jo Jo

, L L oo
+ Vi (/ W2(x, t)dx —i—/ / g (x, t, s)dsdx> )
2 0 A

Similarly, we find
L +00 2
/ (/ g(s)nx(x,t,s)ds> dx
0 0

g (x,t, 8)ds + /

AS

L
-[(/
L 2 L 2
< 2/ (/ g(S)Ux(X,t,S)ds> dx +2/ (/ g(s)nx(x,t,s)ds) dx
0 Ai 0 AS

i

2
g(s)nx(xs t’ S)dS) dx

L L
< 2g0/ / g(s)nf(x, t,s)dsdx +2g; / / g(s)r/)zc(x, t,s)dsdx.
0 Ja; 0 4

Therefore, using again the definition (3.93) of A;, we deduce that

L +00 2 L +00
/ (/ HOLNES t,s)ds) dx < —2igo/ / g (2 (x, t, s)dsdx
0 0 0 0

(3.97)
L p+oo
+2gi/ / g’ (x, t, )dsdx.
o Jo

The last term we discuss, using (3.92), is

L +00
—/ Y (x, t)/ g(s)ny(x, t, s)dsdx (3.98)
0 0

L L +00
= —gof Yo (x, dx +f V(x, t)/ 8()Yx(x, t — s)dsdx
0 0 0

20 L 1 L +o00
= -2 / w)%(x, Hdx + = / / g(s) (1//)%()6, t—s)— nf(x, t, s)) dsdx.
2 Jo 2Jo Jo

After, we insert (3.96), (3.97), and (3.98) into (3.35), (3.37), (3.42), and (3.51) considering the
functional .#] defined in (3.57), using (3.31), (3.38), (3.41), and (3.54) taking (2.1) in consideration,

choosing § = —L and
8N,

k? k1p1
O<e<{—tLt, —2
dcs 8(2ky + ¢3)

we obtain, for some c;1, cjp > 0 (not depending on N, Ny, Ny, i, €1, & and f),

Z(0) (3.99)
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s—(w— e ——)/ W, r)dx——/ (06, 1) + Y(x, 0)dx

0 k ceN. L
—(—1—811\’2)/ @l(x, tydx — pa(goN| — —) — =2 ¢y W2 (x, t)dx
16 0 €] 0

L +00 N
+ / / (—ch.Nzgmn,%(x, fs)+ (5 - ch,gz.i) g, s)) dsdx
0 0

L +00 v L
- f / | f O (x, 1 — s)dsdx + 1—? / Yr(x, dx — y (1) [;(t)
0 0 0

L 400
+ o (8 + /81 / / gmy(x, 1, )dsdx
0 0

N N L 400
+ (% + clz) / / g()Y2(x, t — s)dsdx
0 0

L +o0 ,01k2 L
+f0 Js(x, 1) ; FY(x, t —s)dsdx + <k_1 —,02)/0 @i (x, DY (x, Ddx.

Last, we introduce the functional J¢ and prove a crucial identity on its derivative.

Lemma 3.14. Let

L t +00
Jo(t) = / / ( / g(t —s)dr) V2(x, s)dsdx. (3.100)
0 0 t

Then, for any A € 10, 1],

L 400
Ji(@) < —(1 = ME@)Jo(t) — A/ / g(s)tpf(x, t —s)dsdx
00 (3.101)

L L 400
+ 20 / Y2, dx + 2 / / QIR (x, s — dsdx.
0 0 t

Proof. First, thanks to the first inequality in (3.3) and the fact that € L;(R+, HO1 10, L)) (due
to (2.16) for n = 1), we have

L
Jo(t) < %/ / g(t — )Yi(x, s)dsdx

S(t)/ / g(s)l// (x,t —s)dsdx

+o00
=< i (gO/ Wf(xy Hdx +/ / g(s)nf(x, t, s)dsdx) ,
£() 0 o Jo

hence, according to the definition of E,

Jo(t) < —— max{ g 1} E). (3.102)
&(1) ka — go
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Consequently, the functional Jg is well-defined. Moreover, by the first inequality in (3.3), a simple
and direct differentiation gives

