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Abstract
We study parameter inference in large-scale latent variable models. We first propose a unified treat-
ment of online inference for latent variable models from a non-canonical exponential family, and
draw explicit links between several previously proposed frequentist or Bayesian methods. We then
propose a novel inference method for the frequentist estimation of parameters, that adapts MCMC
methods to online inference of latent variable models with the proper use of local Gibbs sam-
pling. Then, for latent Dirichlet allocation,we provide an extensive set of experiments and compar-
isons with existing work, where our new approach outperforms all previously proposed methods.
In particular, using Gibbs sampling for latent variable inference is superior to variational inference
in terms of test log-likelihoods. Moreover, Bayesian inference through variational methods perform
poorly, sometimes leading to worse fits with latent variables of higher dimensionality.

Keywords: Latent Variables Models, Online Learning, Gibbs Sampling, Topic Modelling, Latent
Dirichlet Allocation

1. Introduction

Probabilistic graphical models provide general modelling tools for complex data, where it is natural
to include assumptions on the data generating process by adding latent variables in the model. Such
latent variable models are adapted to a wide variety of unsupervised learning tasks (Koller and
Friedman, 2009; Murphy, 2012). In this paper, we focus on parameter inference in such latent
variable models where the main operation needed for the standard expectation-maximization (EM)
algorithm is intractable, namely dealing with conditional distributions over latent variables given the
observed variables; latent Dirichlet allocation (LDA) (Blei et al., 2003) is our motivating example,
but many hierarchical models exhibit this behavior, e.g., ICA with heavy-tailed priors. For such
models, there exist two main classes of methods to deal efficiently with intractable exact inference
in large-scale situations: sampling methods or variational methods.

Sampling methods can handle arbitrary distributions and lead to simple inference algorithms
while converging to exact inference. However it may be slow to converge and non scalable to
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big datasets in practice. In particular, although efficient implementations have been developed, for
example for LDA (Zhao et al., 2014; Yan et al., 2009), MCMC methods may not deal efficiently yet
with continuous streams of data for our general class of models.

On the other hand, variational inference builds an approximate model for the posterior distribu-
tion over latent variables—called variational—and infer parameters of the true model through this
approximation. The fitting of this variational distribution is formulated as an optimization problem
where efficient (deterministic) iterative techniques such as gradient or coordinate ascent methods
apply. This approach leads to scalable inference schemes (Hoffman et al., 2013), but due to ap-
proximations, there always remains a gap between the variational posterior and the true posterior
distribution, inherent to algorithm design, and that will not vanish when the number of samples and
the number of iterations increase.

Beyond the choice of approximate inference techniques for latent variables, parameter inference
may be treated either from the frequentist point of view, e.g., using maximum likelihood inference,
or a Bayesian point of view, where the posterior distribution of the parameter given the observed
data is approximated. With massive numbers of observations, this posterior distribution is typically
peaked around the maximum likelihood estimate, and the two inference frameworks should not
differ much (Van der Vaart, 2000).

In this paper, we focus on methods that make a single pass over the data to estimate parameters.
We make the following contributions:

1. We review and compare existing methods for online inference for latent variable models from
a non-canonical exponential family in Section 2, and draw explicit links between several
previously proposed frequentist or Bayesian methods. Given the large number of existing
methods, our unifying framework allows to understand differences and similarities between
all of them.

2. We propose in Section 3 a novel inference method for the frequentist estimation of parameters,
that adapts MCMC methods to online inference of latent variable models with the proper use
of “local” Gibbs sampling. In our online scheme, we apply Gibbs sampling to the current
observation, which is “local”, as opposed to “global” batch schemes where Gibbs sampling
is applied to the entire dataset.

3. After formulating LDA as a non-canonical exponential family in Section 4, we provide an
extensive set of experiments in Section 6, where our new approach outperforms all previously
proposed methods. In particular, using Gibbs sampling for latent variable inference is superior
to variational inference in terms of test log-likelihoods. Moreover, Bayesian inference through
variational methods perform poorly, sometimes leading to worse fits with latent variables of
higher dimensionality.

2. Online EM

We consider an exponential family model on random variables (X,h) with parameter η ∈ E ⊆ Rd
and with density (Lehmann and Casella, 1998):

p(X,h|η) = a(X,h) exp
[
〈φ(η), S(X,h)〉 − ψ(η)

]
. (1)

We assume that h is hidden and X is observed. The vector φ(η) ∈ Rd represents the natural pa-
rameter, S(X,h) ∈ Rd is the vector of sufficient statistics, ψ(η) is the log-normalizer, and a(X,h)
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is the underlying base measure. We consider a non-canonical family as in many models (such as
LDA), the natural parameter φ(η) does not coincide with the model parameter η, that is, φ(η) 6≡ η;
we however assume that φ is injective.

We consider N i.i.d. observations (Xi)i=1,...,N from a distribution t(X), which may be of the
form P (X|η∗) =

∫
h p(X,h|η

∗)dh for our model above and a certain η∗ ∈ E (well-specified model)
or not (misspecified model). Our goal is to obtain a predictive density r(X) built from the data and
using the model defined in (1), with the maximal expected log-likelihood Et(X) log r(X).

2.1 Maximum Likelihood Estimation

In the frequentist perpective, the predictive distribution r(X) is of the form p(X|η̂), for a well-
defined estimator η̂ ∈ E. The most common method is the EM algorithm (Dempster et al., 1977),
which is an algorithm that aims at maximizing the likelihood of the observed data, that is,

max
η∈E

N∑
i=1

log p(Xi|η). (2)

More precisely, the EM algorithm is an iterative process to find the maximum likelihood (ML)
estimate given observations (Xi)i=1,...,N associated to hidden variables (hi)i=1,...,N . It may be seen
as the iterative construction of lower bounds of the log-likelihood function (Bishop, 2006). In the
exponential family setting (1), we have, by Jensen’s inequality, given the model defined by η′ ∈ E

from the previous iteration, and for any parameter η ∈ E:

log p(Xi|η) = log

∫
p(Xi, hi|η)dhi

≥
∫
p(hi|Xi, η

′) log
p(Xi, hi|η)

p(hi|Xi, η′)
dhi

=

∫
p(hi|Xi, η

′) (〈φ(η), S(Xi, hi)〉−ψ(η)) dhi−Ci(η′)

= 〈φ(η),Ep(hi|Xi,η′) [S(Xi, hi)]〉 − ψ(η)− Ci(η′),

for a certain constant Ci(η′), with equality if η′ = η. Thus, EM-type algorithms build locally tight
lower bounds of the log-likelihood in (2), which are equal to

〈φ(η),
∑N

i=1 si〉 −Nψ(η) + cst,

for appropriate values of si ∈ Rd obtained by computing conditional expectations with the distribu-
tion of hi given Xi for the current model defined by η′ (E-step), i.e., si = Ep(hi|Xi,η′) [S(Xi, hi)].
Then this function of η is maximized to obtain the next iterate (M-step). In standard EM applica-
tions, these two steps are assumed tractable. In Section 3, we will only assume that the M-step is
tractable while the E-step is intractable.

Standard EM will consider si = Ep(hi|Xi,η′) [S(Xi, h)] for the previous value of the parameter η
for all i, and hence, at every iteration, all observations Xi, i = 1, . . . , N are considered for latent
variable inference, leading to a slow “batch” algorithm for large N .

Incremental EM (Neal and Hinton, 1998) will only update a single element si coming from
a single observation Xi and update the corresponding part of the sum

∑N
j=1 sj without changing
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other elements. In the extreme case where a single pass over the data is made, then the M-step at
iteration i maximizes

〈φ(η),
i∑

j=1

Ep(hj |Xj ,ηj−1) [S(Xj , hj)]〉 − iψ(η),

with respect to η. In the next section, we provide a (known) other interpretation of this algorithm.

2.2 Stochastic Approximation

Given our frequentist objective Et(X) log p(X|η) to maximize defined as an expectation, we may
consider two forms of stochastic approximation (Kushner and Yin, 2003), where observations Xi

sampled from t(X) are processed only once. The first one is stochastic gradient ascent, of the form

ηi = ηi−1 + ρi
∂ log p(Xi|η)

∂η
,

or appropriately renormalized version thereof, i.e., ηi = ηi−1 + ρiH
−1 ∂ log p(Xi|η)

∂η , with several
possibilities for the d × d matrix H , such as the negative Hessian of the partial or the full log-
likelihood, or the negative covariance matrix of gradients, which can be seen as versions of natural
gradient—see Titterington (1984); Delyon et al. (1999); Cappé and Moulines (2009). This either
leads to slow convergence (without H) or expensive iterations (with H), with the added difficulty
of choosing a proper scale and decay for the step-size ρi.

A key insight of Delyon et al. (1999); Cappé and Moulines (2009) is to use a different formu-
lation of stochastic approximation, not explicitly based on stochastic gradient ascent. Indeed, they
consider the stationary equation Et(X)

[∂ log p(X|η)
∂η

]
= 0 and expand it using the exponential family

model (1) as follows:

∂ log p(X|η)

∂η
=
∂ log

∫
p(X,h|η)dh

∂η

= φ′(η)Ep(h|X,η) [S(X,h)]− ψ′(η).

