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Abstract. We propose a novel approach to handle cardinality in portfo-
lio selection, by means of a biobjective cardinality/mean-variance prob-
lem, allowing the investor to analyze the efficient tradeoff between return-
risk and number of active positions. Recent progress in multiobjective op-
timization without derivatives allow us to robustly compute (in-sample)
the whole cardinality/mean-variance efficient frontier, for a variety of
data sets and mean-variance models. Our results show that a significant
number of efficient cardinality/mean-variance portfolios can overcome
(out-of-sample) the naive strategy, while keeping transaction costs rela-
tively low.

Keywords: portfolio selection, cardinality, sparse portfolios, multiob-
jective optimization, efficient frontier, derivative-free optimization

1 Introduction

One knows since the pioneer work of Markowitz [19] that a rational investor has
typically two goals in mind: to maximize the portfolio return (given, e.g., by the
portfolio expected return) and to minimize the portfolio risk (described, e.g., by
the portfolio variance). Traditionally, the Markowitz mean-variance optimization
model is taken as a quadratic program (QP), intended to minimize the portfolio
risk (variance) for a given level of expected return, over a set of feasible portfolios.
By varying the level of expected return, the Markowitz model determines the
so-called efficient frontier, as the set of nondominated portfolios regarding the
two goals (variance and mean of the return). The rational investor can thus make
choices, by analyzing the tradeoff between expected return and variability of the
investment, over a set of appropriate portfolios.

Several modifications to the classical Markowitz model or alternative method-
ologies have since then been proposed. One resulting from a simple observation
was suggested in an article by DeMiguel, Garlappi, and Uppal [14]. These authors
analyzed a number of methodologies inspired on the classic model of Markowitz
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and showed that none were able to significantly and consistently overcome the
naive strategy, that is to say, the one in which the available investor’s wealth
is divided equally among the available securities. One possible explanation is
related to the ill conditioning of the objective function of the Markowitz model
(given by the variance of the return).

One of the important issues to consider in portfolio selection is how to handle
transaction costs. There are well known modifications that can be made in the
Markowitz model to incorporate transaction costs, such as to bound the turnover,
which basically amount to further linear constraints in the QP. A recent tech-
nique to keep transaction costs low consists of selecting sparse portfolios, i.e.,
portfolios with few active positions, by imposing a cardinality constraint. Such
a constraint, however, changes the classical QP into a MIQP (mixed-integer
quadratic programming), which can no longer be solved in polynomial time.

In this paper, we suggest an alternative approach to the cardinality con-
strained Markowitz mean-variance optimization model, reformulating it directly
as a biobjective problem, allowing the investor to analyze the tradeoff between
cardinality and mean-variance, in a general scenario where short-selling is per-
mitted. Such an approach allows us to find the set of nondominated points of
biobjective problems in which an objective is smooth and combines mean and
variance and the other is nonsmooth (the cardinality or `0 norm of the vector
of portfolio positions). The mean-variance objective function can take a num-
ber of forms. A parameter free possibility is given by profit per unity of risk (a
nonlinear function obtained by dividing the expected return by its variance).

Given the lack of derivatives of the cardinality function, we decided then to
apply a directional derivative-free algorithm for the solution of the biobjective
optimization problem. Such methods do not require derivatives, although their
convergence results typically assume some weak form of smoothness such as Lip-
schitz continuity. Direct multisearch is a derivative-free multiobjective method-
ology for which one can show some type of convergence in the discontinuous
case. More importantly, it exhibited excellent numerical performance on a com-
parison to a number of other multiobjective optimization solvers. We applied
direct multisearch to determine (in-sample) the set of efficient or nondominated
cardinality/mean-variance portfolios.

To illustrate our approach, we gathered several data sets from the FTSE 100
index (for returns of single securities) and from the Fama/French benchmark
collection (for returns of portfolios), computed the efficient cardinality/mean-
variance portfolios using (in-sample) optimization, and measured their out-of-
sample performance using a rolling-sample approach. We found that a large
number of sparse portfolios for the FTSE 100 data sets, among the efficient
cardinality/mean-variance ones, consistently overcome the naive strategy in terms
of out-of-sample performance measured by the Sharpe ratio. This effect is also
clearly visible for the FF data sets, where the performance of a large portion of
the cardinality/mean-variance efficient frontier outperforms, in most of the in-
stances, the naive strategy. The transactions costs are shown to be relatively low
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for all efficient cardinality/mean-variance portfolios, with a moderate increase
with cardinality.

The organization of our paper is as follows. In the next section, we formulate
the classical Markowitz model for portfolio selection, describe the naive strat-
egy, and formulate the problem with cardinality constraint. In Section 3, we
reformulate the cardinality constrained Markowitz mean-variance optimization
model as a biobjective problem for application of multiobjective optimization.
In Section 4, we present the empirical results. Finally, in Section 5 we summarize
our findings and discuss future research.