+o00 L L t
J@t) = ( / e(t —t)dt) / Yi(x, t)dx — / / g(t — )Yi(x, s)dsdx
t 0 0 0

L L t

=g0/ Y2(x, Hdx — (1 —x)/ f g(t — s)Y2(x, s)dsdx
0 0 0

L t L 0
— A / / g(t — )Yi(x, s)dsdx + i / / g(t — )Yi(x, s)dsdx

0 —00 0 —00
L

< 80/0 Y(x, ndx — (1 — WE@)Js(2)

L p+too L p+4oo
— k/ / g(s)w)%(x, t —s)dsdx + A/ / g(s)ng(x, s —t)dsdx,
o Jo 0 Ji
which is exactly (3.101). |

Finally, let N3 > 0 and
F1(t) = LA@) + N3Js(t). (3.103)

Due to (1.2), the last term in (3.99) vanishes. Taking into account the relations (3.66), (3.99), and
(3.101) we get

F(1) (3.104)

kaN, + g3 N L L
<- ﬂ—cn—gol\%—g—2 / Wf(x,f)dx—<ﬂ—81N2)/ @ (x, t)dx
2 g8 ) ) 16 A

ki [* k N. L
—~ g‘ / (@x(x, 1) + Y (x, 1)’dx — (pz(goNl - §‘> AL 611) / Y2(x, 1)dx
0 €1 0

L +00 N L +00
—CNN, / / g(s)n)zc(x, t,8)dsdx + (5 — CN1,52,5> / [ g/(s)n)zc(x, t,s)dsdx
o Jo o Jo

JE
16

L
—yOL(t) — (1 = MN3&(1) Js(1) + /0 i x, dx

L p+4o0 L rtoo
+on (i + \/E)/ / g (x, 1, s)dsdx + AN3/ / gV (x, 5 — Ndsdx
0 0 0 ‘
+00 N N L oo
+ 64—9 </ |f(S)|ds) E(t) — (AN; — 80 12+ 2 _ cn)/ / g()W2(x, t — s)dsdx.
0 0 0

Now, we choose the different constants carefully so as to obtain some desired signs of the coefficients.
First, we select

N, > (cii +gocz+ 1)

ko — go
(note that N, exists according to (2.1)). Next, we pick ¢ such that

0<eg <minil, 1 .
16N,

Then, we choose N; such that
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(N, exists due to (3.1)) and

ko — go)N
0<ée <8<%—cn —gOC12_1>
(clearly &, exists by our choice of N,). Next, we select N3 and A such that
N1+ N 1 1 Ni+ N
NSZM_FCIZ"__ and A= — M_’.Clz
2 8o N3 2

(noting that N3 exists thanks to (3.1), and A € ]0, 1[ according to the choice of N3). These choices
imply that, for some c;3, c14 > 0 (not depending on N, i and f),

F1(t) < —ci3E@) — y(O () — c136(1) Jo(t)

L +o00 ) o +0o0
+ C”/o /, gV, (x, s — Ddsdx + 7 (fo |f(s)|ds) E@® (3.105)

N L +00
+cia(gi + VE)E@) + <? - Ei) f / g (Mi(x, t, s)dsdx,
0 0

where ¢; is a positive constant depending on i. Then, under condition (3.8), where § is defined in
(3.67) with c;3 instead of cg, and in virtue of (3.95), we can choose i big enough so that

1 Cg +oo
g+ g <—\cz—— [f(s)lds ).
0

Cla 4
Last, we select N big enough so that
N > max{2¢;, ¢7},
where c7 is defined in (3.61); so the last term in (3.105) is nonpositive and, using (3.62) and (3.103),
(N —cE@) < F1(1) — [(1) — N3Jo(t) < (N +¢7)E@t), VieR,. (3.106)

According to our choices of i and N, we deduce from (3.105) that, for some c¢;5 > 0,
L —+00
FU(1) < —asE@) — y(Oh() — s Iet) + i / / W (x. s — Ndsdx.  (3.107)
o Jr
Therefore, using (3.106) and (3.107), we find, for

61=min{ cis 1 cﬁ},

N +c;’ 7 Ns

L +00
F(t) < =8, min{1, y (1), E(1)}F1 (1) + 014/ / (Y3 (x, s — t)dsdx. (3.108)
0 t