Given standard properties of the exponential family, namely

ψ′(η) = φ′(η)Ep(h,X|η) [S(X,h)] 1,

and assuming invertibility of φ′(η), this leads to the following stationary equation:

Et(X)

[
Ep(h|X,η) [S(X,h)]

]
= Ep(h,X|η) [S(X,h)] .

1. Proof: Given (1),
∫
X,h

p(X,h|η)d(X,h) = 1 ⇒ ψ(η) = log
[∫
X,h

a(X,h)e〈φ(η),S(X,h)〉d(X,h)
]
. We then

derive this identity with respect to η, which gives:

ψ′(η) =

∫
X,h

φ′(η)S(X,h)a(X,h)e〈φ(η),S(X,h)〉d(X,h)∫
X,h

a(X,h)e〈φ(η),S(X,h)〉d(X,h)

=
φ′(η)

∫
X,h

S(X,h)a(X,h)e〈φ(η),S(X,h)〉d(X,h)

eψ(η)

= φ′(η)

∫
X,h

S(X,h)p(X,h|η)d(X,h)

= φ′(η)Ep(h,X|η) [S(X,h)] .

4
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This stationary equation states that at optimality the sufficient statitics have the same expectation
for the full model p(h,X|η) and the joint “model/data” distribution t(X)p(h|X, η).

Another important insight of Delyon et al. (1999); Cappé and Moulines (2009) is to consider
the change of variable s(η) = Ep(h,X|η) [S(X,h)] on sufficient statistics, which is equivalent to

η = η∗(s) ∈ arg max 〈φ(η), s〉 − ψ(η),

(which is the usual M-step update). See Cappé and Moulines (2009) for detailed assumptions al-
lowing this inversion. We may then rewrite the equation above as

Et(X)

(
Ep(h|X,η∗(s)) [S(X,h)]

)
= s.

This is a non-linear equation in s ∈ Rd, with an expectation with respect to t(X) which is only
accessed through i.i.d. samples Xi, and thus a good candidate for the Robbins-Monro algorithm to
solve stationary equations (and not to minimize functions) (Kushner and Yin, 2003), which takes
the simple form:

si = si−1 − ρi
(
si−1 − Ep(hi|Xi,η∗(si−1)) [S(Xi, hi)]

)
,

with a step-size ρi. It may be rewritten as{
si = (1− ρi)si−1 + ρiEp(hi|Xi,ηi−1)[S(Xi, hi)]

ηi = η∗(si),
(3)

which has a particularly simple interpretation: instead of computing the expectation for all obser-
vations as in full EM, this stochastic version keeps tracks of old sufficient statistics through the
variable si−1 which is updated towards the current value Ep(hi|Xi,ηi−1)[S(Xi, hi)]. The parameter η
is then updated to the value η∗(si). Cappé and Moulines (2009) show that this update is asymp-
totically equivalent to the natural gradient update with three main improvements: (a) no matrix in-
version is needed, (b) the algorithm may be accelerated through Polyak-Ruppert averaging (Polyak
and Juditsky, 1992), i.e., using the average η̄N of all ηi instead of the last iterate ηN , and (c) the
step-size is particularly simple to set, as we are taking convex combinations of sufficient statistics,
and hence only the decay rate of ρi has to be chosen, i.e., of the form ρi = i−κ, for κ ∈ (0, 1],
without any multiplicative constant.

2.2.1 INCREMENTAL VIEW

For the specific stepsize ρi = 1/i, the online EM algorithm (3) corresponds exactly to the incre-
mental EM presented above (Neal and Hinton, 1998), as then

si =
1

i

i∑
j=1

Ep(hj |Xj ,ηj−1)[S(Xj , hj)].

See Mairal (2014) for a detailed convergence analysis of incremental algorithms, in particular show-
ing that step-sizes larger than 1/i are preferable (we observe this in practice in Section 6).
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2.2.2 MONTE CARLO METHODS

There exist alternative methods to the EM algorithm based on Monte Carlo sampling to compute
the maximum likelihood. For instance, the Monte Carlo EM method (MCEM) (Wei and Tanner,
1990) is a general Bayesian approach (i.e., η is a random variable) to approximate the maximizer
of the posterior distribution p(η|X,h) with Monte Carlo sampling. More precisely, in the MCEM
method, similarly to EM, a surrogate function of the log-likelihood is used, given by:

Q(η, ηt) =

∫
h

log[p(η|X,h)]p(h|X, ηt)dh.

The function Q is approximated by sampling the latent variables h from the current conditional
p(h|X, ηt):

Q̂(η, ηt) =

P∑
i=1

log p(η|X,hi),

where (hi)i=1,...,P are the samples drawn from the conditional p(h|X, ηt). The approximation Q̂
is then maximize with respect to η. Note that this method is a batch method, namely, samples are
drawn over all the dataset.

Other sequential Monte Carlo methods (SMC) use importance sampling to estimate the condi-
tional distributions p(h|X) using an auxiliary density function. This auxiliary distribution is then
reweighted at each iteration. In our case where the conditional distribution p(h|X) is intractable to
compute, these methods fail to accurately approximate this distribution (Cappé et al., 2005; Kantas
et al., 2015) and our Gibbs sampling scheme is more relevant. The SMC methods are also more
adapted to models with dependency between observations.

The two Monte Carlo methods mentioned above also consist in sufficient statistics updates for
the class of models considered here.

3. Online EM with Intractable Models

The online EM updates in (3) lead to a scalable algorithm for optimization when the local E-step
is tractable. However, in many latent variable models—e.g., LDA, hierarchical Dirichlet processes
(Teh et al., 2006), or ICA (Hyvärinen et al., 2004)—it is intractable to compute the conditional
expectation Ep(h|X,η)[S(X,h)].

Following Rohde and Cappé (2011), we propose to leverage the scalability of online EM updates
(3) and locally approximate the conditional distribution p(h|X, η) in the case this distribution is
intractable to compute. We will however consider different approximate methods, namely Gibbs
sampling or variational inference. Our method is thus restricted to models where the hidden variable
h may naturally be splitted in two or more groups of simple random variables. Our algorithm is
described in Algorithm 1 and may be instantiated with two approximate inference schemes which
we now describe.
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Algorithm 1 Gibbs / Variational online EM
Input: η0, s0, κ ∈ (0, 1].
for i = 1, . . . , N do
• Collect observation Xi,
• Estimate p(hi|Xi, ηi−1) with sampling (G-OEM) or variational inference (V-OEM),
• Apply (3) to sufficient statistics si and parameter ηi with ρi = 1/iκ,

end for
Output: η̄N = 1

N

∑N
i=1 ηi or ηN .

3.1 Variational Inference: V-OEM

While variational inference had been considered before for online estimation of latent variable mod-
els, in particular for LDA for incremental EM (Sato et al., 2010), using it for online EM (which is
empirically faster) had not been proposed and allows to use bigger step-sizes (e.g., κ = 1/2). These
methods are based on maximizing the negative variational “free-energy”

Eq(h|η)

[
log

p(X,h|η)

q(h|η)

]
, (4)

with respect to q(h|η) having a certain factorized form adapted to the model at hand, so that efficient
coordinate ascent may be used. See, e.g., Hoffman et al. (2013). We now denote online EM with
variational approximation of the conditional distribution p(h|X, η) as V-OEM.

3.2 Sampling Methods: G-OEM

MCMC methods to approximate the conditional distribution of latent variables with online EM have
been considered by Rohde and Cappé (2011), who apply locally the Metropolis-Hasting (M-H)
algorithm (Metropolis et al., 1953; Hastings, 1970), and show results on simple synthetic datasets.
While Gibbs sampling is widely used for many models such as LDA due to its simplicity and lack
of external parameters, M-H requires a proper proposal distribution with frequent acceptance and
fast mixing, which may be hard to find in high dimensions. We provide a different simpler local
scheme based on Gibbs sampling (thus adapted to a wide variety of models), and propose a thorough
favorable comparison on synthetic and real datasets with existing methods.

The Gibbs sampler is used to estimate posterior distributions by alternatively sampling parts of
the variables given the other ones (see Casella and George, 1992, for details), and is standard and
easy to use in many common latent variable models. In the following, the online EM method with
Gibbs estimation of the conditional distribution p(h|X, η) is denoted G-OEM.

As mentioned above, the online EM updates correspond to a stochastic approximation algo-
rithm and thus are robust to random noise in the local E-step. As a result, our sampling method is
particularly adapted as it is a random estimate of the E-step—see a theoretical analysis by Rohde
and Cappé (2011), and thus we only need to compute a few Gibbs samples for the estimation of
p(h|Xi, ηi−1). A key contribution of our paper is to reuse sampling techniques that have proved
competitive in the batch set-up and to compare them to existing variational approaches.

7



DUPUY AND BACH

3.3 “Boosted” Inference

As the variational and MCMC estimations of p(h|Xi, ηi−1) are done with iterative methods, we
can boost the inference of Algorithm 1 by applying the update in the parameter η in (3) after each
iteration of the estimation of p(h|Xi, ηi−1). In the context of LDA, this was proposed by Sato et al.
(2010) for incremental EM and we extend it to all versions of online EM. With this boost, we expect
that the global parameters η converge faster, as they are updated more often. In the following, we
denote by G-OEM++ (resp. V-OEM++) the method G-OEM (resp. V-OEM) augmented with this
boost.

