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Abstract. This work is concerned with localizing and analyzing the
potential impact of changes to large-scale enterprise systems, and, in
particular, how to incorporate reachability analysis and aliasing/pointer
analysis to minimise false-positives and eliminate false-negatives. It is
a continuation of our previous work, which included static analysis [1]
and dynamic analysis [2] of changes to systems containing hundreds of
thousands of classes and millions of methods. This current work adds:
reachability analysis that examines the program to see “whether a given
path in a program representation corresponds to a possible execution
path”, such that infeasible paths of mis-matched calls and returns can
be filtered out from the estimated impact set; and alias analysis to iden-
tify paths that are feasible but cannot be affected. Using our approach,
organizations can focus on a much smaller, relevant subset of the test
suite instead of performing their entire suite of tests without any idea as
to whether any test is necessary. Also, in the future, we hope to be able
to help testers to augment the test suite with new tests that cover the
impacted methods/paths not already subjected to testing. We include a
case study that illustrates the savings that can be attained.

Key words: Large-scale Enterprise Systems: Impact Analysis: Reach-
ability Analysis: Alias Analysis: Static Analysis: Dynamic Analysis: In-
strumentation: Regression Testing

1 Introduction

The target system in this study is large-scale enterprise systems. Large-scale
enterprise systems are commercial software packages that enable organizations to
integrate various applications, replacing hard-to-maintain interfaces, eliminating
redundant data entries, etc., to accommodate business growth. One of the largest
enterprise vendors SAP, had 2012 revenues of 16.22 billion Euros [3]. Enterprise
systems are clearly a common phenomenon in the IT marketplace with fast
growing needs. However, implementing enterprise systems may lead to high costs
for software maintenance and testing, since corrective changes and enhancements
are made on a frequent basis. One type of software change, such as vendor
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patches, typically have to be applied as they are required to upgrade the system
in order to fix defects, and to introduce new features.

Enterprise systems are complex, critical and costly. For instance, Oracle Cor-
poration’s E-Business Suite [4] has over 230 thousand classes, and 4.6 million
functions. Despite problems due to their inherent complexity, enterprise sys-
tems play a critical role in many organizations. They are used to implement
actual business processes, information flows, reporting, data analytics, etc. It is
estimated that “Large companies can also spend $50 million to $100 million on
software upgrades. Full implementation of all modules can take years” [5]. As a
consequence of these characteristics, these systems can also often be classified
as legacy systems and are poorly understood and difficult to maintain.

Impact analysis is the key in analyzing software changes or potential changes
and in identifying the software objects the changes might affect [6]. Organizations
need a change impact analysis tool to identify the impacts of a change after or
even before a making a change. If the impacts can be obtained even before
applying the change, it enables the organization to make test plans or to run
tests in advance, saving the lag between system deployment and release.

Conventional impact analysis includes static approaches, dynamic approaches
or a hybrid of the two. Static approaches identify the impact set – the subset of
elements in the program that may be affected by the changes made to the system
– by analyzing relevant source code or compiled code. Dynamic approaches col-
lect information about execution data for a specific set of program executions,
such as executions in the field, executions based on an operational profile, or
executions of test suites.

2 Research Motivation

Our original work in this domain [1] showed that we could obtain a set of static
impacts which are safe and more precise than conventional vanilla static ap-
proaches, while another more recent work [2] combined the static approach with
dynamic instrumentation (aspect-based), and is able to identify real impacts at
run-time to further improve the precision. However, in spite of the success of this
recent approach, the case studies suggested that there still might be a good num-
ber of false-positives present in the estimated impact set. That analysis found
out that only a tiny portion of the system (0.26% of all top functions/APIs)
were affected at run-time. Even though those top functions were executed over
150 thousand times, one could not conclude that the rest of the static impacts
were safe to discard. Consequently, testers may still need to rerun many of the
regression tests.