By integrating the differential inequality (3.108) over [0, 7], we get

L t “+00
Fi(t) < e 90 ( F10) + c1s / / 1) / (WA (x, T —s)drdsdx), (3.109)
0 0 K

where ¢ is defined in (3.13). Then, from (3.30), (3.106), and (3.109) we find
1% 1% = 2E ()

<

N—c¢ Z10) (3.110)

L t 400
< 526—61¢(t) (] +/ f 88145(5)/ g(f)ng(x, T — S)d‘L'de)C) s
0 0 s

2
which gives (3.12) with §, = N

max{c4, F1(0)}.
7
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IV. APPLICATIONS

Our well-posedness and asymptotic stability results for (1.1) hold for various Timoshenko-type
systems. We present here some examples.

A. Timoshenko-heat
Let us consider coupled Timoshenko-heat systems under Fourier’s law of heat conduction

P19 (x, 1) — k(@ (x, 1) + ¥ (x, 1)), =0,

P2V (x, 1) = kaWrex(x, 1) + ki@x(x, 1) + Y (x, 1)) + kabi(x, 1)
+00 +oo
+/ 8()Wux(x, 1 — 5)ds + FWi(x, 1 —s)ds =0,

P36,(x, 1) = k3bix (x, 1) + ket (x, 1) = 0, “.1)
0(0,1) = (0,1) = 0(0,1) = ¢(L, 1) = Y(L, 1) = O(L, 1) = 0

p(x,0) = @o(x), @:(x,0) = @i1(x),

Y(x, —1) = Yo(x, 1), Wilx, =) = Yi(x, 1),  O(x,0) = 6(x),

where 6 denotes the temperature difference (see Ref. 9 for more details).
Under (A1) and (A2) system (4.1) can be formulated in the abstract form (2.4), where % =

(@, @0 U, 0.7, U = (@0, Yo(-, 0), @1, Y1+, 0), 6, no)” € A,
= (Hy (10, LD)* x (L*(0, LD)* x LL(R., Hy (10, LD)),

and the operators .7 and 4 are given by (g and ¢, are defined, respectively, in (2.8) and (2.9)),

T
B(wi, wy, w3, wa, ws, We)' = (0, 0,0, ||f”°°w4, 0, eow6>
P2
and
w1 w3
w»y Wyq
o ws | _ %(wu + wy), ’
W4 11)4
w5 pi}(k3 Wsy — K4Wa)x
We —Wes — €EQWe + Wy
where
_ 1 k1 ks Il
Wy = —(kz — 80)Waxx — —(Wix + W2) — —Wsx — = wy
P2 P2 P2
+00 1 +00
—f 8()wexx(s)ds — Ps S wes(s)ds.
2 Jo

From (2.1), # endowed with the inner product, for W = (w1, wa, w3, ws, ws, we)’ and W7 =
(W, Wy, W3, Wa, Ws, We)"

(w,w),, / (k2 — go)wax (X)W (x) + k1 (Wi (x) + w2 (X)) (W1x(x) + W2(x))) dx

+/0 (prw3(x)w3(x) + P2wa(x)Wa(x) + p3ws(xX)Ws(x))dx

+ (we, We) 2R, rj10.L1)

is a Hilbert space. Similar to the proof of Theorem 2.1 for (1.1), we can prove that the linear
operator —.¢/ is a maximal monotone operator, and % is Lipschitz continuous. Then </ + £ is an
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infinitesimal generator of a linear Cy-semigroup on 7. Consequently, (2.4) associated with (4.1) is
well-posed in the sense of Theorem 2.1.

On the other hand, under (A1)—(A4), Theorem 3.2 holds for (4.1). We use the same functionals
and arguments given in Sec. III (see also Ref. 19 in case f= 0).