3.4 Variational Bayesian Estimation

In the Bayesian perspective where η is seen as a random variable, we either consider a distribution
based on model averaging, e.g., r(X) =

∫
p(X|η)q(η)dη where q(η) ∝

∏N
i=1 p(Xi|η)p(η) is the

posterior distribution, or
r(X) = p(X|η̄),

where η̄ is the summary (e.g., the mean) of the posterior distribution q(η), or of an approxima-
tion, which is usually done in practice (see, e.g., Hoffman and Blei, 2015) and is asymptotically
equivalent when N tends to infinity.

The main problem is that, even when the conditional distribution of latent variables is tractable,
it is intractable to manipulate the joint posterior distribution over the latent variables h1, . . . , hN ,
and the parameter η. Variational inference techniques consider an approximation where hidden
variables are independent of the parameter η, i.e., such that

p(η, h1, . . . , hN |X1, . . . , XN ) ≈ q(η)
N∏
i=1

q(hi),

which corresponds to the maximization of the following lower bound—called Evidence Lower
BOund (ELBO)—on the log-likelihood log p(X1, . . . , Xn) (Bishop, 2006):∫

q(η)

N∏
i=1

q(hi) log
p(η)

∏n
i=1 p(Xi, hi|η)

q(η)
∏N
i=1 q(hi)

dηdh1 · · · dhN .

The key insight from Hoffman et al. (2010); Broderick et al. (2013) is to consider the variational
distribution q(η) as the global parameter, and the cost function above as a sum of local functions
that depend on the data Xi and the variational distribution q(hi). Once the local variational dis-
tribution q(hi) is maximized out, the sum structure may be leveraged in similar ways than for
frequentist estimation, either by direct (natural) stochastic gradient (Hoffman et al., 2010) or incre-
mental techniques that accumulate sufficient statistics (Broderick et al., 2013). A nice feature of
these techniques is that they extend directly to models with intractable latent variable inference, by
making additional assumptions on q(hi) (see for example the LDA situation in Section 4).

In terms of actual updates, they are similar to online EM in Section 3.1, with a few changes, but
which turn out to lead to significant differences in practice. The similarity comes from the expansion
of the ELBO as

Eq(η)

[ N∑
i=1

Eq(hi) log
p(Xi, hi|η)

q(hi)

]
+ Eq(η)

[
log

p(η)

q(η)

]
.
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The left hand side has the same structure than the variational EM update in (4), thus leading to
similar updates, while the right hand side corresponds to the “Bayesian layer”, and the maximization
with respect to q(η) is similar to the M-step of EM (where η is seen as a parameter).

Like online EM techniques presented in Section 3, approximate inference for latent variable is
used, but, when using Bayesian stochastic variational inference techniques, there are two additional
sources of inefficiencies: (a) extra assumptions regarding the independence of η and h1, . . . , hN ,
and (b) the lack of explicit formulation as the minimization of an expectation, which prevents the
simple use of the most efficient stochastic approximation techniques (together with their guaran-
tees). While (b) can simply slow down the algorithm, (a) may lead to results which are far away
from exact inference, even for large numbers of samples (see examples in Section 6).

Beyond variational inference, Gibbs sampling has been recently considered by Gao et al. (2016):
their method consists in sampling hidden variables for the current document given current parame-
ters, but (a) only some of the new parameters are updated by incrementally aggregating the samples
of the current document with current parameters, and (b) the method is slower than G-OEM (see
Section 6).

4. Application to LDA

LDA (Blei et al., 2003) is a probabilistic model that infers hidden topics given a text corpus where
each document of the corpus can be represented as topic probabilities. In particular, the assumption
behind LDA is that each document is generated from a mixture of topics and the model infers the
hidden topics and the topic proportions of each document. In practice, inference is done using
Bayesian variational EM (Blei et al., 2003), Gibbs sampling (Griffiths and Steyvers, 2004; Wallach,
2006) or stochastic variational inference (Hoffman et al., 2010; Broderick et al., 2013; Sato et al.,
2010).

4.0.1 HIERARCHICAL PROBABILISTIC MODEL.

Let C = {X1, . . . , XD} be a corpus of D documents, V the number of words in our vocabulary and
K the number of latent topics in the corpus. Each topic βk corresponds to a discrete distribution on
the V words (that is an element of the simplex in V dimensions). A hidden discrete distribution θi
over the K topics (that is an element of the simplex in K dimensions) is attached to each document
Xi. LDA is a generative model applied to a corpus of text documents which assumes that each word
of the ith document Xi is generated as follows:

• Choose θi ∼ Dirichlet(α),

• For each word xn ∈ Xi =
(
x1, . . . , xNXi

)
:

– Choose a topic zn ∼ Multinomial(θi),

– Choose a word xn ∼ Multinomial(βzn).

In our settings, an observation is a document Xi = (x1, . . . , xNXi ) where for all 1 ≤ n ≤ NXi ,
xn ∈ {0, 1}V and

∑V
v=1 xnv = 1. Each observation Xi is associated with the hidden variables hi,

with hi ≡ (Zi = (z1, . . . , zNXi ), θi). The vector θi represents the topic proportions of documentXi

and Zi is the vector of topic assignments of each word of Xi. The variable hi is local, i.e., attached
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to one observation Xi. The parameters of the model are global, represented by η ≡ (β, α), where β
represents the topic matrix and α represents the Dirichlet prior on topic proportions.

We derive the LDA model in Section 4.1 to find φ, S, ψ and a such that the joint probability
p(Z, θ|X,α, β) is in a non-canonical exponential family (1).

We may then readily apply all algorithms from Section 3 by estimating the conditional expecta-
tion EZ,θ|X,α,β[S(X,Z, θ)] with either variational inference (V-OEM) or Gibbs sampling (G-OEM).
See Sections 4.2 and 4.3 for online EM derivations. Note that the key difficulty of LDA is the
presence of two interacting hidden variables Z and θ.

4.1 LDA and Exponential Families

An observationX is a document of lengthNX , whereX = (x1, . . . , xNX ), each word is represented
by xn ∈ {0, 1}V with

∑V
v=1 xnv = 1. Our corpus C is a set of D observations C = (X1, . . . , XD).

For each document Xi a hidden variable θi is associated, corresponding to the topic distribution
of document Xi. For each word xn of document Xi a hidden variable zn ∈ {0, 1}K is attached,
corresponding to the topic assignment of word xn. We want to find φ, S, ψ and a such that, the
joint probability is in the exponential family (1):

p(X,Z, θ|β, α) = a(X,Z, θ) exp [〈φ(β, α), S(X,Z, θ)〉 − ψ(β, α)] ,

given an observation X and hidden variables Z and θ. For the LDA model, we have:

p(X,Z, θ|β, α) =

NX∏
n=1

p(xn|zn, β)p(zn|θ)p(θ|α) =

NX∏
n=1

K∏
k=1

V∏
v=1

[
(βkv )xnvθk

]znk
p(θ|α),

which we can expand as:

p(X,Z, θ|β, α) = exp

[
NX∑
n=1

K∑
k=1

znk log θk

]
× exp

[
NX∑
n=1

K∑
k=1

V∑
v=1

xnvznk log βkv

]

× exp

[
K∑
k=1

(αk − 1) log θk +B(α)

]
,

with B(α) = log
[
Γ
(∑K

i=1 αi

)]
−
∑K

i=1 log[Γ(αi)], where Γ is the gamma function. We deduce
the non-canonical exponential family setting φ, S, ψ a:

S(X,Z, θ) =

 S1
kv ≡

[
NX∑
n=1

znkxnv

]
kv

S2
k ≡ [log θk]k

 , (5)

φ(β, α) =

 φ1
kv ≡

[
log βkv

]
kv

φ2
k ≡ [αk]k

 , (6)

10
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with S1, φ1 ∈ RK×V and S2, φ2 ∈ RK ,

ψ(β, α) =
K∑
i=1

log[Γ(αi)]− log

[
Γ

(
K∑
i=1

αi

)]
, (7)

and

a(X,Z, θ) = exp

[
K∑
k=1

(
NX∑
n=1

znk − 1

)
log θk

]
.

The one-to one mapping between the sufficient statistics s =
(
s1

s2

)
and (β, α) is defined by:

(β, α)∗[s] =

 arg maxβ≥0,α≥0 〈φ(β, α), s〉 − ψ(β, α)

s.t. β>1 = 1,

where 1 denotes the vector whose all entries equal 1. The objective 〈φ(β, α), s〉 − ψ(β, α) is con-
cave in β from the concavity of log and concave in any αk for α ≥ 0 as the function B(α) is
concave as the negative log-partition of the Dirichlet distribution. We use the Lagrangian method
for β:

L(β, λ) =

K∑
k=1

V∑
v=1

s1
kv log βkv + λ>(β>1− 1),

with λ ∈ RK . The derivative of L is set to zero when:

∀(k, v),
s1
kv

βkv
+ λk = 0⇒ λk = −

V∑
v=1

s1
kv,

as
∑V

v=1 β
k
v = 1. We then have (β∗(s))kv =

s1kv∑
j s

1
kj

. This mapping satisfies the constraint β ≥ 0 be-

cause for any observation X and hidden variable Z, we have S1(X,Z)kv ≥ 0. This comes from (5)
and the fact that ∀(n, k, v), (xnv, znk) ∈ {0, 1}2. We find the condition on α by setting the deriva-
tives to 0, which gives ∀k ∈ J1,KK:

s2
k −Ψ([α∗(s)]k) + Ψ

(
K∑
i=1

[α∗(s)]i

)
= 0,

where Ψ : x 7→ ∂
∂x [log Γ](x) is the digamma function. Finally, (α∗(s), β∗(s)) satisfies ∀(k, v):

(β∗(s))kv ≡
[

s1kv∑
j s

1
kj

]
kv

Ψ([α∗(s)]k)−Ψ

(
K∑
i=1

[α∗(s)]i

)
= s2

k.