2 Portfolio selection models

2.1 The classical Markowitz mean-variance model

Portfolios consist of securities (shares or bonds, for example, or classes or indices
of the same). Suppose the investor has a certain wealth to invest in a set of N
securities. The return of each security i is described by a random variable Ri,
whose average can be computed (from estimation based on historical data). Let
µi = E(Ri), i = 1, . . . , N , denote the expected returns of the securities. Let also
wi, i = 1, . . . , N , represent the proportions of the total investment to allocate in
the individual securities. The portfolio return is assumed linear in w1, . . . , wN ,
and thus the portfolio expected return can be written as

E(R) = E(wiR1 + · · ·+ wNRN ) = w1µ1 + · · ·+ wNµN = µ>w

with

µ = (µ1, . . . , µN )> and w = (w1, . . . , wN )>.

The portfolio variance, in turn, is calculated by

V (R) = E

([ N∑
i=1

wiRi − E
( N∑
i=1

wiRi

)]2)
.

So,

V (R) =

N∑
i=1

N∑
j=1

E[(Ri − µi)(Rj − µj)]wiwj .

Representing each entry i, j of the covariance matrix Q by

σij = E[(Ri − µi)(Rj − µj)],

one has

V (R) = w>Qw,

where Q is symmetric and positive semi-definite (and typically assumed positive
definite). As said before, a portfolio is defined by an N × 1 vector w of weights
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representing the proportion of the total funds invested in the N securities. This
vector of weights is thus required to satisfy the constraint

N∑
i=1

wi = e>w = 1,

where e is the N × 1 vector of entries equal to 1. Lower bounds on the variables,
of the form wi ≥ 0, i = 1, . . . , n, can be also considered if short selling is
undesirable. In general, we will say that Li ≤ wi ≤ Ui, i = 1, . . . , N , for given
lower Li and upper Ui bounds on the variables.

Markowitz’s model [19,20] is based on the formulation of a mean-variance
optimization problem. By solving this problem, we identify a portfolio of mini-
mum variance among all which provide an expected return not below a certain
target value r. The aim is thus to minimize the risk from a given level of return.
The formulation of this problem can be described as:

min
w∈RN

w>Qw

subject to µ>w ≥ r,
e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(1)

Problem (1) is a convex quadratic programming problem (QP), for which the first
order necessary conditions are also sufficient for (global) optimality. See [12,21]
for a survey of portfolio optimization. The classical Markowitz mean-variance
model can be seen as way of solving the biobjective problem which consists
of simultaneously minimizing the portfolio risk (variance) and maximizing the
portfolio profit (expected return)

min
w∈RN

w>Qw

max
w∈RN

µ>w

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(2)

In fact, it is easy to prove that a solution of (1) is nondominated, efficient or
Pareto optimal for (2). Efficient portfolios are thus the ones which have the
minimum variance among all that provide at least a certain expected return, or,
alternatively, those that have the maximal expected return among all up to a
certain variance. The efficient frontier (or Pareto front) is typically represented
as a 2-dimensional curve, where the axes correspond to the expected return and
the standard deviation of the return of an efficient portfolio.

2.2 The naive strategy 1/N

The naive strategy is the one in which the available investor’s wealth is divided
equally among the securities available

wi =
1

N
, i = 1, . . . , N.
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This strategy has diversification as its main goal, it does not involve optimization,
and it completely ignores the data.

Although a number of theoretical models have been developed in the last
years, many investors pursuing diversification revert to the use of the naive
strategy to allocate their wealth (see [4]). DeMiguel, Garlappi, and Uppal [14]
evaluated fourteen models across seven empirical data sets and showed that none
is consistently better than the naive strategy. A possible explanation for this phe-
nomenon lies on the fact that the naive strategy does not involve estimation and
promotes ‘optimal’ diversification. The naive strategy is therefore an excellent
benchmarking strategy.

2.3 The cardinality constrained Markowitz mean-variance model

Since the appearance of the classical Markowitz mean-variance model, a number
of methodologies have been proposed to render it more realistic. The classical
Markowitz model assumes a perfect market without transaction costs or taxes,
but such costs are an important issue to consider as far as the portfolio selec-
tion is concerned, especially for small investors. Recently, it has been studied
the addition of a constraint that sets an upper bound on the number of ac-
tive positions taken in the portfolio, in an attempt to improve performance and
reduce transactions costs. Such a cardinality constraint is defined by limiting
card(x) = |{i ∈ {1, ..., N} : xi 6= 0}| and leads to cardinality constrained port-
folio selection problems. In particular, the cardinality constrained Markowitz
mean-variance optimization problem has the form:

min
w∈RN

w>Qw

subject to µ>w ≥ r,
card(w) ≤ K,
e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N,

(3)

where K ∈ {1, . . . , N}. Although card(x) is not a norm, it is frequently called
the `0 norm in the literature, ‖x‖0 = card(x). By introducing binary variables,
one can rewrite the problem as a mixed-integer quadratic programming (MIQP)
problem:

min
w,y∈RN

w>Qw

subject to µ>w ≥ r,
e>y ≤ K,
e>w = 1,

Liyi ≤ wi ≤ Uiyi, i = 1, . . . , N,

yi ∈ {0, 1}, i = 1, . . . , N.