While seeking further analysis to remove more false-positives, we realized
that Reachability Analysis can be used to determine whether, within a graph G,
a node s can reach another node t, i.e., whether the path s t is feasible, and
so seemed a promising tool in our search for reducing false-positives. We also
identified Alias Analysis as a potential tool to further remove false-positives by
identifying changed and aliased variables and methods that can access them.
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3 Related Work

In graph theory, reachability refers to the ability to get from one vertex to an-
other within a graph by traversing edges of the graph. Algorithms for determining
reachability fall into two categories: those that require preprocessing and those
that do not [7]. Algorithms like breadth-first search, in which reachability of one
node from another node can be determined directly without the use of complex
data structures, are in the first category. While algorithms like Floyd-Warshall,
Thorup’s algorithm and CFL-reachability fall into the second category, where
more sophisticated methods and/or complex data structures are required.

Reps et al.[8] showed how a number of program analysis problems can be
solved by transforming them to graph-reachability problems. The purpose of
program analysis is to ascertain information about a program without actually
running the program. In his work, program-analysis problems can be transformed
to context-free-language reachability problems (“CFL-reachability problems”).

Many compiler analyses and optimizations require information about the
behaviour of pointers in order to be effective. Pointer analysis is a technique
for statically determining the possible runtime values of a pointer [9]. Aliasing
occurs when two distinct names (data access paths) denote the same run-time
location. This analysis has been studied extensively over the last decade. Alias
information is central to determining what memory locations are modified or ref-
erenced. Ondrej introduces a flexible framework SPARK for experimenting with
points-to analyses for Java [10]. SPARK is intended to be a universal framework
within which different points-to analyses can be easily implemented and com-
pared in a common context. We believe that aliasing analysis is useful in hybrid
impact analysis, and that we can use it to identify aliased objects in the static
dependency graph to remove false-positives from the impact set.

4 Reachability Analysis

Ordinary (flat) graph reachability analysis does not take into account the fact
that, in practice, many apparently reachable paths can be infeasible because of
mis-matched calls and returns, and this information can only be obtained by
considering control flows and/or data flows of the program. Reps [8] introduced
the Context-Free-Language Reachability Problem as:

Definition: Let L be a context-free language over alphabet
∑

, and let G be
a graph whose edges are labelled with members of

∑
. Each path in G defines a

word over
∑

, namely, the word obtained by concatenating, in order, the labels
of the edges on the path. A path in G is an L-path if its word is a member of L.

Then an ordinary graph reachability problem can be transformed into a CFL-
reachability problem by labelling each edge with a symbol e and letting L be the
regular language e∗. The reason that we introduce CFL-reachability analysis here
is that it can help us answer the undecidable question: “Does a given path in
a program representation correspond to a possible execution path?”.
The idea is that we can define a context-free language L to represent feasible
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Smallest(int p, int q){

\*precondition p>1 && q=2*\

if (p mod q > 0 && q < sqrt p)

then

q := q+1;

smallest(p, q);

else if (p mod q = 0)

then

print(q, is factor)

else

print(p, is prime);

}

(a) Program Smallest

if()

q:=q+1

else if()

print(q)

print(p)
print(p)

print(q)

else if()

q:=q+1

if()

Enter

Exit

Enter

Exit

Call smallest()

Return from
 smallest()

Call smallest()

Return from
 smallest()

(1

(2

)
2

)
1

(b) Control-flow Graph and Supergraph

Fig. 1: Program smallest and its graphs. Dashed nodes and arrows correspond
to extra nodes and edges while expanding from G to G∗.

paths and then determine if a given string ω is recognizable in L, i.e., is ω ∈ L?
Our assumption is that paths that can possibly be feasible execution paths are
those in which “returns” are matched with corresponding “calls”. These paths
are called realizable paths.

A Supergraph G∗ [8] was defined to deal with realizable paths. A supergraph
consists of a collection of control-flow graphs – one for each procedure. Each
flowgraph has a unique start node and a unique exit node. The other nodes of the
flowgraph represent statements and predicates of the program in the usual way,
except that each procedure call in the program is represented in G∗ by two nodes,
a call node and a return-site node. In addition to the ordinary intraprocedural
edges that connect the nodes of the individual control-flow graphs, for each
procedure call G∗ contains three more edges: an intraprocedural call-to-return-
site edge; an interprocedural call-to-start edge; and an interprocedural exit-to-
return-site edge.