(8)

The parameter α∗ is usually estimated with gradient ascent (Blei et al., 2003; Hoffman et al., 2010).
We can also estimate α with the fixed point iteration (Minka, 2000) which consists in repeating the
following update until convergence:

αnewk = Ψ−1
(

Ψ
(∑K

i=1 α
old
i

)
+ s2

k

)
.

11
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We use the fixed point iteration to estimate α∗ as it is more stable in practice. We study different
updates for α in Appendix C.

We can now apply Algorithm 1 to LDA. The only missing step is the estimation of the condi-
tional expectation EZ,θ|X,αt,βt [S(X,Z, θ)], with X = (x1, . . . , xNX ) and Z = (z1, . . . , zNX ). We
explain how to approximate this expectation with variational inference and Gibbs sampling.

4.2 Variational Online EM Applied to LDA (V-OEM)

In this section we explain how to approximate EZ,θ|X,αt,βt [S(X,Z, θ)] with variational inference,
in the frequentist setting. See Hoffman et al. (2013) for detailed derivations of variational inference
for LDA in the Bayesian setting (from which the updates in the frequentist setting may be easily ob-
tained). The idea behind variational inference is to maximize the Evidence Lower BOund (ELBO),
a lower bound on the probability of the observations:

p(X) ≥ ELBO(X, p, q),

where q represents the variational model. In the case of LDA, the variational model is often set with
a Dirichlet(γ) prior on θ and a multinomial prior on Z (Hoffman et al., 2013):

q(Z, θ) = q(θ|γ)

NX∏
n=1

q(zn|ζn). (9)

We then maximize the ELBO with respect to γ and ζ, which is equivalent to minimizing the
Kullback-Leibler (KL) divergence between the variational posterior and the true posterior:

max
γ,ζ

ELBO(X, p, q)⇔ min
γ,ζ

KL[p(Z, θ|X)||q(θ, Z)]. (10)

We solve this problem with block coordinate descent, which leads to iteratively updating γ and ζ as
follows:

ζnk ∝
V∏
v=1

(
βkv

)xnv
exp [Ψ(γk)] , (11)

γk = αk +
∑NX

n=1 ζnk. (12)

We then approximate EZ,θ|X,αt,βt [S(X,Z, θ)] with the variational posterior. Given (5) and (9), we
have:

Ep(Z,θ|X)[S(X,Z, θ)] ≈ Eq(Z,θ)[S(X,Z, θ)] =


(∑NXt+1

n=1 ζnkxnv

)
kv(

Ψ(γk)−Ψ
(∑K

j=1 γj

))
k

 . (13)

The variational approximation of Ep(Z,θ|X)[S(X,Z, θ)] is then done in two steps:

1. Iteratively update ζ with (11) and γ with (12),

2. Ep(Z,θ|X)[S(X,Z, θ)]← Eq(Z,θ|γ,ζ)[S(X,Z, θ)] with equation (13).

As γ and ζ are set to minimize the distance between the variational posterior and the true pos-
terior (10) we expect that this approximation is close to the true expectation. However, as the
variational model is a simplified version of the true model, there always remains a gap between the
true posterior and the variational posterior.

12
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4.3 Gibbs Online EM Applied to LDA (G-OEM)

In this section we explain how to approximate EZ,θ|X,αt,βt [S(X,Z, θ)] with Gibbs sampling.

4.3.1 EXPECTATION OF S1.

Given (5), we have ∀k ∈ J1,KK, ∀v ∈ J1, V K:

EZ,θ|X,α,β
[
(S1(X,Z))kv

]
= EZ,θ|X,α,β

[
NX∑
n=1

znkxnv

]

=

NX∑
n=1

∫
Z,θ

znkxnvp(zn, θ|X,β, α)dθdz =

NX∑
n=1

xnvp(znk = 1|X,β, α).

We see that we only need the probability of z, and can thus use collapsed Gibbs sampling (Griffiths
and Steyvers, 2004). We have, following Bayes rule:

p(znk = 1|z−n, X, β, α) ∝ p(xn|znk = 1, β)p(znk = 1|z−n, α),

where z−n is the topic assignments except index n. In the LDA model, each word xn is drawn from
a multinomial with parameter βzn , which gives:

p(xn|znk = 1, β) =
V∑
v=1

xnvβ
k
v .

In the following, we use the notation βkxn ≡
∑V

v=1 xnvβ
k
v for the sake of simplicty. We then use

the fact that the topic proportions θ has a Dirichlet(α) prior, which implies that Z|α follows a
Dirichlet-multinomial distribution (or multivariate Pólya distribution). As a result, the conditional
distribution is:

p(znk = 1|z−n, α) =
N−n,k + αk

(NX − 1) +
∑

j αj
,

with N−n,k the number of words assigned to topic k in the current document, except index n.
Finally, we have the following relation (Griffiths and Steyvers, 2004):

p(znk = 1|z−n, X, β, α) ∝ βkxn ×
N−n,k + αk

(NX − 1) +
∑

j αj
. (14)

We estimate p(znk = 1|X,β, α) with Gibbs sampling by iteratively sampling topic assignments zn
for each word, as detailed in Algorithm 2. We average over the last quarter of samples to reduce
noise in the final output. We then incorporate the output in Algorithm 1.

4.3.2 EXPECTATION OF S2.

Given (5), we also have ∀k ∈ J1,KK, ∀v ∈ J1, V K:

EZ,θ|X,α,β[(S2(X,Z))k] = EZ,θ|X,α,β[log θk].

13
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On the one hand, we have:

p(Z, θ|X,β, α) = p(Z|θ,X, β, α)p(θ|X,β, α) = C(α)
K∏
k=1

θ

(∑NX
n=1 znk

)
+αk−1

k ,

with C(α) =
Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)
. On the other hand:

p(Z, θ|X,β, α) ∝ p(θ|Z,α)p(Z|X,β).

We deduce from the two identities:

p(θ|Z,α) ∝
K∏
k=1

θ

(∑NX
n=1 znk

)
+αk−1

k ⇒ θ|Z,α ∼ Dirichlet
(
α+

∑NX
n=1 zn

)
.

Finally, the expectation is:

EZ,θ|X,α,β[(S2(X,Z))k] =EZ,θ|X,α,β[log θk]

=EZ|X,β,α
[
Eθ|Z,α [log θk]

]
=EZ|X,β,α

[
Ψ
(

[α(s)]k +
∑NX

n=1 znk

)]
−Ψ

(∑K
i=1[α(s)]i +NX

)
,

as the distribution of θ|Z,α is Dirichlet

(
α+

NX∑
n=1

zn

)
. We use the values of z sampled with

Algorithm 2 to estimate this expectation. More precisely, keeping notations of Algorithm 2:

EZ|X,β,α
[
Ψ
(

[α(s)]k +
∑NX

n=1 znk

)]
≈ 1

P

P∑
t=1

Ψ
(

[α(s)]k +
∑NX

n=1 z
t
nk

)
.

4.4 Bayesian Approach

In a Bayesian setting, we consider β as a random variable, with β ∼ Dirichlet(b1), with b ∈
R and 1 ∈ RV denotes the vector whose all entries equal 1. The variational distribution of the
global parameter β is then set to q(βk|λk) = Dirichlet(λk), with λk ∈ RV ∀k = 1, . . . ,K.
The main difference with the frequentist methods above (G-OEM and V-OEM) is to optimize the
ELBO with respect to the variational parameters (λk)k. In practice, it is equivalent to replace βkv
by exp

[
Eq[log βkv ]

]
in all the updates above (i.e., in Equation (11) for V-OEM and in Equation (14)

for G-OEM). The variational parmater λk ∈ RV is updated with stochastic gradient on the ELBO,
which gives, at iteration t:

λk(t+ 1) = ρtλ
k(t) + (1− ρt)λ̂k, (15)

with λ̂k ∈ RV , λ̂kv = b + DEq
[
S1
kv

]
, where D is the total number of documents in the dataset

and b is the prior on βk (Hoffman et al., 2013).
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Algorithm 2 Gibbs sampling scheme to approximate p(znk = 1|X,β, α)

Input: β, α, X .

Initialization: Z0
n ∼ Mult([β̄kxn ]k=1,...,K), with β̄kxn =

βkxn∑
j β

j
xn

∀n ∈ J1, NXK.

for t = 1, 2, . . . , P do
Compute random permutation σt on J1, NXK,
for n = 0, 1, . . . , NX do
• Set Zt−n =

{
(ztσt(i))1≤i<n, (z

t−1
σt(i))n<i≤NX

}
,

• Compute ∀k, p(zσt(n)k = 1|Zt−n, X, β, α) with Equation (14),
• Sample ztσt(n) ∼ Mult

[
p(zσt(n)|Zt−n, X, β, α)

]
,

end for
end for
for n = 0, 1, . . . , NX do

Set Zt−n =
{

(zti)1≤i<n, (z
t
i)n<i≤NX

}
for t ≥ 3

4P ,

p(znk = 1|X,β, α)← 4
P

P∑
t= 3

4P

p(znk = 1|Zt
−n, X, β, α)

end for
Output: ∀k, ∀n: (ztn)t=1,...,P , p(znk = 1|X,β, α).