B. Timoshenko-thermoelasticity

Our approach can be applied to the following Timoshenko-thermoelasticity system of type III,

pl(pfl(xv t) - kl((px(xv t) + I//(x5 t))x = Oa
,021/fn(x, t) - kaXx(xv t) +kl(¢x(-x7 t) + l/f(x, t)) +k40)ct(x’ t)

+f " Wl — s)ds + / 7 fWite, 1 — s)ds =0,
P30, 1) — KsBua (6, 1) + K6, ) — Ksear(x, 1) = 0, 42
0(0.1) = Y(0.1) = 0,(0,1) = ¢(L, 1) = Y(L, 1) = Ou(L,1) =0,
@(x,0) = @o(x), @i(x,0) = ¢i(x),
P =0 = Yok, D Yilx, —1) = Y5, 1),
B(x.0) = (), 6,(x,0) = 61(x),

which models the transverse vibrations of a thick beam, taking into account the heat conduction
introduced in Refs. 10-12.
Under (A1) and (A2), system (4.2) also can be formulated in the abstract form (2.4), where

U = (9. ¥, 0, 01,91, 0,7, % = (w0, Yo, 0), o, ¢1, Y1(-, 0), 61, 10)" € H,

A = (Hy (10, LDY* x H,(10, L) x (L*(0, LD)* x L3(10, L) x Ly (R, Hy (10, LD),

L L
H*l(]O,L[):{v e H'(0, L) :f v(x)dx:O}, Lﬁ(]o,L[)z{v e L0, L[) :f v(x)dx:O}
0 0

and the operators .2/ and % are given by

T
T I1f oo
B(wi, wa, w3, Wa, Ws, We, W7)" = (0, 0,0,0, ) ws, 0, eqwy
2
and
wq W4
wy Ws
w3 We
k
4 w4 = p_ll(wlx + w2)x s
ws Ws
1
We o5 (kawsy — kqws + kswex)x
wy —W7s — €QW7 + W5
where
_ 1 ki ks I/ llo
Ws = —(k2 — go)Waxx — —(Wiy + W2) — —Wey — Ws
P2 P2

P2
1 +0o0 1 +0o0

+ —/ 8(S)w7yx(s)ds — — S()wrs(s)ds.
P2 Jo P2 Jo
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From (2.1), 7 endowed with the inner product, for W = (wy, w;, w3, wy, ws, wg, w7)T and W =
S e o e o a o \T
(wlv wr, W3, Wy, w57w67w7) )

L
(w.w),, = / (k2 = go)wax () W2y (x) + ki(wix(x) + w2 (X)) (W1x(x) + Wa(x))) dx
0

L
+ /o (k3 w3, (X)W3, (x) + p1wa(x)W4(x) + p2ws(X)Ws(x) + p3we(x)Ws(x))dx

+ (w7, W7) 2w, 1l 10, L)

is a Hilbert space. Similar to the proof of Theorem 2.1 for (1.1), we can prove that &/ + % is an
infinitesimal generator of a linear Cy-semigroup on .7 by proving that —.¢7 is maximal monotone
and £ is Lipschitz continuous, and then we deduce that (2.4) associated with (4.2) is well-posed in
the sense of Theorem 2.1.

On the other hand, under (A1)-(A4), Theorem 3.2 holds for (4.2), where, here, E(t) =

1 ~ ~
E”(‘p» 1//7 97 (ptv I/fts Qt’ 77)”2330 and

- t (F 1 [t
O(x, 1) =0(x,1) — Z/ 01(y)dy — Z/ Go(y)dy;
0 0

SO
L ~
/ O(x,t)dx =0,
0

and then (2.9) is applicable for 8. For the proof, we use the same functionals as in Sec. III and some
arguments in Ref. 19 considered in case f= 0.

C. Porous thermoelastic
Our approach can also be applied to the following porous thermoelastic system:

P19 (X, 1) — ki@ (x, 1) + Y (x, 1)y + kab(x, 1) = 0,
P2 (X, 1) — koW (x, 1) + ki (gx (x, 1) + I/f(x,+t)) — ksO(x, 1)

+o0 o0
+/ 8()Yux(x, 1 — s)ds +/ S Yi(x, t —s)ds =0,
0 0

030,(x, 1) — k3O (x, 1) + ka@us(x, 1) + ks, (x, 1) = 0,
0,1) =¥(0,1) =0(0,1) = o(L,t) =y (L,t) =6(L, 1) =0,
go(xa O) = wo(-x)s got(-xv O) = (pl(-x)s
w(-x3 —I)ZWO(xyt)y wt(-xv_t)zwl(xst)’ 9()(,0)200()6').
Under (A1) and (A2), system (4.3) can be formulated in the abstract form (2.4), where % , %, %,
and (-, -) ,» are defined as in case (4.1), and the operator <7 is given by