(4)

However such MIQPs are known to be hard combinatorial problems. The num-
ber of sparsity patterns in w (i.e., number of different possibilities of having K
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nonzeros entries) is
(
N
K

)
= N !/[(N−K)!K!]. Although there are exact algorithms

for the solution of MIQPs (see [5,6,7,25]), many researchers and portfolio man-
agers prefer to use heuristics approaches (see [3,9,11,15,17,26]). Some of these
heuristics vary among evolutionary algorithms, tabu search, and simulated an-
nealing (see [15,26]).

Promotion of sparsity is also used in the field of signal and imaging pro-
cessing, where a new technique called compressed sensing has been intensively
studied in the recent years. Essentially one aims at recovering a desired signal
or image with the least possible amount of basis components. The major de-
velopments in compressed sensing have been achieved by replacing the `0 norm
by the `1 one, the latter being a convex relation of the former and known to
also promote sparsity. The use of the `1 norm leads to recovering optimization
problems solvable in polynomial time (in most of the cases equivalent to linear
programs), and a number of sparse optimization techniques have been developed
for the numerical solution of such problems. These ideas have already been used
in portfolio selection primarily to promote regularization of ill conditioning (of
the estimation of data or of the variance of the return itself). DeMiguel et al. [13]
constrained the Markowitz classical model by imposing a bound on the `1 norm
of the vector of portfolio positions, among other possibilities. Brodie et al. [8]
focus on a modification to the Markowitz mean-variance classical model by the
incorporation of a term involving a multiple of the `1 norm of the vector of port-
folio positions. Inspired by sparse reconstruction (see, for instance, [7]), they also
proposed an heuristic for the solution of the problem.

3 The cardinality/mean-variance biobjective model

Although the cardinality constrained Markowitz mean-variance model described
in (3) provides an alternative to the classical Markowitz model in the sense of
realistically limiting the number of active positions in a portfolio, it is dependent
on the parameter K, the maximum number of such positions. Thus, one has to
vary K to obtain various levels of cardinality or sparsity, and for each value of K
solve an MIQP of the form (4).

The alternative suggested in this paper is to consider the cardinality func-
tion as an objective function itself. At a first glance, one could see the prob-
lem as a triobjective optimization problem by minimizing the variance of the
return, maximizing the expected return, and minimizing the cardinality over
the set of feasible portfolios. Such a framework was taken into account in the
studies [1,2,10,18]. However, these authors did not investigate the effects of car-
dinality constraints on portfolio models in terms of out-of-sample performance,
a subject still poorly analyzed in the literature. On the other hand, investors
may find it useful to directly analyze the tradeoff between cardinality and mean-
variance. A parameter-free possibility is to consider a Sharpe ratio type objec-
tive function, by maximizing expected return per variance and minimizing the
cardinality, over the set of feasible portfolios. In this case, the cardinality/mean-
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variance biobjective optimization problem is posed as

min
w∈RN

− µ>w
w>Qw

min
w∈RN

card(w)

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(5)

By solving (5), we identify a cardinality/mean-variance efficient frontier. A port-
folio in this frontier is such that there exists no other feasible one which simulta-
neously presents a lower cardinality and a lower mean-variance measure. Given
such an efficient frontier and a mean-variance target, an investor may directly
find the answers to the questions of what is the optimal (lowest) cardinality
level that can be chosen and what are the portfolios leading to such a cardinal-
ity level. Problem (5) has two objective functions and linear constraints. The
first objective f1(w) = −µ>w/w>Qw is nonlinear but smooth. However, the
second objective function f2(w) = card(w) = |{i ∈ {1, ..., N} : wi 6= 0}| is piece-
wise linear discontinuous, consequently nonlinear and nonsmooth. We have thus
decided to solve the biobjective optimization problem (5) using a derivative-free
solver, based on direct multisearch.

4 Empirical performance of efficient cardinality/mean-
variance portfolios

Now we report a number of experiments made to numerically determine and
assess the efficient cardinality/mean-variance frontier. We applied direct mul-
tisearch to determine the Pareto front or efficient frontier of the biobjective
optimization problem (5) (according to Appendix A). We tested three data sets
collected from the FTSE 100 index and three others from the Fama/French
benchmark collection (see Subsection 4.1). The efficient frontiers obtained by
the initial in-sample optimization are given in Subsection 4.2.

The out-of-sample performance of the cardinality/mean-variance efficient
portfolios, measured by a rolling-sample approach, is described in Subsection 4.3.
In Subsection 4.4 we measure the out-of-sample performance by the Sharpe ra-
tio, in Subsubsection 4.5 we report the proportional transaction costs, and in
Subsection 4.6 we measure the out-of-sample performance by the Sharpe ratio
of returns net of transaction costs, all of this for each cardinality/mean-variance
efficient portfolio. To better assess the robustness of our results, we also con-
sidered, using the FTSE 100 data, a sample including the financial crisis years
2008–2010, and the corresponding results are reported in Subsection 4.7. The
section is ended with a discussion of the overall obtained results.

