Smoothed complexity of convex hulls by witnesses and collectors

Olivier Devillers 1 Marc Glisse 2 Xavier Goaoc 3 Rémy Thomasse 4
1 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
2 DATASHAPE - Understanding the Shape of Data
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
4 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We present a simple technique for analyzing the size of geometric hypergraphs dened by random point sets. As an application we obtain upper and lower bounds on the smoothed number of faces of the convex hull under Euclidean and Gaussian noise and related results.
Type de document :
Article dans une revue
Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (2), pp.101-144. <http://jocg.org/v7n2p6>. <10.20382/jocg.v7i2a6>
Liste complète des métadonnées



https://hal.inria.fr/hal-01285120
Contributeur : Olivier Devillers <>
Soumis le : mardi 8 mars 2016 - 16:13:15
Dernière modification le : samedi 18 février 2017 - 01:14:42

Annexes


Identifiants

Citation

Olivier Devillers, Marc Glisse, Xavier Goaoc, Rémy Thomasse. Smoothed complexity of convex hulls by witnesses and collectors. Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (2), pp.101-144. <http://jocg.org/v7n2p6>. <10.20382/jocg.v7i2a6>. <hal-01285120>

Partager

Métriques