Data Leakage Quantification

Abstract : The detection and handling of data leakages is becoming a critical issue for organizations. To this end, data leakage solutions are usually employed by organizations to monitor network traffic and the use of portable storage devices. These solutions often produce a large number of alerts, whose analysis is time-consuming and costly for organizations. To effectively handle leakage incidents, organizations should be able to focus on the most severe incidents. Therefore, alerts need to be prioritized with respect to their severity. This work presents a novel approach for the quantification of data leakages based on their severity. The approach quantifies leakages with respect to the amount and sensitivity of the leaked information as well as the ability to identify the data subjects of the leaked information. To specify and reason on data sensitivity in an application domain, we propose a data model representing the knowledge in the domain. We validate our approach by analyzing data leakages within a healthcare environment.
Type de document :
Communication dans un congrès
David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Vijay Atluri; Günther Pernul; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 28th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2014, Vienna, Austria. Springer, Lecture Notes in Computer Science, LNCS-8566, pp.98-113, 2014, Data and Applications Security and Privacy XXVIII. 〈10.1007/978-3-662-43936-4_7〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01284845
Contributeur : Hal Ifip <>
Soumis le : mardi 8 mars 2016 - 11:04:01
Dernière modification le : lundi 9 mai 2016 - 17:58:44
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 09:53:11

Fichier

978-3-662-43936-4_7_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Sokratis Vavilis, Milan Petković, Nicola Zannone. Data Leakage Quantification. David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Vijay Atluri; Günther Pernul; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 28th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2014, Vienna, Austria. Springer, Lecture Notes in Computer Science, LNCS-8566, pp.98-113, 2014, Data and Applications Security and Privacy XXVIII. 〈10.1007/978-3-662-43936-4_7〉. 〈hal-01284845〉

Partager

Métriques

Consultations de la notice

31

Téléchargements de fichiers

11