Suppose we have a simple recursive program smallest (Figure 1a) to find
the smallest prime factor of a positive integer number. In Figure 1b, the graph
on the left is the regular control-flow graph of program smallest, and the one
on the right is the extended supergraph.

In detail, we let each call node in G∗ be given a unique index from 1 to N ,
where N is the total number of calling sites in the program. For each calling site,
label the call-to-start edge and the exit-to-return-site edge with the symbols “(i”
and “)i”, respectively. Label all other edges of G∗ with the symbol e. A path
in G∗ is a matched path iff the path’s word is in the language L(matched) of
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balanced-parenthesis strings (interspersed with strings of zero or more es) where
L(matched) is generated by the following context-free grammar. Then we can
use this grammar to determine if any given path is feasible.

matched →matched matched
| (imatched )ifor 1 ≤i ≤N
| e
| ε

From the supergraph, we can identify paths, for example:

– “Call Smallest → Enter → if() → else if() → print(q) → Exit → Return from
Smallest”, which has word “(1eeee)1”, is a feasible path since the call-to-start
edge “(1” is matched by a correct exit-to-return-site edge “)1”.

– however, for the same path that exits to the inside return-site node (“(1eeee)2”),
we consider it infeasible – “(1” was mistakenly matched by “)2”.

5 Alias Analysis

Alias analysis, pointer analysis, points-to analysis, pointer alias analysis etc.,
are often used interchangeably to denote an analysis that attempts to analyze
pointers and aliases, such as run-time values of a pointer, or an aliased pair of
names that point to the same run-time location due to the use of pointers or
references. Typically, results of alias analysis are sets of aliased variables, say,
aliased(x). If l /∈ aliased(x) for abstract location l and variable x in the program
P , then x can never alias to variables represented by l in some execution of P .

Suppose we have a program aliasingTest to test if the three types of vari-
ables in Java can be aliased: class variable (static field), instance variable and
local variable. All the three types of variables (integer arrays in this example) are
first initialized (Line[9]-Line[14]) with integer 1 at the first index. Then we create
aliased variables to each of the three (Line[16]-Line[18]). Instead of manipulating
the original variables, we run functions on the aliased ones (Line[20]-Line[23]).

After the invocations of the first three functions (either static or non-static),
the original variables were actually changed (with first element altered to in-
teger 11), even though the functions only manipulated the aliased copies. Our
observation is that, if along a path in the access dependency graph of a program
one can obtain the aliasing information for each method, dependencies among
methods can be identified more precisely. In particular, we follow these steps to
achieve more precise dependencies:

1. A flow-insensitive and context-insensitive alias analysis to compute a single
and valid solution to the whole program.

2. We examine the pairs of aliased variables (static field, instance field, and local
variable) throughout the program and obtain a mapping from each method
f to variables varf and aliased variables aliased(varf ) it can access, i.e.,
f → {varf , aliased(varf )}.
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3. We examine paths in the estimated impact set, for any other changed func-
tion g with mapped variables and aliased variables {varg, aliased(varg)}
that can be reached by f , if and only if there exists any intersection of
{varf , aliased(varf )} and {varg, aliased(varg)}, we say f can be affected
by g.

Therefore, in aliasingTest, a dependency edge between function main and
function alterEmpty should be removed since there is no aliased variables within
alterEmpty that was used in main.

Listing 1: Program aliasingTest

1 package aliasingTest;
2 public class aliasingTest {
3 static int[] staticArray;
4 int[] instanceArray;
5 public aliasingTest(){
6 instanceArray = new int[6];}
7 public static void main(String args

[]){
8 //initializations of arrays
9 staticArray = new int[5];

10 int[] localArray = new int[3];
11 aliasingTest at = new

aliasingTest();
12 localArray[0] = 1;
13 staticArray[0] = 1;
14 at.instanceArray[0]= 1;
15 //aliasing to arrays
16 int[] aliasOflocalArray =

localArray;
17 int[] aliasOfstaticArray =

staticArray;
18 int[] aliasOfinstanceArray = at.

instanceArray;

Listing 2: aliasingTest cont.

