An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit

Nicolas Crouseilles 1, 2 Lukas Einkemmer 3 Erwan Faou 1, 2
2 IPSO - Invariant Preserving SOlvers
IRMAR - Institut de Recherche Mathématique de Rennes, Inria Rennes – Bretagne Atlantique
Abstract : We consider the relativistic Vlasov–Maxwell (RVM) equations in the limit when the light velocity c goes to infinity. In this regime, the RVM system converges towards the Vlasov–Poisson system and the aim of this paper is to construct asymptotic preserving numerical schemes that are robust with respect to this limit. Our approach relies on a time splitting approach for the RVM system employing an implicit time integrator for Maxwell's equations in order to damp the higher and higher frequencies present in the numerical solution. It turns out that the choice of this implicit method is crucial as even L-stable methods can lead to numerical instabilities for large values of c. A number of numerical simulations are conducted in order to investigate the performances of our numerical scheme both in the relativistic as well as in the classical limit regime. In addition, we derive the dispersion relation of the Weibel instability for the continuous and the discretized problem.
Type de document :
Article dans une revue
Computer Physics Communications, Elsevier, 2016, 209
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01283779
Contributeur : Erwan Faou <>
Soumis le : dimanche 6 mars 2016 - 18:38:16
Dernière modification le : mardi 19 juin 2018 - 11:12:07
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 08:07:15

Fichier

cef-submit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01283779, version 1

Citation

Nicolas Crouseilles, Lukas Einkemmer, Erwan Faou. An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit. Computer Physics Communications, Elsevier, 2016, 209. 〈hal-01283779〉

Partager

Métriques

Consultations de la notice

408

Téléchargements de fichiers

75