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Impulse control of standard Brownian motion:
Long-term average criterion?

Kurt Helmes1, Richard H. Stockbridge2, and Chao Zhu2

1 Institut für Operations Research, Humboldt-Universität zu Berlin
helmes@wiwi.hu-berlin.de

2 Department of Mathematical Sciences, University of Wisconsin – Milwaukee
Milwaukee, WI 53201, USA
{stockbri,zhu}@uwm.edu

Abstract. This paper examines the impulse control of a standard Brow-
nian motion under a long-term average criterion. In contrast with the
dynamic programming approach, this paper first imbeds the stochastic
control problem into an infinite-dimensional linear program over a space
of measures and then reduces the problem to a simpler nonlinear opti-
mization that has a familiar interpretation. One is able to easily identify
the optimal cost and a family of optimal impulse control policies.

Keywords: impulse control, long-term average criterion, infinite dimen-
sional linear programming, expected occupation and impulse measures.

1 Introduction

When one seeks to control a stochastic process and every intervention incurs a
strictly positive cost, one must select a sequence of separate intervention times
and amounts. The resulting stochastic problem is therefore an impulse control
problem in which the decision maker seeks to either maximize a reward or mini-
mize a cost. This paper examines the impulse control of the prototypical process
Brownian motion under a long-term average cost criterion; a companion paper
studies the impulse control of Brownian motion under a discounted criterion.
The aim of the paper is to illustrate a solution approach which first imbeds the
stochastic control problem into an infinite-dimensional linear program over a
space of measures and then reduces the linear program to a simpler nonlinear
optimization. This approach provides a new method for determining an optimal
impulse control policy.

Let W be a standard Brownian motion process with natural filtration {Ft}.
An impulse control policy consists of a pair of sequences (τ, Y ) := {(τk, Yk) :
k ∈ N} in which τk is the {Ft}-stopping time of the kth impulse and the Fτk -
measurable variable Yk gives the kth impulse size. The sequence {τk : k ∈ N} is
required to be non-decreasing, a natural assumption in that intervention k + 1
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must occur no earlier than intervention k. For a policy (τ, Y ), the impulse-
controlled Brownian motion process is given by

X(t) = x0 +W (t) +

∞∑
k=1

I{τk≤t}Yk.

The goal of the decision maker is to keep the process close to zero and to
minimize the long-term average cost incurred by the impulse policy. Define the
running/deviation cost rate function by c0(x) = x2 and set the impulse costs to
be c1(y, z) = k1 + k2|y − z| for (y, z) ∈ R2, in which k1 > 0 and k2 ≥ 0 and y
denotes the pre-intervention location which will typically be far away from zero,
while z denotes the post-intervention location of the process X, which should be
close to zero. Note, in particular, that there is a strictly positive cost for every
impulse, even one in which Yk = 0 which does not affect the value of X. Let
(τ, Y ) be an impulse control policy. The quantity to be minimized is

J(τ, Y ) := lim sup
t→∞

t−1E

[∫ t

0

c0(X(s)) ds+

∞∑
k=1

I{τk≤t}c1(X(τk−), X(τk))

]
. (1)

Clearly any policy (τ, Y ) for which J(τ, Y ) = ∞ is undesirable so to be ad-
missible, we require (τ, Y ) to have a finite cost; the nonnegativity of c0 and
strict positivity of c1 indicates that every policy will have nonnegative long-term
average cost. The collection of all admissible impulse policies is denoted by A.

Similar type of problems have been extensively investigated in the literature.
An incomplete list includes the now classical works on general stochastic im-
pulse problems [1, 4, 8, 13] as well as their applications in various areas such as
portfolio optimization, inventory control, risk management, control of a dam and
exchange rate intervention [2, 3, 10–12]. In particular, [11] explains the adoption
of a Brownian motion model.

Unlike the aforementioned references, in which the primary tool is the dy-
namic programming principle and its associated quasi-variational inequalities,
this paper aims to illustrate the utility of a different methodology, namely, the
linear programming approach. In such an approach, we embed the stochastic
impulse control problem into an infinite-dimensional linear program over appro-
priate measures. Further, the linear program, with the aid of an auxiliary linear
program, is transformed into a nonlinear optimization problem. Then both the
value of the impulse control problem and an optimal impulse control policy are
easily determined. The linear programming approach toward stochastic control
problem can be dated back to [9] for discrete time and a finite state space and
to [14, 15] for regular stochastic control problems in continuous time with gen-
eral state space. It has been further developed in [5–7] for optimal stopping
and singular control problems. This paper aims to expand the utility of such a
methodology to impulse control problems as well.

We make four important observations about impulse policies. Firstly, the
“no-intervention policy” in which the process is X(t) = x0 + W (t) for all t ≥ 0
incurs an infinite long-term average cost so is inadmissible. Secondly, let (τ, Y )
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be an impulse policy and define τ∞ := limk→∞ τk. Should τ∞ < ∞ on a set of
positive probability, then the fixed cost k1 > 0 per intervention also results in
an infinite long-term average cost. Thus for every admissible policy τk →∞ a.s.
as k → ∞. Thirdly, let (τ, Y ) be a policy for which there is some k such that
τk = τk+1 on a set of positive probability. Again due to the presence of the fixed
intervention cost k1, the total cost up to time τk+1 will be at least k1P(τk = τk+1)
smaller by combining these interventions into a single intervention on this set.
Hence we may restrict policies to those for which τk < τk+1 almost surely for
each k.