4.1 Data sets

For the first three data sets we collected daily data for securities from the FTSE
100 index, from 01/2003 to 12/2007 (five years). Such data is public and avail-
able from the site http://www.bolsapt.com. The three data sets are referred
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to as DTS1, DTS2, and DTS3, and are formed by 12, 24, and 48 securities,
respectively. The composition of these data sets is given in Table 1. We used the
daily continuous returns for the in-sample optimization (estimation of Q and µ)
and the daily discrete returns for the out-of-sample analysis. We also included
in our experiments three data sets from the Fama/French benchmark collection
(FF10, FF17, and FF48, with cardinalities 10, 17, and 48), using the monthly
returns from 07/1971 to 06/2011 (forty years) given there for a number of indus-
try security sectors. More information on these security sectors (or portfolios of
securities) can be found in http://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/data_library.html.

SECURITIES
3 I GROUP (1,2,3) JOHNSON MATTHEY P (3)

AMEC (1,2,3) LEGAL & GENERAL (3)
ANGLO AMERICAN (1,2,3) LLOIDS BANKING GR (3)

ANTOFAGASTA (1,2,3) LONMIN (3)
ASSOCIAT BRIT FOO (1,2,3) MARKS & SPENCER (3)

ASTRAZENECA (1,2,3) MORRINSON SUPERMKT (3)
AVIVA (1,2,3) NEXT (3)

B SKY B GROUP (1,2,3) OLD MUTUAL (3)
BAE SYSTEMS (1,2,3) PEARSON (3)

BARCLAYS (1,2,3) PRUDENTIAL (3)
BG GROUP (1,2,3) REED ELSEVIER PLC (3)

BHP BILLITON (1,2,3) RENTOKIL INITIAL (3)
BP (2,3) REXAM (3)

BRIT AMER TOBACCO (2,3) RIO TINTO (3)
BRIT LAND CO REIT (2,3) ROYAL BK SCOTL GR (3)

BRITISH AIRWAYS (2,3) RSA INSUR GRP (3)
CAB & WIRE WRLD (2,3) SABMILLER (3)

CAPITA GRP (2,3) SAGE GRP (3)
COBHAM (2,3) SAINSBURY (3)
DIAGEO (2,3) SCHRODERS (3)

HAMMERSON REIT (2,3) SEVERN TRENT (3)
IMPERIAL TOBACCO (2,3) SHIRE (3)

INTERNATIONAL POW (2,3) UNITED UTILITIES (3)
INVENSYS (2,3) VODAFONE GRP (3)

Table 1. Composition of the three data sets from the FTSE 100 index. In brackets we
indicate the data set to which each security belongs to.

4.2 In-sample optimization

We then applied the solver dms (version 0.2) to compute the efficient frontier (or
Pareto front) of the cardinality/mean-variance biobjective optimization prob-
lem (5). A few modifications to (5) were made before applying the solver as well
as a few changes to the solver default parameters (the details are described in
Appendix A). We present results for the initial in-sample optimization. For the
FTSE 100 data sets this sample is from 01/2003 to 12/2006 and for the FF data
sets is from 07/1971 to 06/1996. Figures 1–3 and Figures 4–6 contain the plots
of the efficient frontiers calculated for, respectively, the FTSE 100 and FF data
sets. In all these plots we also marked three other portfolios. The first one is
the 1/N portfolio corresponding to the naive strategy. A second one is obtained
maximizing expected return per variance

min
w∈RN

− µ>w
w>Qw

subject to e>w = 1.
(6)
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This portfolio corresponds to the extreme point (of maximum cardinality) of the
efficient frontier (or Pareto front) of the cardinality/mean-variance biobjective
optimization problem (5). The third one is a classical Markowitz related portfolio
and is obtained by minimizing variance under no short-selling

min
w∈RN

w>Qw

subject to e>w = 1,

w ≥ 0.

(7)

This instance was solved using the quadprog function from the MATLAB [24]
Optimization Toolbox. Regarding problem (7), it is known that not allowing
short-sale has a regularizing effect on minimum-variance Markowitz portfolio
selection (see [16]) and leads to portfolios of low cardinality.

Since we know that minimum variance portfolios outperform mean-variance
portfolios (the estimate error of the expected returns is eliminated, see [16]),
we considered the following cardinality constrained minimum variance model
(instead of the one introduced in Section 2.3)

min
w∈RN

w>Qw

subject to card(w) ≤ K,
e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

By introducing binary variables, one can rewrite this problem as a mixed-integer
quadratic programming (MIQP) problem:

min
w,y∈RN

w>Qw

subject to e>y ≤ K,
e>w = 1,

Liyi ≤ wi ≤ Uiyi, i = 1, . . . , N,

yi ∈ {0, 1}, i = 1, . . . , N.

(8)

We also mark in the plots the portfolios that result from solving problem (8) for
each value of K ∈ [1, N ]. For this purpose we used the solver cplexmiqp from
ILOG IBM CPLEX for MATLAB [22].