19

20 //run functions that can be
invoked within main()

21 alterArrayLocal(aliasOflocalArray
);

22 alterArrayStatic(
aliasOfstaticArray);

23 at.alterArrayInstance(
aliasOfinstanceArray);

24 alterEmpty();
25 }
26 static void alterArrayLocal(int[]

array){
27 array[0] = 11;}
28 static void alterArrayStatic(int[]

array){
29 array[0] = 11;}
30 void alterArrayInstance(int[] array){
31 array[0]=11;}
32 static void alterEmpty(){
33 System.out.println(”No job is

doing here.”);}
34 }

6 Impact Analysis Overall

We extended our previous approachs in [1] and [2] by reachability analysis and
alias analysis, to form the new process depicted in Figure 2. Note that, the set
of potential false-positives was obtained by subtracting the dynamic impact set
from the static impact set. The reachability analysis works on this set to find
infeasible paths. The alias analysis continues cutting out false-positives from
the reduced set by identifying functions that are not able to access the aliased
variables of a changed function, if they are not themselves directly changed.

7 Case Study

In the study, our goal was to investigate whether this new, extended approach
can meet our goal, which is to safely remove false-positives from the change
impact set. We followed the same order, variables, measures, experiment setup
etc., as we did in the experiments in [1] and [2].
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Fig. 2: System Flow of the Complete Approach

Application Database Classes Entities LOC

11.5.10.2 (11i) 10.2.0.2.0 (10g) 195,999 3,157,947 8.7 Million

Table 1: Oracle E-Business Suite Release 11i and Some Facts

There is only one independent variable in this case study: the extended im-
pact analysis tool. Dependent variables in this study include precision and time
overhead. For the measurement of precision, we used the one in Equation 1,
where I represents the number of estimated impacts (functions and fields), and
M represents the total number of entities in the program.

Precision =
|I|
|M |

(1)

7.1 Experimental Setup

The experiment was set up on a desktop server with a Quad core 3.2GHz CPU,
32G RAM and operating system Red Hat Enterprise Linux Server release 5.10
(Tikanga) 64 bit. We used one release of Oracle E-Business Suite (Table 1) as the
object of the analysis, and for the source of atomic changes we used one vendor
patch (patch # 5565583, 212MB) that can be obtained either from Oracle E-
Business Suite Patch Wizard or manually download from Oracle Metalink.

7.2 Experiment Design

We had already collected results from static analysis and dynamic analysis in the
impact analysis process from [1] and [2]. Thus, for this experiment we focused
only on the improvements made through reachability analysis and alias analysis.



8 Wen Chen, Alan Wassyng, and Tom Maibaum

Function Top Function Static Impacts Dynamic Impacts Potential FPs

3,157,947 1,673,132 699,534 4,806 694,728

Table 2: Instrumentation Result on Patch # 5565583

Static Dynamic Rmd By Reachability Rmd By Alias Final Impacts

699,534 4,806 61,125 86,374 547,229

Table 3: Final Impacts of Patch # 5565583

Then CFL-reachability analysis was implemented via Wala [11] to cut down
false-positives. We ran the Tabulation algorithm [12] implemented by Wala on
the set of “potential false-positives”. The alias analysis takes the processed
“potential false-positives” from the above reachability analysis as the input,
and calculates aliasing information, such that methods that have no accesses to
those aliased and changed variables in the system are not considered as affected.
Another input is the set of changes resulting from the patch analysis. What
we need is to find the methods on a particular path that access those changed
variables and also variables that are aliased with them. For the sake of safety, we
assume here that, if a function is changed, then potentially all of its accessible
variables can be changed.