5. Application to Hierarchical Dirichlet Process (HDP) (Teh et al., 2006)

The HDP model is a generative process to model documents from an infinite set of topics βk,
k = 1, 2, 3, . . .. Each topic is a discrete distribution of size V , the size of the vocabulary. Each
topic is associated to a weight πk ∈ [0, 1], representing the importance of the topic in the corpus.
For each document d, the (infinite) topic proportions νd are drawn from νd ∼ Dirichlet(bπ). We
then generate words with a similar scheme to LDA scheme. More formally a corpus is generated as
follows:

1. Draw an infinite number of topics βk ∼ Dirichlet(η), for k ∈ {1, 2, 3, . . .};

2. Draw corpus breaking proportions π̄k ∼ Beta(1, α), for k = 1, 2, 3, . . .; with πk = σk(π̄);

3. For each document d:

(a) Draw document-level topic proportions: νd ∼ Dirichlet(bπ);

(b) For each word n in d:

i. Draw topic assignment zdn ∼ Multinomial(νd);

ii. Draw word wn ∼ Multinomial(βzdn).

In practice, we set the initial number of topics to T = 2. We then increase the number of topics
used in the corpus using Gibbs sampling and p(zdn > T |X, η) ∝ b(1−

∑T
i=1 πi). See Section 5.2

for details.
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5.1 HDP and Exponential Families

We consider an exponential family model on random variables (X,h) with parameter η ∈ E ⊆ Rd
and with density:

p(X,h|η) = a(X,h) exp [〈φ(η), S(X,h)〉 −Ψ(η)] .

In the case of HDP, an observation X is a document of length NX , where X = (x1, . . . , xNX ),
xn ∈ {0, 1}V and

∑V
v=1 xnv = 1. In the frequentist approach, the parameters of the model are

global, represented by η ≡ (β, π), where β represents the corpus topics, π represents the corpus
breaking proportions. Our corpus C is a set of D observations C = (X1, . . . , XD). For each
document Xd, the associated hidden variables are νd ∈ [0, 1]K corresponding to document-level
topic proportions. For each word xn of document Xd, a hidden variable zn ∈ {0, 1}T is attached,
corresponding to the topic assignment of word xn.

We want to find φ, S, ψ and a such that, the joint probability is in the exponential family:

p(X,Z, ν|β, π) = a(X,Z, ν) exp [〈φ(β, π), S(X,Z, ν)〉 − ψ(β, π)] ,

given an observation X and hidden variables Z and ν. For the HDP model, we have:

p(X,Z, ν|β, π) =p(ν|π)

NX∏
n=1

p(xn|zn, β)p(zn|ν)

=W (π)
∏
k∈N∗

(νk)
bπk−1

NX∏
n=1

∏
k

(νk)
znk
∏
v

(βk,v)
xnvznk

= exp [−ψ(π)] exp

[∑
k

log νk

(
NX∑
n=1

znk − 1

)]

× exp

[∑
k

(bπk) log νk

]

× exp

∑
k,v

log βk,v

NX∑
n=1

xnvznk

 ,
with ψ(π) =

∑
k log Γ(bπk)− log Γ(b).We deduce the exponential family setting φ, S, a:

S(X,Z, ν) =


S1
k ≡ [log νk]k

S2
kv ≡

[
NX∑
n=1

znkxnv

]
kv

 , (16)

φ(β, π) =

 φ1
k ≡ [bπk]k

φ2
kv ≡ [log βk,v]kv

 , (17)

with

a(X,Z, ν) = exp

[∑
k

log νk

(
NX∑
n=1

znk − 1

)]
.
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The one-to one mapping between the sufficient statistics s = (s1, s2)> and (β, π) is defined by:

(β, π)∗[s] =

 arg maxβ≥0,1≥π≥0 〈φ(β, π), s〉 − ψ(β, π)

s.t. β>1 = 1,

where 1 denotes the vector whose all entries equal 1.

With the same computation than LDA, β∗(s)kv ≡
[

s2kv∑
j s

2
kj

]
. We find π∗(s) by solving:

π∗(s) = arg max
1≥π≥0

K∑
k=1

(
bπks

1
k − log Γ(bπk)

)
+ log Γ(b

∑
k

πk),

which gives:

Ψ(bπ∗(s)k)−Ψ

(
b
∑
i

π∗(s)i

)
= s1

k.

where Ψ : x 7→ ∂
∂x [log Γ] (x) is the digamma function. We estimate (bπ)∗ with the fixed point

iteration which consists in repeating the following update until convergence:

(bπ)newk = Ψ−1

(
Ψ

(∑
i

(bπi)
old

)
+ s1

k

)
.

Finally, (β, π)∗[s] satisfies ∀(k, v):
(β∗(s))kv =

[
s2kv∑
j s

2
kj

]
Ψ(bπ∗(s)k)−Ψ (b

∑
i π
∗(s)i) = s1

k.

5.2 Inference with Online EM

In this section, we explain how to approximate EZ,ν|X,η[S(X,Z, ν)] with Gibbs sampling from a
frequentist and a Bayesian perspective. In particular, as the total number of topics is infinite, we need
to keep track of the previously used topics and iteratively extend the number of topics considered.

5.2.1 GIBBS ONLINE EM (G-OEM)

In our frequentist G-OEM approach, η is a parameter. The Gibbs sampling scheme to approximate
EZ,ν|X,η[S(X,Z, ν)] is different from LDA and a probability of adding a new topic to the current
list is computed at each iteration, as explained below.

5.2.2 EXPECTATION OF S1.

We have:

EZ,ν|X,η[S1(X,Z, ν)]k = EZ,ν|X,η [log νk]

= EZ|X,η

[
Ψ

(
bπk +

NX∑
n=1

znk

)]
−Ψ

(
b
∑
i

πi +NX

)
,
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and we use the values of z sampled with Gibbs sampling to compute:

EZ|X,η

[
Ψ

(
bπk +

NX∑
n=1

znk

)]
≈ 1

P

P∑
t=1

Ψ

(
bπk +

NX∑
n=1

ztnk

)

5.2.3 EXPECTATION OF S2.

We have:

EZ,ν|X,η[S2(X, ν)]kv = EZ,ν|X,η

[
NX∑
n=1

znkxnv

]
=

NX∑
n=1

xnvp(znk = 1|X, η)

5.2.4 SAMPLING z|X, η.

If T is the current number of topics, we have:

∀k ∈ {1, . . . , T}, p(znk = 1|z−n, X, η) ∝ (N−nk + bπk)× p(xn|zni = 1, cik = 1, η)

∝ (N−nk + bπk)× βk,xn ,

and the probability of sampling a new topic is given by:

p(zn > T |z−n, X, η) ∝ b

(
1−

T∑
t=1

πk

)
/V.

When a new topic is generated, we initialize the probability πT+1 with π̄T+1 ∼ Beta(1, α) and
πT+1 = π̄T+1

∏T
t=1 (1− π̄t).

5.2.5 BAYESIAN APPROACH: VARGIBBS (WANG AND BLEI, 2012)

In a Bayesian settings where βk ∼ Dirichlet(η); q(βk|λ) = Dirichlet(λk) and πk ∼ Beta(1, a);
q(πk|ak, bk) = Beta(ak, bk), the sampling scheme is different as we also sample π and an auxiliary
variable sdk corresponding to the number of “tables” serving “dish” k in “restaurant” d (in the
fomulation of HDP as a Chinese restaurant process; see Wang and Blei (2012) for details).
Sampling z:

p(znk = 1|z−n, λ, π) ∝ (N−ndk + bπk)
N−nkxn + λkxn

N−nk +
∑

v λkv
.

Sampling s:

p(sdk|Ndk, bπk) =
Γ(bπk)

Γ(bπk +Ndk)
S(Ndk, sdk) (bπk)

sdk ,

with S(n,m) are unsigned Stirling number of the first kind.
Sampling π:

p(π̄k) ∝ π̄
ak−1+

∑
d∈S sdk

k (1− π̄k)bk−α+
∑
d∈S

∑∞
j=k+1 sdj
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We then set: 

λ̂kv = η +D
NX∑
n=1

znkxnv

âk = 1 +Dsdk

b̂k = α+D
∞∑

j=k+1

sdj

(18)

and λt+1 = (1− ρt)λt + ρtλ̂; at+1 = (1− ρt)at + ρtâ; bt+1 = (1− ρt)bt + ρtb̂.
In practice, for each document we sample the hidden variables z for each word and compute

the topic counts Ndk for topic k in document d, then we sample the variable s. Finally, we perform
the online EM algorithm by making the approximation Ep(h|X,η)[S(X,h)] ≈ Eq(h)[S(X,h)], which
corresponds to equation (18). Note that in this Bayesian approach, the parameters (λ, a, b) represent
the distribution parameters of the random variables β and π.