4.3 Out-of-sample performance

The analysis of out-of-sample performance relies on a rolling-sample approach.
For the FTSE 100 data sets we considered 12 periods (months) of evalua-
tion. We begin by computing the efficient frontier (or Pareto front) of the
cardinality/mean-variance biobjective optimization problem (5) for the in-sample
time window from 01/2003 to 12/2006 (see Subsection 4.2). We then held fixed
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each portfolio and observed its returns over the next period (January 2007).
Then we discarded January 2003 and brought January 2007 into the sample.
We repeated this process until exhausting the 12 months of 2007. We applied
the same rolling-sample approach to the FF data sets, considering an initial
in-sample time window from 07/1971 to 06/1996 (see Subsection 4.2) and 15
periods of evaluation (the 15 next years).

4.4 Out-of-sample performance measured by the Sharpe ratio

In each period of evaluation, the out-of-sample performance was then measured
by the Sharpe ratio

S =
m− rf
σ

,

where m is the mean return, rf is the return of the risk-free asset3, and σ
is the standard deviation. The results (over all the periods of evaluation) are
given in Figures 7–9 for the FTSE 100 portfolios and in Figures 10–12 for the
FF ones. Using IBM SPSS Statistics [23] we calculated the p-values for the
statistical significance of the difference between Sharpe ratios of the benchmark
naive portfolio and all the others computed portfolios. We did not report them
here because they are not statistically significant.

4.5 Transaction costs

Since one is rebalancing portfolios for each out-of-sample period, one can com-
pute the transaction costs of such a trade. We set the proportional transaction
cost equal to 50 basis points per transaction (as usually assumed in the litera-
ture). Thus the cost of a trade over all assets is given by

TC =

T−1∑
t=1

0.5%

N∑
i=1

| wi,t+1 − wi,t |, (9)

with T = 12 for the FTSE 100 data sets and T = 15 for the FF data sets. The
results are given in Figures 13–15 for the FTSE 100 portfolios and in Figures 16–
18 for the FF ones.

4.6 Out-of-sample performance measured by the Sharpe ratio of
returns net of transaction costs

In the presence of transaction costs we calculated the Sharpe ratio of returns
net of transaction costs

SR =
m− TC − rf

σ
,

3 For the FTSE 100 data sets we used the 3 month Treasury-Bills UK. Such data
is public and made available by the Bank of England, at the site http://www.

bankofengland.co.uk. For the FF data sets we used the 90-day Treasury-Bills
US. Such data is public and made available by the Federal Reserve, at the site
http://www.federalreserve.gov.
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where m is the mean return, TC is the proportional transaction cost in (9), rf
is the return of the risk-free asset, and σ is the standard deviation. The out-
of-sample performance was then measured by the Sharpe ratio of returns net
of transaction costs. The results are given in Figures 19–21 for the FTSE 100
portfolios and in Figures 22–24 for the FF ones.

4.7 Results including the financial crisis years 2008–2010

The FTSE 100 data set used covered the period 2003–2007. With the aim of
testing the robustness of the results, we also tried a FTSE 100 data set that
covers the time window 2003–2010 (including thus the financial crisis years 2008–
2010). The data sets were formed as described in Section 4.1, but excluding
British Airways (see Table 1) due to missing data during the period considered,
and including Wolseley (following an arbitrary alphabetic order). We performed
an out-of-sample analysis as described in Section 4.3. We used daily periods of
evaluation. We began by computing the efficient frontier (or Pareto front) of
the cardinality/mean-variance biobjective optimization problem (5) for the in-
sample time window from 01/2003 to 12/2010 (using daily data). We then held
fixed each portfolio and observed its returns over the next period (first trading
day of January 2011). Then we discarded this first trading day of January 2011
and brought this into the sample. We repeated this process until exhausting the
firsts 15 trading days of 2011.

The results of the out-of-sample performance measured by the Sharpe ratio4

are given in Figures 25–27. The results of the proportional transaction costs, are
given in Figures 28–30. The results of the out-of-sample performance measured
by the Sharpe ratio of returns net of transaction costs, are given in Figures 31–33.

4.8 Discussion of the results

Contrary to one could think, given the intractability of f2(w) = card(w) and
the fact that no derivatives are being used for f1(w) = −µ>w/w>Qw, direct
multisearch (the solver dms) was capable of quickly determining (in-sample)
the efficient frontier for the biobjective optimization problem (5). For instance,
for the data sets of roughly 50 assets, a regular laptop takes a few dozens of
seconds to produce the efficient frontiers. We have a direct way of dealing with
sparsity, which offers a complete determination of an efficient frontier for all
cardinalities. According to a priori preferences, one could choose (in-sample)
the desired cardinality. For the portfolios constructed using the FTSE 100 index
data (portfolios of individual securities), a large number of our sparse portfolios,
among the efficient cardinality/mean-variance ones, consistently overcame the
naive strategy and at least one of the two related classical Markowitz models, in
terms of out-of-sample performance measured by the Sharpe ratio. This effect

4 We used as a risk-free asset the daily startling certificate of deposit interest rate.
Such data is public and made available by the Bank of England, at the site http:

//www.bankofengland.co.uk.
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has even happened for the largest data set (DTS3 with 48 securities), where the
demand for sparsity is more relevant. For the portfolios constructed using the
Fama/French benchmark collection (where securities are portfolios rather than
individual securities), the scenario is different since the behavior of the naive
strategy is even more difficult to outperform. Still, a large number of sparse
efficient cardinality/mean-variance portfolios consistently overcame the naive
strategy.

