Smoothed complexity of convex hulls by witnesses and collectors

Olivier Devillers 1 Marc Glisse 2 Xavier Goaoc 3 Rémy Thomasse 4
1 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
2 DATASHAPE - Understanding the Shape of Data
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
4 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We present a simple technique for analyzing the size of geometric hypergraphs dened by random point sets. As an application we obtain upper and lower bounds on the smoothed number of faces of the convex hull under Euclidean and Gaussian noise and related results.
Document type :
Journal articles
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download


https://hal.inria.fr/hal-01285120
Contributor : Olivier Devillers <>
Submitted on : Tuesday, March 8, 2016 - 4:13:15 PM
Last modification on : Friday, September 20, 2019 - 4:56:35 PM

Files

265-1014-1-PB.pdf
Publisher files allowed on an open archive

Identifiers

Citation

Olivier Devillers, Marc Glisse, Xavier Goaoc, Rémy Thomasse. Smoothed complexity of convex hulls by witnesses and collectors. Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (2), pp.101-144. ⟨10.20382/jocg.v7i2a6⟩. ⟨hal-01285120⟩

Share

Metrics

Record views

830

Files downloads

307