4.3)

wi w3
w»y Wyq
w3 B (i, + wa) — Ews
of — p1 x X, X ,
Wy 11)4
1 _ _k
ws o5 (kawsy — kqws)x — 2wy
We —Wes — €EQWe + Wy
where
_ 1 ki ks 1/ lloo
Wy = — (k2 — go)wax — —(Wix + w2) + —ws — Wy
02 /%] 02 P2

+o0

1 oo 1
+ —f 8(S)werx(s)ds — — S () wes(s)ds.
P2 Jo P2 Jo
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As in the previous applications, the proof of Theorem 2.1 for (4.3) is similar to the one given in Sec.
II for (1.1).
Under (A1)—(A4), Theorem 3.2 holds also for (4.3) with the same proof as in Sec. III.

D. Discrete time delay

Similar well-posedness results to the ones in Theorem 2.1 and, under (1.2), the stability estimates
(3.9) and (3.12) hold in the case of discrete time delay for (1.1) as well as for (4.1)—(4.3). Let us
discuss the case of (1.1) with discrete time delay (the cases of (4.1)—(4.3) with discrete time delay
can be treated similarly)

P19 (x, 1) — ki(e(x, 1) + ¥ (x, 1))y =0,

P2 (x, 1) = koW (x, 1) + ki (i (x, 1) + Y (x, 1))
+00

+/0 W x, 1 = 9)ds + i (x, 1 — ) = 0, )
90,1) =¥ (0,1) =¢(L,1) =¥(L,1) =0,
@(x,0) = @o(x),  ¢;(x,0) = @i(x),
Vix, =) =vYolx,n, ¥i(x,0)=y1(x), Yulx, 1 —1)= folx, 1 —1) ( €]0, 7),
where T € 10, 4 oo[, u € R* and (¢o, Vo, ¢1, ¥ 1, fo) are given initial data.
We prove briefly that (4.4) is well posed under the assumption (A1), and it is stable provided

that (1.2), (A1), and (A3) hold and |u| is small enough, and we establish decay estimates similar to
(3.9) and (3.12).

1. Well-posedness

Following the idea in Ref. 28 (see also Refs. 29-31) to deal with the delay term by considering
a new auxiliary variable z, we can formulate the system (4.4) in the abstract form (2.4), where

% = ((;09 1//7 Drs 1//ta n, Z)T7 %0 - ((p07 I//()('v 0)7 @1, Ip]v No, ZO)T S %’
A = (Hy (10, LD)Y* x (L*(J0, LD)* x Ly (R4, Hy (10, L) x L*(10, 11, L*(10, L[)),

L 1
L2(10, 1[, L*(10, L[)) = {w:]o,l[e L2(]0, L), / / w(x, p)dpdx <+oo}
0 0

endowed with the inner product

L pl
(w1, wa) 20,11, L200.LD) = f / wi(x, p)wa(x, p)dpdx,
o Jo

and
z(x, t, = X, —1p),
(x,1, p) = Yu( p) 4.5)
zo(x, p) = 2(x, 0, p) = folx, —Tp).
The operators </ and & are linear and given by
T _ |l T
<@(u}] , W2, W3, W4, W5, wﬁ) - - 07 05 07 Wy, 07 0 (4'6)
£2
and
w1 w3
w»y W4
ki
w b +
sl =] (wlx~ W)y ’ @7)
Wy W4
ws —Wss + Wy

We — 7 Wep
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where

_ 1 ki [
Wy = p—(kz — 80)Waxx — p_(wlx + wy) — p—w4
2 2 P
4.8)

w 1 [*e
- —U)6(1) + _/ g(s)w5xx(s)ds.
P2 P2 Jo

The domains (/) and 2(A) of o7 and A, respectively, are given by

(w1, w2, w3, wa, ws, we)" € H, ws(0) =0, we(0) = wy
wep € L*(J0, 1[, L*(10, L)), ws, € LL(Ry, Hy (10, LD), w3, wy € Hy(10, L])

ety = .
wy € H*(10, L[), (kz — g0)wax +/ g()wsxx(s)ds € L*(10, L)
0
4.9)
and Z(#A) = . Keeping in mind the definition (4.5) of z, we have
TZ;(X,I, p)+zp(x7tvp):()a (410)
z(x,1,0) = ¥ (x, 1).