In both cases, FTSE 100 and FF data, the transaction costs of the effi-
cient cardinality/mean-variance portfolios are lower than the mean per variance
portfolio (solution of problem (6)) and higher than the minimum-variance port-
folio (solution of problem (7)). Note that the minimum-variance portfolio does
not allow short-selling, and so the weights at the outset are much more lim-
ited, thus leading to better results. Evaluating the performance out-of-sample
by the Sharpe ratio of returns net of transaction costs (take into account the
transaction costs), the efficient cardinality/mean-variance portfolios do not over-
came the naive strategy for FTSE 100 data, but for FF data a large number of
sparse efficient cardinality/mean-variance portfolios still consistently overcame
the naive strategy. When we compare the performance results between the effi-
cient cardinality/mean-variance portfolios and the cardinality constrained min-
imum variance portfolios (solution of (8)), without considering the transaction
costs, we observed better results for the FTSE 100 and worse for the FF. The
MIQP performed better in terms of Sharpe ratio of returns net of transaction
costs since the cost of transaction costs are lower, one possible explanation for
this is the fact of not taking into account the estimation of the expected returns.
Moreover, our cardinality/mean-variance portfolios are truly efficient whereas
the cardinality constrained minimum variance do not necessarily exhibit Pareto
efficiency. For the FTSE 100 data set, the analysis including the financial crisis
years 2008–2010 shows that the results are robust. Finally, we also computed
the cardinality/mean-variance efficient frontier for the data set FF100, where
portfolios are formed on size and book-to-market (see Figure 34). (This time we
needed a budget of the order of 107 function evaluations, see Appendix A.) We
remark that FF48 and FF100 are the data sets also used in [8]. In this paper, as
we said before, the authors focus on a modification to the Markowitz classical
model by the incorporation of a term involving a multiple of the `1 norm of the
vector of portfolio positions. Despite the different sparse-oriented techniques and
different strategies for evaluating out-of-sample performance, in both approaches
(theirs and ours), sparse portfolios are found overcoming the naive strategy. In
our approach one computes sparse portfolios satisfying an efficient or nondomi-
nant property and one does it directly and in single run, whereas in [8], there is
a need to vary a tunable parameter and select the portfolios according to some
criterion to be met (for example, sparsity). It is unclear what sort of efficient or
nondominant property their portfolios satisfy. Moreover, we provide results for
all cardinality values (from 1 to 48 in FF48 and from 1 to 100 in FF100), while
in [8] the authors report results for cardinality values from 4 and 48 (FF48) and
from 3 to 60 (FF100). We therefore claim to have a more direct way of dealing
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with sparsity, which offers a complete determination of an efficient frontier for
all cardinalities.

5 Conclusions and perspectives for future work

In this paper we have developed a new methodology to deal with the compu-
tation of mean-variance Markowitz portfolios with pre-specified cardinalities.
Instead of imposing a bound on the maximum cardinality or including a penal-
ization or regularization term into the objective function (in classical Markowitz
mean-variance models), we took the more direct approach of explicitly consider-
ing the cardinality as a separate goal. This led us to a cardinality/mean-variance
biobjective optimization problem (5) whose solution is given in the form of an ef-
ficient frontier or Pareto front, thus allowing the investor to tradeoff among these
two goals when having transaction costs and portfolio management in mind. In
addition, and surprisingly, a significant portion of the efficient cardinality/mean-
variance portfolios (with cardinality values considerably lower than the num-
ber N of securities) have exhibited superior out-of-sample performance (under
reasonably low transaction costs that only increase moderately with cardinality).
We solved the biobjective optimization problem (5) using a derivative-free solver
running direct multisearch. Direct-search methods based on polling are known in
general to be slow but extremely robust due their directional properties. Such a
feature is crucial given the difficulty of the problem (one discontinuous objective
function, the cardinality, and discontinuous Pareto fronts). We have observed
the robustness of direct multisearch, in other words, its capability of successfully
solving a vast majority of the instances (all in our case) even if at the expense of a
large budget of function evaluations. Direct multisearch was applied off-the-shelf
to determine the cardinality/mean-variance efficient frontier. The structure of
problem (5), or of its practical counterpart (10), was essentially ignored. One can
use the fact that the first objective function is smooth and of known derivatives
to speed up the optimization and reduce even further the budget of function
evaluations. Moreover, we also point out that it is trivial to run the poll step of
direct multisearch in a parallel mode.