6. Evaluation

We evaluate our method by computing the likelihood on held-out documents, that is p(X|β, α) for
any test documentX . For LDA, the likelihood is intractable to compute. We approximate p(X|β, α)
with the “left-to-right” evaluation algorithm (Wallach et al., 2009) applied to each test document.
This algorithm is a mix of particle filtering and Gibbs sampling. On any experiments, this leads
essentially to the same log-likelihood than Gibbs sampling with sufficiently enough samples—e.g.,
200. In the following, we present results in terms of log-perplexity, defined as the opposite of the
log-likelihood − log p(X|η). The lower the log-perplexity, the better the corresponding model. In
our experiments, we compute the average test log-perplexity on Nt documents. We compare eight
different methods:

• G-OEM (our main algorithm): Gibbs online EM. Online EM algorithm with Gibbs estimation
of the conditional distribution p(h|X, η) (Algorithm 2). Frequentist approach and step-size
ρi = 1/

√
i;

• V-OEM++: variational online EM (also a new algorithm). Online EM algorithm with varia-
tional estimation of the conditional distribution p(h|X, η), augmented with inference boosting
from Section 3.3. Frequentist approach and step-size ρi = 1/

√
i;

• OLDA: online LDA (Hoffman et al., 2010). Bayesian approach which maximizes the ELBO
from Section 3.4, with natural stochastic gradient ascent and a step-size ρi = 1/

√
i;

• VarGibbs: Sparse stochastic inference for LDA (Mimno et al., 2012). This method also
maximizes the ELBO but estimates the variational expectations q(Z, θ) with Gibbs sampling
instead of iterative maximization of variational parameters—see Section 4.2;

• SVB: streaming variational Bayes (Broderick et al., 2013). A variational Bayesian equivalent
of V-OEM with step-size ρi = 1/i;
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• SPLDA: single pass LDA (Sato et al., 2010). The difference with V-OEM++ is that ρi = 1/i
and the updates in α done with a Gamma prior (see Appendix C);

• SGS: streaming Gibbs sampling (Gao et al., 2016). This method is related to G-OEM with
ρi = 1/i. In this method, α is not optimized and set to a constant Cα. For comparison
purposes, for each dataset, we set Cα to be the averaged final parameter α̂ obtained with
G-OEM on the same dataset: Cα = 1

K

∑
k α̂k. For each observation, only the last Gibbs

sample is considered, leading to extra noise in the output;

• LDS: Stochastic gradient Riemannian Langevin dynamics sampler (Patterson and Teh, 2013).
The authors use the Langevin Monte Carlo methods on probability simplex and apply their
online algorithm to LDA. For this method and only this method, we set to P = 200 the
number of internal updates.

For existing variational methods—OLDA, SVB, SPLDA—β is a random variable with prior q(β).
We estimate the likelihood p(X|β̂, α) with the “left-to-right” algorithm by setting β̂ = Eq[β] for
Bayesian methods. For simplicity, we only present our results obtained with G-OEM and V-OEM++.
Indeed, the inference boost presented in Section 4 is only beneficial for V-OEM. A detailed analysis
is presented in Appendix A.1.

6.1 Explicit Links for LDA

In this section, we propose to make the links between the methods listed above explicit, using the
framework described in Section 4 for the particular LDA model. We present in Table 1 a summary
of the compared method.

6.1.1 CATEGORY

In the frequentist approach, β is a parameter and is updated with Equation (8), as the “M-step” in
online EM.

In a Bayesian setting, β is a random variable with prior β ∼ Dirichlet(b1), with b ∈ R
and 1 ∈ RV denotes the vector whose all entries equal 1. The variational distribution of the global
parameter β is then set to q(βk|λk) = Dirichlet(λk), with λk ∈ RV ∀k = 1, . . . ,K. The variational
parameter λk is updated by maximizing the ELBO with stochastic gradient ascent (Equation (15)).

CATEGORY EZ|X,η[S(X,Z)] STEP-SIZE ρt UPDATE FOR α

G-OEM FREQUENTIST GIBBS SAMPLING FREE FIXED POINT

V-OEM FREQUENTIST VARIATIONAL FREE FIXED POINT

OLDA BAYESIAN VARIATIONAL FREE GRADIENT ASCENT

VARGIBBS BAYESIAN GIBBS SAMPLING FREE α FIXED

SVB BAYESIAN VARIATIONAL FIXED: 1/t GRADIENT ASCENT

SPLDA FREQUENTIST VARIATIONAL FIXED: 1/t GAMMA PRIOR

SGS FREQUENTIST GIBBS SAMPLING FIXED: 1/t α FIXED

Table 1: Comparison of existing methods for LDA.
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6.1.2 ESTIMATION OF EZ|X,η[S(X,Z)]

For LDA, the expectation EZ|X,η[S(X,Z)] can either be estimated with Gibbs sampling—using
Equation (14)—or with variational approximation—using Equation (10).

6.1.3 STEP-SIZE

Some of the methods listed above (SVB, SPLDA and SGS) are incremental, which means the suffi-
cient statistics are incrementally aggregated st = st−1 + EZt|Xt,η[S(Xt, Zt)] . For LDA, it exactly
corresponds to a step-size ρt = 1/t in the online EM setting, even though the link is not explicit in
the corresponding papers.

For the other listed methods, the step-size exponent κ is chosen arbitrarily in [0.5, 1), with
ρt = 1/tκ. However, results are mostly presented with κ = 1/2 and ρt = 1/

√
t.

6.2 General Settings

6.2.1 INITIALIZATION

We initialize randomly η ≡ (β, α). For a given experiment, we initialize all the methods with the
same values of (β, α) for fair comparison, except SPLDA that has its own initilization scheme—see
Sato et al. (2010) for more details.

6.2.2 MINIBATCH

We consider minibatches of size 100 documents for each update in order to reduce noise (Liang
and Klein, 2009). In the case of online EM in Equation (3), we estimate an expectation for each
observation of the minibatch. We update the new sufficient statistics s towards the average of the
expectations over the minibatch. We do the same averaging for all the presented methods.

6.2.3 NUMBER OF LOCAL UPDATES

For all the presented methods, we set the number of passes through each minibatch to P = 20.
For G-OEM, this means that we perform 20 Gibbs sampling for each word of the minibatch. All
other methods access each document 20 times (e.g., 20 iterations of variational inference on each
document). For G-OEM, inference with larger values for P (e.g., P = 50 or P = 100) leads to very
similar results.

6.2.4 DATASETS

We apply the methods on six differents datasets, summarized in Table 2 (NX is the average length
of documents). Following Blei et al. (2003), the synthetic dataset has been generated from 10 topics
and the length of each document drawn from a Poisson(60). The 10 topics are inferred with online
LDA (Hoffman et al., 2010) from 50,000 reviews of the IMDB dataset with a vocabulary size of
10,000. We only consider the entries of the 1,000 most frequent words of this dataset that we
normalize to satisfy the constraint

∑
v β

k
v = 1.

The words in the datasets IMDB, Wikipedia, New York Times, Pubmed and Amazon movies
are filtered by removing the stop-words and we select the most frequent words of the datasets. For
the synthetic dataset, IMDB, Pubmed and Amazon movies, the size of the test sets is Nt = 5,000
documents. For Wikipedia and New York Times, the test sets contain Nt = 2,000 documents.
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DATASET #DOCUMENTS NX #WORDS

SYNTHETIC 1,000,000 60 1,000
WIKIPEDIA1 1,010,000 162.3 7702
IMDB2 614,589 82.2 10,000
AMAZON MOVIES3 338,565 75.4 10,000
NEW YORK TIMES4 299,877 287.4 44,228
PUBMED4 2,100,000 82.0 113,568

Table 2: Datasets.

We run the methods on 11 differents train/test splits of each dataset. For all the presented
results, we plot the median from the 11 experiments as a line—solid or dashed. For the sake of
readability, we only present the same plots with error bars between the third and the seventh decile
in Appendix D and Appendix E.

6.2.5 COMPUTATION TIME

For each presented method and dataset, the computational time is reported in Table 3. Although all
methods have the same running-time complexities, coded in Python, sampling methods (G-OEM,
VarGibbs and SGS) need an actual loop over all documents while variational methods (OLDA,
SVB, SPLDA and V-OEM++) may use vector operations, and may thus be up to twice faster. This
could be mitigated by using efficient implementations of Gibbs sampling on minibatches (Yan et al.,
2009; Zhao et al., 2014; Gao et al., 2016). Note also that to attain a given log-likelihood, our method
G-OEM is significantly faster and often attains log-likelihoods not attainable by other methods (e.g.,
for the dataset New York Times).

6.2.6 STEP-SIZE

In the following, we compare the results of our methods G-OEM and V-OEM++ with κ = 1/2,
i.e., the step-size ρt = 1/

√
t, without averaging. Detailed analysis of different settings of our

method can be found in Appendix A. In particular, we compare different step-sizes and the effect of
averaging over all iterates. We also compare the performance of OLDA with different step-sizes in
Appendix A.2 and observe that results are very similar for all the step-sizes that we try. Note that
for incremental methods (SVB, SPLDA, SGS), the step-size is fixed to ρt = 1/t. For LDS, we run
the method with parameters as close as possible to our method for fair comparison.

6.3 Results on LDA

Results obtained with the presented methods applied to LDA on different datasets for different val-
ues of the number K of topics are presented in Figure 1. Performance through iterations (i.e., as
the number of documents increases) is presented in Figure 4. We first observe that for all experi-
ments, our new method G-OEM performs better—often significantly—than all existing methods. In
particular, it is highly robust to diversity of datasets.