Therefore, we conclude from (2.13) and (4.10) that the systems (4.4) and (2.4) are equivalent.
Clearly, thanks to (2.1), 2 endowed with the inner product, for W = (w1, w,, w3, wy, ws, we)T
and W = (iby, Wy, W3, W, Ws, We),

L
(w.w),, = /0 (k2 — g0)wax (X)Wax (x) + ki (Wix(x) + w2 (X)) (W1x(x) + W2(x))) dx

L
+/ (P1w3(x)W3(x) + p2wa(x)W4(x))dx
0

+ (ws, Ws) 2w, mg o,y + TIl (We, We) 120,11, 120,21

is a Hilbert space and 2(o7) C .7 with dense embedding. Similar to the proof of Theorem 2.1 for
(1.1), we can prove that the linear operator —.¢f is a maximal monotone operator, and % is Lipschitz
continuous; the proof is similar to the one given in Ref. 15 for an abstract evolution equation with
infinite memory and discrete time delay. Then o/ + £ is an infinitesimal generator of a linear Cy-
semigroup on 7 (see Ref. 34: Chap. 3 — Theorem 1.1). Consequently, (2.4) associated with (4.4) is
well-posed in the sense of Theorem 2.1 (see Refs. 22 and 34).

2. Stability

We prove here that the system (2.4) associated with (4.4) is stable under (A1), (A3), and (1.2),
and provided that || is small enough. We provide two decay estimates depending on &.

Theorem 4.1. Assume (A1), (A3), and (1.2) hold. Then there exists a positive constant 8
independent of |4 such that, if

[] < o, 4.11)

then, for any % € J, there exist positive constants 8, and 8, such that the weak solution of
(2.4) associated with (4.4) satisfies (3.9) with ¢(t) = t if (3.2) holds, and it satisfies (3.12) with
t

o) = / min{1, &E(s)}ds if (3.2) does not hold and (3.3) holds.
0
Proof. Let % € 2(<), so that all the calculations below are justified. By a simple density

argument, the decay estimates in Theorem 4.1 remain valid for any weak solution (% € J¢). First,
as in Ref. 15, we provide a bound on the derivative of the energy functional E (defined in (3.30))



081503-37 Aissa Guesmia J. Math. Phys. 55, 081503 (2014)

associated with the solution of (2.4). We find

L +00 L
E'(t) < %/ / g/(s)ni(x, t,s)dsdx + |M|/ wtz(x, t)dx. (4.12)
o Jo 0

Note that, as in the distributed delay case, the sign of E’ cannot be determined directly from (4.12).

The proof of Theorem 4.1 is identical to the one given for system (1.1). The only modification
of the proof given in Sec. III for (3.9) and (3.12) is the use of the following functional J7, introduced
in Ref. 28, instead of I; (defined in (3.52)) to get a crucial estimate on the discrete delay term.

Lemma 4.2. The functional

L gl
J(t) = 1" / / e 2P Z2(x, t, p)dpdx
0 0

satisfies
L L
Ji(t) = —2.17(t)+ehf V2 (x, t)dx —/ 22(x, t, Ddx. (4.13)
0 0

Proof. See, for example, Ref. 20. ||

Now, defining .£] and %1, respectively, by (3.57) and (3.103) with J; instead of I;, we get, for
some positive constants &1, cjg > 0 (as for (3.69) and (3.108)),

L) < =81 4@), VieRy
when (3.2) holds, and

L +o0
F(t) < =8 min{1, £(1)}.71(r) + cl(,f f gOVE (x, 1 —s)dsdx, Yt e R,
0 t

when (3.2) does not hold and (3.3) holds. The rest of the proof carries out as in the case of distributed
delay. |

V. GENERAL COMMENTS AND ISSUES

1. In the case of distributed time delay (1.1) and (4.1)-(4.3), the decay estimates (3.9) and (3.12)
are obtained only for classical solutions (that is, for % € 2(«)), since the functional I; defined
in (3.52) is not well-defined for weak solutions; that is, when % € 7 (see (3.55)).