The use of derivative-free single or multiobjective optimization opens the
research range of future work in sparse or dense portfolio selection. In fact,
since derivative-free algorithms only rely on zero order information, they are
applicable to any objective function of black-box type. One can thus use any
measure to quantify the profit and risk of a portfolio. The classical Markowitz
model assumes that the return of a portfolio is a linear combination of the returns
of the individual securities. Also, it implicitly assumes a Gaussian distribution for
the return, letting its variance be a natural measure of risk. However, it is known
from the analysis of stylized facts that the distribution for the return of securities
exhibits tails which are fatter than the Gaussian ones. Practitioners consider
other measures of risk and profit better tailored to reality. Our approach to
compute the cardinality/mean-variance efficient frontier is ready for application
in such general scenarios.
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A Using direct multisearch to determine efficient
cardinality/mean-variance portfolios

A few modifications to problem (5) were required to make it solvable by a mul-
tiobjective derivative-free solver, in particular by a direct multisearch one. In
practice the first modification to (5) consisted of approximating the true cardi-
nality, by introducing a tolerance ε,

min
w∈RN

− µ>w
w>Qw

min
w∈RN

∑N
i=1 11{|wi|>ε}

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

chosen as ε = 10−8 (11 represents the indicator function). Secondly, we selected
symmetric bounds on the variables Li = −b and Ui = b,

min
w∈RN

− µ>w
w>Qw

min
w∈RN

∑N
i=1 11{|wi|>ε}

subject to e>w = 1,

−b ≤ wi ≤ b, i = 1, . . . , N,

setting b = 10. Finally, we eliminated the constraint e>w = 1 since direct search
methods do not cope well with equality constraints. The version fed to the dms

solver was then

min
w(1:N−1)∈RN−1

− µ>w
w>Qw

min
w(1:N−1)∈RN−1

∑N−1
i=1 11{|wi|>ε}

subject to −b ≤ wi ≤ b, i = 1, . . . , N − 1,

−b ≤ 1−
∑N−1
i=1 wi ≤ b,

(10)

where wN in −µ>w/w>Qw was replaced by 1−
∑N−1
i=1 wi.

We used all the default parameters of dms (version 0.2) with the following
four exceptions. First, we needed to increase the maximum number of function
evaluations allowed (from 20000 to 2000000 for N(= n) up to 50) given the
dimension of our portfolios, as well as to require more accuracy by reducing the
step size tolerance from 10−3 to 10−7. Then we turned off the use of the cache of
previously evaluated points to make the runs faster (the default version of dms
keeps such a list to avoid evaluating points too close to those already evaluated).
Lastly, we realized that initializing the list of feasible nondominated points with
a singleton led to better results than initializing it with a set of roughly N points
as it happens by default. Thus, we set the option list of dms to zero, which,
given the bounds on the variables, assigns the origin to the initial list.



Efficient cardinality/mean-variance portfolios 67

References

1. K. P. Anagnostopoulos and G. Mamanis. A portfolio optimization model with
three objectives and discrete variables. Comput. Oper. Res., 37:1285–1297, 2010.

2. K. P. Anagnostopoulos and G. Mamanis. The mean-variance cardinality con-
strained portfolio optimization problem: An experimental evaluation of five mul-
tiobjective evolutionary algorithms. Expert Systems with Applications, 38:14208–
14217, 2011.

3. F. Bach, S. D. Ahipasaoglu, and A. d’Aspremont. Convex relaxations for subset
selection. ArXiv: 1006.3601, 2010.

4. S. Benartzi and R. H. Thaler. Naive diversification strategies in defined contribu-
tion saving plans. The American Economic Review, 91:79–98, 2001.

5. D. Bertsimas and R. Shioda. Algorithm for cardinality-constrained quadratic op-
timization. Comput. Optim. Appl., 43:1–22, 2009.

6. D. Bienstock. Computational study of a family of mixed-integer quadratic pro-
gramming problems. Math. Program., 74:121–140, 1996.

7. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

8. J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris. Sparse and stable
Markowitz portfolios. Proc. Natl. Acad. Sci. USA, 106:12267–12272, 2009.

9. F. Cesarone, A. Scozzari, and F. Tardella. Efficient algorithms for mean-variance
portfolio optimization with hard real-world constraints. Giornale dell’Istituto Ital-
iano degli Attuari, 72:37–56, 2009.

10. F. Cesarone, A. Scozzari, and F. Tardella. A new method for mean-variance portfo-
lio optimization with cardinality constraints. Ann. Oper. Res., 205:213–234, 2013.

11. T. J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha. Heuristics for cardinality
constrained portfolio optimisation. Comput. Oper. Res., 27:1271–1302, 2000.
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Fig. 1. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem for
DTS1.
F Naive
H Markowitz mean per variance
� Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 2. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem for
DTS2. See the caption of Figure 1 for an
explanation of the various symbols.

Fig. 3. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem for
DTS3. See the caption of Figure 1 for an
explanation of the various symbols.