7.3 Results and Analysis

The system used in our case study contains 195,999 classes. We determined
that there are 3,157,947 entities (both functions and fields) in the system. The
process of building the access dependency graph added over 18.4 million depen-
dencies and took over 9.5 hours to complete. By patch analysis, we found 16,787
direct database changes, and 25,613 direct library changes (classes) for patch
#5565583. The static analysis identified 8,154 direct changed functions for this
patch, which led to 699,534 affected functions (22% of the total functions), and
160,800 affected top functions (9.6% of the total top functions) in the system.
The computed impacts for the patch after static analysis and dynamic analysis
are shown in Table 2.

Thus we had 694,728 “potential false-positives” to work on in the reachabil-
ity and alias analysis. Both CFL-reachability analysis and alias analysis were
implemented via Wala. We ran Wala on the enclosing classes of each function
in those “potential false-positives”, and then mapped identified feasible state-
ments to functions in the system. Then those functions with the direct changes
(42,400) were given to Wala’s alias analysis framework to find aliased variables
for each changed function. In the end, we found many of the functions within
the “potential false-positives” were not present in feasible paths (611,253) or
able to access any aliased variables (863,374) of changed functions. We therefore
removed 6,865,697 (37.3 %) dependencies from the original dependency graph.
We summarized the results in Table 3.



Impact Analysis: Reachability and Alias Analysis 9

Static Analysis

0 16.3 66.3 88.3 hours

Dynamic Analysis Reachability and 
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Fig. 3: Execution Time for Patch #5565583

As we can see from Table 3, we achieved a precision of 3.8% at the end of
the static analysis and then improved it to 2.98% at the end of the complete ap-
proach. The dynamic analysis identified that only 4,806 functions to be executed,
which left a large portion (99%) of the static impacts as potential false-positives.
The reachability analysis and alias analysis reduced the false positives by 21.8%
. At the current stage, our case study does not include a user’s application built
on Oracle’s E-Business Suite, so the impacted entities are confined to E-Business
Suite. That explains why, even with a reasonably large number of real executions,
the dynamic impacts are associated with just a tiny part of the system.

The entire process requires considerable time to complete (see Figure 3).
Considering the sizes of the system and patch, it is still more manageable than
rerunning everything in the regression suite. More crucially, it provides testers
more confidence as to which parts in the system are affected. The most time-
consuming task is the instrumentation, which occupies around 56.8% of the total
execution time. As with the static dependency graph, the instrumentation forms
a substantial corporate asset for future analysis, and can be easily and quickly
updated as needed.

8 Conclusion and Future Work

In this work, we have incorporated CFL-reachability analysis and alias analysis
in identifying software impacts. As far as we can ascertain, these two techniques
have not been used in this way to cut down on the false-positives in preceding
analyses. It has been demonstrated that CFL-reachability with a parenthesis
context-free grammar can be used to filter out infeasible paths (mis-matched
calls and returns), that may become false-positives in the impact set. An alias
analysis was conducted to identify functions that are able to access the aliased
and changed variables. We consider those that are not able to access any of
the aliased and changed variables to be false-positives, if they themselves are
not directly changed. Also, we have demonstrated the practical applicability of
the improved approach on a very large enterprise system, involving hundreds
of thousands of classes. Such systems may be perhaps two orders of magnitude
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larger than the systems analyzed by other approaches, so our technique seems
to be uniquely powerful.

Initally, considering the running time and effort expended, we were a lit-
tle disappointed in the percentage of false-positives removed by this technique.
However, after examining the results more carefully, we realized that: (1) the ac-
tual number of false-positives removed was significant; and (2) as we discussed
earlier, because there is no user’s application in our case study, the impact anal-
ysis is restricted to functions within the system, and in particular, many of the
identified impacted functions are system APIs. Further study will be needed to
determine whether results are better for a user application built on E-Business
Suite. Also, the alias analysis we used is flow-insensitive and context-insensitive.
It assumes statements in the program can be executed in any order and any
number of times. In practice this is not a precise approach. The imprecision can
also come from the context-insensitivity: method calls were treated conserva-
tively, without computing the precise target addresses of the return statements.
Hence, in the future, it is worth investigating whether a more precise approach
can be derived for large-scale enterprise systems.
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