2. When (1.2) does not hold (which is more interesting from the physical point of view), proving
the stability of (4.1)—(4.3) with discrete delay instead of the distributed one (that is, the infinite
integral depending on fis replaced by uy,(x, t — 7)) and (4.4), seems a delicate question, since
the second energy E; (defined in (3.71) with k = 1) satisfies

1 L +00 L
o= /O /O &0, Cx, 1, s)dsdx + [l /0 Y2, ndx;
so E; is not necessarily nonincreasing due to the term depending on u, this term cannot be
absorbed by F itself even if || is supposed small enough. In the case of distributed delay, the
key of solution was the introduction of the functional /g defined in (3.78).

3. Inthe case of absence of delay (i.e., f= 0 and u = 0), it is well-known that (see Refs. 8,9, and
19), the systems (1.1), (4.1), (4.2), and (4.3) are not exponentially stable when (1.2) does not
hold, but they are dissipative (with respect to E) and the energy satisfies some weaker decay
estimates depending on the (exponential or arbitrary) decay of g at infinity and the regularity of
the initial data %. In the particular case of exponential decay (3.2), the decay rate obtained in
Refs. 8,9, and 19 is of type ti,,, which is stronger than the one given in (3.11). This fact is caused
by the nondissipativeness character of (1.1), (4.1), (4.2), and (4.3) generated by the presence of
delay.
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4. Inboth distributed and discrete delay cases, the arguments presented in this paper can be adapted
to the case where the delay is considered in the first equation; so similar well-posedness and
stability results can be obtained. However, proving the stability of (1.1) in the case where the
memory is considered in the first equation seems a delicate question.

5. The estimate (3.12) does not imply (3.29); that limit depends on the connection between the

L

growths at infinity of g, f;, and / Iﬁgx(x, Ddx.
0
If (o, satisfies

L +o0
f Y (x,s)dsdx < +oo, (5.1
0 0

then (3.9) holds, where ¢ is defined in (3.13). The idea of proof relies on the following functional
Jg instead of Jg (defined in (3.100)):

+0o0
Js(1) —/ / g(s) w (x, t)dtdsdx. 5.2)

The functional Jg is well-defined and satisfies, for all A € ]0, 1],

L +o00 L
Jg(t) < —(1 — ME() Jy(t) — A/ / gV (x, t — s)dsdx +g0/ VU2(x, dx, (5.3)
0 0 0

which is similar to (3.101) but without the last term of (3.101). See Ref. 20 in case (1.5) for
more details concerning the idea of proof.
6. If the second initial data v satisfies

L +o00
/ / Vi(x, s)dsdx < 400, (5.4)
0 0

the condition (3.5) is not needed, and the estimates (3.9) and (3.12) hold for y : Ry — R of
class C(R,, R7 ) and nonincreasing such that

+o00
| f(t —s5)| > y(t)/ |f(r —s)|dt, VteR,, Vsel0,r]. (5.5)

Replacing (3.5) by (5.5) allows f to have more general decay rate at infinity; so the growth of f
does not depend on the one of g. The idea of proof (see Ref. 20 for (1.5)) relies on the following
functional Jy instead of I; (defined in (3.52)):

L “+o0 t
Jo(t) =2 / / | £ ()| / Vi (x, t)dtdsdx. (5.6)
0 0 t—s

1
As for (5.3) with A = > we find

L L +00
K < 2ag0 / 2. dx — y(0)Jolt) — / / W20kt — s)dsdx,  (5.7)
0 0 0

which is similar to (3.54) with 2agg and Jy instead of g(0)B¢ and I7, respectively. Similarly, if
both (5.1) and (5.4) are satisfied, then (3.9) holds under (5.5) instead of (3.5).
7. As in the distributed delay case, if the first initial data 1, satisfies (5.1), then (3.9) holds for
t

the discrete time delay case (4.4), where ¢(¢) = / min{1, £(s)}ds. The idea of proof consists
0
in replacing Jg (defined in (3.100)) by Jg (defined in (5.2)).
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