Fig. 4. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem for
FF10.
F Naive
H Markowitz mean per variance
� Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 5. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem for
FF17. See the caption of Figure 4 for an
explanation of the various symbols.

Fig. 6. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem for
FF48. See the caption of Figure 4 for an
explanation of the various symbols.
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Fig. 7. Out-of-sample performance for
DTS1 measured by the Sharpe ratio over
all the out-of-sample periods.
- - Naive
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 8. Out-of-sample performance for
DTS2 measured by the Sharpe ratio over
all the out-of-sample periods. See the cap-
tion of Figure 7 for an explanation of the
various symbols and lines.

Fig. 9. Out-of-sample performance for
DTS3 measured by the Sharpe ratio over
all the out-of-sample periods. See the cap-
tion of Figure 7 for an explanation of the
various symbols and lines.

Fig. 10. Out-of-sample performance for
FF10 measured by the Sharpe ratio over all
the out-of-sample periods.
- - Naive
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 11. Out-of-sample performance for
FF17 measured by the Sharpe ratio over
all the out-of-sample periods. See the cap-
tion of Figure 10 for an explanation of the
various symbols and lines.

Fig. 12. Out-of-sample performance for
FF48 measured by the Sharpe ratio over
all the out-of-sample periods. See the cap-
tion of Figure 10 for an explanation of the
various symbols and lines.
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Fig. 13. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for DTS1.
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 14. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for DTS2. See the caption of Figure 13 for
an explanation of the various symbols and
lines.

Fig. 15. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for DTS3. See the caption of Figure 13 for
an explanation of the various symbols and
lines.

Fig. 16. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for FF10.
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 17. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for FF17. See the caption of Figure 16 for
an explanation of the various symbols and
lines.

Fig. 18. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for FF48. See the caption of Figure 16 for
an explanation of the various symbols and
lines.
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Fig. 19. Out-of-sample performance for
DTS1 measured by the Sharpe ratio of re-
turns net of transaction costs over all the
out-of-sample periods.
- - Naive
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 20. Out-of-sample performance for
DTS2 measured by the Sharpe ratio of re-
turns net of transaction costs over all the
out-of-sample periods. See the caption of
Figure 19 for an explanation of the various
symbols and lines.

Fig. 21. Out-of-sample performance for
DTS3 measured by the Sharpe ratio of re-
turns net of transaction costs over all the
out-of-sample periods. See the caption of
Figure 19 for an explanation of the various
symbols and lines.

Fig. 22. Out-of-sample performance for
FF10 measured by the Sharpe ratio of re-
turns net of transaction costs over all the
out-of-sample periods.
- - Naive
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 23. Out-of-sample performance for
FF17 measured by the Sharpe ratio of re-
turns net of transaction costs over all the
out-of-sample periods. See the caption of
Figure 22 for an explanation of the various
symbols and lines.

Fig. 24. Out-of-sample performance for
FF48 measured by the Sharpe ratio of re-
turns net of transaction costs over all the
out-of-sample periods. See the caption of
Figure 22 for an explanation of the various
symbols and lines.
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Fig. 25. Out-of-sample performance for
DTS1, including the financial crisis years
2008–2010, measured by the Sharpe ratio
over all the out-of-sample periods.
- - Naive
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 26. Out-of-sample performance for
DTS2, including the financial crisis years
2008–2010, measured by the Sharpe ratio
over all the out-of-sample periods. See the
caption of Figure 25 for an explanation of
the various symbols and lines.

Fig. 27. Out-of-sample performance for
DTS3, including the financial crisis years
2008–2010, measured by the Sharpe ratio
over all the out-of-sample periods. See the
caption of Figure 25 for an explanation of
the various symbols and lines.

Fig. 28. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for DTS1, including the financial crisis
years 2008–2010.
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 29. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for DTS2, including the financial crisis
years 2008–2010. See the caption of Figu-
re 28 for an explanation of the various sym-
bols and lines.

Fig. 30. Transaction costs of the effi-
cient cardinality/mean-variance portfolios
for DTS3, including the financial crisis
years 2008–2010. See the caption of Figu-
re 28 for an explanation of the various sym-
bols and lines.
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Fig. 31. Out-of-sample performance for
DTS1, including the financial crisis years
2008–2010, measured by the Sharpe ratio
of returns net of transaction costs over all
the out-of-sample periods.
- - Naive
— Markowitz mean per variance
-.- Markowitz minimum variance
• cardinality/mean-variance
� cardinality constrained minimum vari-
ance

Fig. 32. Out-of-sample performance for
DTS2, including the financial crisis years
2008–2010, measured by the Sharpe ratio
of returns net of transaction costs over all
the out-of-sample periods. See the caption
of Figure 31 for an explanation of the vari-
ous symbols and lines.

Fig. 33. Out-of-sample performance for
DTS3, including the financial crisis years
2008–2010, measured by the Sharpe ratio
of returns net of transaction costs over all
the out-of-sample periods. See the caption
of Figure 31 for an explanation of the vari-
ous symbols and lines.

Fig. 34. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem for
FF100.