1. Code available from Hoffman et al. (2010)
2. Dataset described in Diao et al. (2014)
3. Data from Leskovec and Krevl (2014)
4. UCI dataset (Lichman, 2013)
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IMDB WIKIPEDIA NYT PUBMED

G-OEM 13H 55H 30H 58H

V-OEM++ 9H 37H 20H 54H

OLDA 7H 33H 8H 30H

VARGIBBS 12H 50H 28H 54H

SVB 7H 34H 9H 30H

SPLDA 9H 37H 20H 54H

SGS 11H 48H 27H 50H

LDS 7H 17H 12H 40H

Table 3: Average computational time (in hours) for each method—K = 128.

6.3.1 INFLUENCE OF THE NUMBER OF TOPICS K

As shown in Figure 1, for synthetic data in plot (a), although the true number of topics is K∗ = 10,
SPLDA, OLDA, VarGibbs and SGS perform slightly better with K = 20, while G-OEM has the
better fit for the correct value of K; moreover, SVB has very similar performances for any value of
K, which highlights the fact that this method does not capture more information with a higher value
of K. LDS performs very poorly on this dataset—for any value of K the log-perplexity is around
400—and is not displayed in Figure 1 (a) for clarity.

On non-synthetic datasets in plots (b)-(f), while the log-perplexity of frequentist methods—
G-OEM, V-OEM++ and SPLDA—decreases with K, the log-perplexity of variational Bayesian
methods—OLDA and SVB—does not decrease significantly with K. As explained below, our in-
terpretation is that the actual maximization of the ELBO does not lead to an improvement in log-
likelihood. The hybrid Bayesian method VarGibbs—which uses Gibbs sampling for local up-
dates (θ, z) and variational updates for global parameters (β, α)—performs much better than the
variational Bayesian methods. Our interpretation is that the objective function maximized with
VarGibbs is a much better approximation of the log-likelihood than the ELBO.

In terms of robustness, G-OEM and LDS are the only methods that do not display overfitting on
any dataset. However, LDS is only competitive for the highest values of K—K ≥ 500.

6.3.2 PERFORMANCE THROUGH ITERATIONS

As shown in Figure 4, for synthetic data in plot (a), after only few dozens of iterations—few thou-
sands of documents seen—G-OEM, V-OEM++ and VarGibbs outperform the other presented
methods. Variational Bayesian methods again do converge but to a worse parameter value. On
real datasets in plots (b)-(f), G-OEM and VarGibbs are significantly faster; we can indeed still ob-
serve that after around 100 iterations—10,000 documents seen—G-OEM and VarGibbs perform
better than other methods on all the datasets except Pubmed, where the performances of G-OEM,
V-OEM++, VarGibbs and SPLDA are similar. Note that

6.3.3 VARIATIONAL VS. SAMPLING

Our method G-OEM directly optimizes the likelihood with a consistent approximation, and performs
better than its variational counterparts SPLDA and V-OEM++ in all experiments. The hybrid method
VarGibbs is less robust than G-OEM as it performs either similarly to G-OEM—for the datasets
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(e) Dataset: Pubmed
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(f) Dataset: Amazon movies

Figure 1: Perplexity on different test sets as a function of K, the number of topics inferred. Best
seen in color.
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(b) IMDB.

Figure 2: OLDA. Perplexity on different test sets as a function of K for OLDA with P = 10 (red)
and P = 100 (black) internal updates.

Wikipedia, New York Times and Pubmed—or worse than G-OEM and its variational counterparts
SPLDA and V-OEM++—for the datasets IMDB and Amazon.

6.3.4 FREQUENTIST VS. BAYESIAN

In all our experiments we observe that frequentist methods—G-OEM, V-OEM++ and SPLDA—
outperform variational Bayesian methods—OLDA and SVB. As described in Section 3.4, variational
Bayesian methods maximize the ELBO, which makes additional strong independence assumptions
and here leads to poor results. For example, as the number K of topics increases, the log-likelihood
goes down for some datasets. In order to investigate if this is an issue of slow convergence, we
show on Figure 2 (dotted black line) that running P = 100 internal updates in OLDA to get a finer
estimate of the ELBO for each document may deteriorate the performance. Moreover, Figure 3
presents the evolution of the ELBO, which does always increase when K increases, showing that
the online methods do optimize correctly the ELBO (while not improving the true log-likelihood).
See Appendix B for additional results on the convergence of the ELBO. The results are mitigated
for the hybrid Bayesian method VarGibbs. The performance of this method is either similar to
G-OEM and V-OEM++ or significantly worse than both G-OEM and V-OEM++.

6.3.5 SMALL STEP-SIZES VS. LARGE STEP-SIZES

SPLDA is also a variational method which is equivalent to V-OEM++, but with a step-size 1/t, which
is often slower than bigger step-sizes (Mairal, 2014), which we do observe—see Appendix A.2 for
a further analysis on the effect of the choice of step-sizes as 1/iκ on G-OEM. Note that we run all
the methods on a fixed (finite) number of observations. If we were to extend to infinite datasets,
the difference between the step-sizes should be the speed of convergence. However, even if the
number of observations is large, the gap between the step-sizes is still significant to justify the
use of 1/

√
t for the step-size. Indeed, when considering large datasets, the contribution of each
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Figure 3: Dataset: IMDB. Evidence Lower BOund (ELBO) computed on test sets (20 internal iter-
ations and 1 pass over the dataset). Left: ELBO through iterations with K = 128. Right:
ELBO as a function of the number of topics K.

iteration at the end of the pass over the data is squeezed by the step-size in 1/t. When the number of
observations is large enough to prevent the use of batch algorithms but still insufficient for an online
algorithm to converge in one pass, a possible solution could be to consider constant step-sizes in
order to converge even faster to a local maxima. As proposed, we do not have any guarantee for our
methods to converge with constant step-sizes, but previous works have shown the benefits of using
constant step-sizes under certain assumptions (e.g., Bach and Moulines (2013))

6.4 Empirical Analysis

In this section we provide a qualitative empirical analysis on the topics extracted with the different
methods. We note this is clearly a subjective analysis but it stresses the benefits of a “better” infer-
ence mechanism in terms of log-likelihood (Chang et al., 2009). Examples of eight topics extracted
with G-OEM and OLDA on the IMDB dataset of movie reviews are presented in Table 4 page 30.

We first compute the KL divergence between the K = 128 topics extracted with G-OEM and
the K = 128 topics extracted with OLDA. We run the Hungarian algorithm on the resulting distance
matrix to assign each topic extracted with G-OEM to a single topic of OLDA. We choose manually
eight topics extracted with G-OEM that are representative of the usual behavior, and display the
eight corresponding topics of OLDA assigned with the above method.

We observe that the topics extracted with G-OEM are more consistent than topics extracted with
OLDA: topics of G-OEM precisely describe only one aspect of the reviews while the topics of OLDA
tend to mix several aspects in each topic. For instance, the words of topic 1 extracted with G-OEM
are related to horror movies. The words of the corresponding topic extracted with OLDA mix horror
movies—e.g., horror, scary—and ghost movies—e.g., ghost, haunt. In this OLDA topic 1, we can
also observe less relevant words, like effective, mysterious, which are not directly linked with horror
and ghost vocabularies. We can make the same remarks with topic 2 and topic 3, respectively related
to comedy movies and romantic comedy movies. In topic 2 extracted with G-OEM, the least related
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Figure 4: Perplexity through iterations on different test sets with the presented methods. Best seen
in color.
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words to comedy are names of characters/actors—i.e., steve and seth—while the words not related
to comedy in topic 25 of OLDA are more general, belonging to a different lexical field—e.g., sport,
site, progress, brave, definition. In topic 3 of G-OEM, all the presented words are related to romantic
comedy while in topic 3 of OLDA, the words old, hard and review are not related to this genre.

We also observe that G-OEM extracts strongly “qualitative” topics—topic 4 and topic 5—which
is not done with OLDA. Indeed, it is difficult to group the top words of topic 4 or topic 5 of OLDA
in the same lexical field. Except dialogue and suppose, all the top words of topic 4 of G-OEM are
negative words. These two words may appear in a lot of negative sentences, leading to a high weight
in this topic. In topic 5 of G-OEM, the words absolutely and visual are non strictly positive words
while the thirteen other words in this topic convey a positive opinion. The word absolutely is an
adverb much more employed in positive sentences than negative or neutral sentences, which can
explain its high weight in topic 5.

The topic 6 of both G-OEM and OLDA can be considered as a “junk” topic, as for both method,
most of its top words are contractions of modal verbs or frequent words—e.g., didn’t, isn’t, wait,
bad. The contractions are not filtered when removing the stop words as they are not included in the
list of words removed1.

For both G-OEM and OLDA, the top words of topic 7 are general words about movies. These
words are usually employed to describe a movie as a whole—e.g., narrative, filmmaker.

Finally, the top words of topic 8 of G-OEM are related to the situation of the scenes. We could
not find such topic in the other presented methods and we can see that the top words of topic 8 of
OLDA—supposedly close to topic 8 of G-OEM—are related to family movies. Each word of topic 8
of G-OEM—except group and beautiful—are related to a spatial location, and may help answer the
question “where does the scene take place?”.

6.5 Results on HDP

For the HDP model, we compare our G-OEM method to the Bayesian VarGibbs (Wang and Blei,
2012) method. We set the initial number of topics to T = 2. We present in Figure 5 results obtained
with G-OEM and VarGibbs applied to both LDA and HDP. Results with error bars are presented
in Appendix F. For both LDA and HDP, G-OEM outperforms the Bayesian method VarGibbs.

7. Conclusion

We have developed an online inference scheme to handle intractable conditional distributions of
latent variables, with a proper use of local Gibbs sampling within online EM, that leads to significant
improvements over variational methods and Bayesian estimation procedures. Note that all methods
for the same problem are similar (in fact a few characters away from each other); ours is based
on a proper stochastic approximation maximum likelihood framework and is empirically the most
robust. It would be interesting to explore distributed large-scale settings (Broderick et al., 2013;
Yan et al., 2009; Gao et al., 2016) and potentially larger (e.g., constant) step-sizes that have proved
efficient in supervised learning (Bach and Moulines, 2013).

1. See NLTK toolbox (Bird et al., 2009) for the exhaustive list of stop words.
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Figure 5: Perplexity through iterations on different test sets with G-OEM and VarGibbs applied
to both LDA and HDP. Best seen in color.
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Appendix A. Gibbs/Variational Online EM Analysis

In this section we evaluate the proposed methods G-OEM and V-OEMwith different settings in terms
of step-sizes, averaging outputs and boosting internal updates.

A.1 Effect of Inference Boosting on G-OEM and V-OEM

The effect of the inference boost as described in Section 3.3 on G-OEM and V-OEM with synthetic
and IMDB datasets is presented in Figure 6 and in Figure 7. It leads to a minor improvement for
G-OEM++ and a significant one for V-OEM++.

A.2 Step-sizes and Averaging

We apply G-OEMwith different stepsizes ρi = 1
iκ . Note that because we average sufficient statistics,

there is no needed proportionality constants. We first compare the performance of the last iterate ηN
(without averaging) and the average of the iterates η̄N = 1

N

∑N
i=0 ηi (with averaging) for different

values of κ.
Results are presented in Figure 8 on the synthetic data and in Figure 9 on the IMDB dataset.

For κ ∈
[
0, 1

2

[
, averaging improves the performance while for κ ∈

]
1
2 , 1
]
, averaging deteriorates

the performance. For κ = 1
2 , averaging is only slightly beneficial on IMDB dataset. For constant

stepsizes κ = 0 the averaging improves significantly the performance, as the iterates do not converge
and tend to oscillate around a local optimum (Bach and Moulines, 2013). We can expect the same
effect for κ ∈

[
0, 1

2

[
as the function n 7→ 1

nκ deacreases slowly for such values of κ. For κ ∈
]

1
2 , 1
]
,

the stochastic gradient ascent scheme is guaranteed to converge to a local optimum (Bottou, 1998).
The averaging then deteriorates the performance as it incorporates the first iterates, which gets the
last iterate away from local optimum. However, the stepsize 1/i (κ = 1) is not competitive. The
performance with κ = 0.75 is only slightly better on IMDB dataset. The setting κ = 1

2 represents
a good balance between first and last iterates. For this step-size, performances with or without
averaging are similar but results without averaging seem to be more stable, hence our choice for all
our other simulations.

We also apply OLDA with different step-sizes ρt = τ/tκ for different values of τ, κ. Results are
presented in Figure 10 without error bars and in Figure 11 with error bars. For OLDA, results are
very similar for any step-size.
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Figure 6: G-OEM. Perplexity on different test sets as a function of the number of topics K for
regular EM and boosted EM (++). We observe that for almost all datasets, there is no
significant improvement when boosting the inference. Our interpretation is that each
Gibbs sample is noisy and does not provide a stable boost. Best seen in color.
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Figure 7: V-OEM. Perplexity on different test sets as a function of the number of topics K for regu-
lar EM and boosted EM (++). We observe that boosting inference improves significantly
the results on all the datasets excepted on Wikipedia where V-OEM and V-OEM++ have
similar performances. The variational estimation of the posterior is finer and finer through
iterations. When updating the parameters at each iteration of the posterior estimation, the
inference is indeed boosted. Best seen in color.
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Figure 8: Dataset: synthetic. Perplexity on different test sets as a function of the exponent κ—
the corresponding stepsize is ρi = 1

iκ—for G-OEM with averaging (left) and without
averaging (right). The number of topics inferred K goes from 5 (the lightest) to 20 (the
darkest). Best seen in color.
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Figure 9: Dataset: IMDB. Perplexity on different test sets as a function of the exponent κ—the cor-
responding stepsize is ρi = 1

iκ—for G-OEM with averaging (left) and without averaging
(right). The number of topics inferred K goes from 8 (the lightest) to 128 (the darkest).
Best seen in color.
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Figure 10: Evolution of perplexity on different test sets as a function of the number of documents
analyzed. For OLDA, we compare the performance with different step-sizes ρt = τ/tκ

for different values of τ, κ. Solid line: κ = 1/2; Dashed line: κ = 1.
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Figure 11: Evolution of perplexity on different test sets as a function of the number of documents
analyzed, with error bars. For OLDA, we compare the performance with different step-
sizes ρt = τ/tκ for different values of τ, κ. Solid line: κ = 1/2; Dashed line: κ = 1.
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Appendix B. Evolution of the ELBO

Figure 12 presents the evolution of the ELBO for online LDA (OLDA) and SVB on different test
sets. We compute the ELBO on test documents as described by Hoffman et al. (2010). This plot
helps us to observe that even if the ELBO reaches a local maximum (i.e., it stabilizes), the quality of
the model in terms of perplexity is not controllable. We can also see in Figure 12 that the ELBO is
much better optimized with K = 128 than with other values of K for both SVB and OLDA, that is,
as expected, latent variables of higher dimensionality lead to better fits for the cost function which
is optimized. However, for several datasets the performance in terms of perplexity is better with low
values of K (K = 8 or K = 16) than with high dimensional variables (K = 64 or K = 128).
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Figure 12: Evidence Lower BOund (ELBO) computed on different test sets. Top: ELBO through
iterations, with 4 passes over each dataset and 200 internal iterations. Bottom: ELBO
as a function of the number of topics K, with 20 internal iterations and 1 pass over each
dataset. Best seen in color.
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In order to check if more internal iterations could help variational Bayesian methods, we present
in Table 5 the values of perplexity reached by OLDA when running 4 passes over each dataset with
P = 200 internal iterations 1 pass over each dataset with P = 20 internal iterations. We observe
that the ELBO converges quickly to a local optimum and doing ten times more internal iterations
does not change significantly the final performance.

P = 200, 4 passes P = 20, 1 pass
OLDA 682.6±3.7 681.9±3.9
SVB 683.8±3.8 684.5±3.8

Table 5: Comparison of log-perplexity levels reached with OLDA and SVB on IMDB dataset.

Appendix C. Updates in α

In this section we compare the different types of updates for α. Figure 13 presents results obtained
on synthetic dataset for fixed point iteration algorithm (Minka, 2000) and by putting a gamma prior
on α (Sato et al., 2010). We observe that the fixed point method leads to better performance for
G-OEM and G-OEM++. For V-OEM, the gamma updates better perform for κ = 1

2 . The perfor-
mances of the gamma updates and the fixed point method are very similar for V-OEM++. Note that
the algorithm V-OEM++ with κ = 1 and gamma updates on α is exactly equivalent to SPLDA (Sato
et al., 2010). The performance of this method can be improved by setting κ = 1

2 with any update
on α.

We also observe that fixing α to αtrue that generated the data does not necessarily lead to better
performance.
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Figure 13: Dataset: Synthetic, K = 10. Perplexity on different test sets for different types of
updates for α; for boosted methods, we use the same inference for α for local and global
updates. NO: α is fixed and set to αtrue that generated the data; FP: fixed point iteration;
Gam: gamma prior on α (Sato et al., 2010). Best seen in color.
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Appendix D. Performance with Different K, with Error Bars

The performance of the presented methods for different values of K on the different datasets is
presented in Figure 14. We plot the median from the 11 experiments as a line—solid or dashed—
and a shaded region between the third and the seventh decile.

Appendix E. Performance Through Iterations, with Error Bars

The performance through iterations of the presented methods on the different datasets is presented
in Figure 15. We plot the median from the 11 experiments as a line—solid or dashed—and a shaded
region between the third and the seventh decile.

Appendix F. Results on HDP, with Error Bars

The performance through iterations of the G-OEM and VarGibss applied to both LDA and HDP is
presented in Figure 15. We plot the median from the 11 experiments as a line—solid or dashed—and
a shaded region between the third and the seventh decile.
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(b) Dataset: IMDB
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(d) Dataset: New York Times
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(e) Dataset: Pubmed
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(f) Dataset: Amazon movies

Figure 14: Perplexity on different test sets as a function of K, the number of topics inferred. Same
as Figure 1, but with error bars. Best seen in colors.
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(a) Synthetic, K = 10
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(b) IMDB, K = 128
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(c) Wikipedia, K = 128
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(d) New York Times, K = 128
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(e) Pubmed, K = 128
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(f) Amazon movies, K = 128

Figure 15: Perplexity through iterations on different test sets with the presented methods. Same as
Figure 4, but with error bars. Best seen in colors.
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(b) Wikipedia

Figure 16: Perplexity through iterations on different test sets with G-OEM and VarGibbs applied
to both LDA and HDP. Best seen in color.
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