The final observation is similar. Suppose (τ, Y ) is a policy such that on a set
G of positive probability τk < ∞ and |X(τk)| > |X(τk−)| for some k. Consider
a modification of this impulse policy and resulting process X̃ which simply fails
to implement this impulse on G. Define the stopping time σ = inf{t > τk :
|X(t)| ≤ |X̃(t)|}. Notice that the running costs accrued by X̃ over [τk, σ) are
smaller than those accrued by X. Finally, at time σ, introduce an intervention
on the set G which moves the X̃ process so that X̃(σ) = X(σ). This intevention
will incur a cost which is no greater than the cost for the process X at time
τk. As a result, we may restrict the impulse control policies to those for which
no impulse increases the distance of the process from the origin (an intuitively
obvious observation).

2 Restricted problem and measure formulation

The initial analysis considers a restricted collection of impulse policies.

Condition 1 Let A1 denote the set of policies such that for (τ, Y ) ∈ A1 the
resulting process X remains bounded; that is for some M <∞, |X(t)| ≤ M for
all t ≥ 0.

Intuitively, Condition 1 is not much of a restriction since unbounded processes
occur by allowing the Brownian motion to diffuse which incurs an expensive
running cost. This restriction, however, is needed so that a transversality con-
dition is satisfied and a stochastic integral is a martingale. Following the initial
solution, the general class of impulse policies will be analyzed.

We capture the expected behavior of the process and impulses with measures.
Arbitrarily fix (τ, Y ) ∈ A1 and let M be as given in Condition 1. For each t > 0,
define the average expected occupation and average expected impulse measures

µ
(t)
0 and µ

(t)
1 , respectively, such that for each G,G1, G2 ∈ B(R),

µ
(t)
0 (G) = t−1E

[∫ t

0

IG(X(s)) ds

]
, and

µ
(t)
1 (G1 ×G2) = t−1E

[ ∞∑
k=1

I{τk≤t}IG1×G2(X(τk−), X(τk))

]
.

(2)

It is immediate that µ
(t)
0 is a probability measure for each t > 0 and since

(τ, Y ) ∈ A1 ⊂ A, the finiteness of J(τ, Y ) implies that the collection of measures
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{µ(t)
1 : t > 0} is uniformly bounded above. We also note that the second com-

ponent being measured by µ
(t)
1 is the post-jump location so µ

(t)
1 is a measure on

the product space of (pre-jump, post-jump) pairs. In light of Condition 1, the

support of µ
(t)
1 is contained in the compact set R := {(y, z) : |z| ≤ |y| ≤ M}.

Similarly, each µ
(t)
0 has support in the compact interval [−M,M ]. As a result,

these collections are tight and hence relatively compact.
Now notice the objective function (1) can be expressed as

J(τ, Y ) = lim sup
t→∞

t−1
[∫

c0(x)µ
(t)
0 (dx) +

∫
c1(y, z)µ

(t)
1 (dy × dz)

]
.

Let {tj : j ∈ N} be a sequence with tj →∞ as j →∞ such that

t−1j

[∫
c0(x)µ

(tj)
0 (dx) +

∫
c1(y, z)µ

(tj)
1 (dy × dz)

]
→ J(τ, Y ).

For i = 0, 1, the relative compactness of {µ(tj)
i : j ∈ N} implies that there

exist weak limits µ0 and µ1. Note µ0 is a probability measure whereas µ1 is a
finite measure. Since c0 and c1 are bounded and continuous on [−M,M ] and R,
respectively,

J(τ, Y ) =

∫
c0(x)µ0(dx) +

∫
c1(y, z)µ1(dy × dz). (3)

It is now helpful to characterize the value of functions of the process. For f ∈
D = C2(R),

f(X(t)) = f(x0) +

∫ t

0

f ′(X(s)) dW (s)

+

∫ t

0

1
2f
′′(X(s)) ds+

∞∑
k=1

[f(X(τk))− f(X(τk−))] I{τk≤t}.
(4)

The generator A of the Brownian motion process is Af(x) = 1
2f
′′(x); define the

jump operator B by Bf(y, z) = f(z) − f(y). First taking expectations, then
dividing by t and letting t→∞ in (4) results in

lim sup
t→∞

t−1E

[∫ t

0

Af(X(s)) ds+

∞∑
k=1

I{τk≤t}Bf(X(τk−), X(τk))

]
= 0; (5)

note that the boundedness of X(t) along with f ∈ C2(R) implies both the
transversality condition limt→∞ t−1E[f(X(t))] = 0 holds and that the stochastic
integral exists and has mean 0. (The same argument applies by taking the limit
inferior in (4), so in fact, left-hand side of (5) is a limit.) The fact that f and
f ′′ are continuous and bounded on [−M,M ] means that∫

Af(x)µ
(tk)
0 →

∫
Af(x)µ0(dx)
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and ∫
Bf(y, z)µ

(tk)
1 (dy × dz)→

∫
B(y, z)µ1(dy × dz)

and hence (5) can be written in terms of these measures as∫
Af(x)µ0(dx) +

∫
Bf(y, z)µ1(dy × dz) = 0. (6)

The restricted impulse control problem is therefore imbedded in the linear
program of minimizing (3) over pairs of measures (µ0, µ1) satisfying the con-
straints (6) for every f ∈ D. Since there may be pairs (µ0, µ1) which do not
correspond to any (τ, Y ) ∈ A1, it follows that the value of the linear program
is a lower bound on the minimal long-run average cost of the impulse control
problem. Observe also that by further restricting the collection of functions for
which the constraint is required to be satisfied, the corresponding “auxiliary”
linear program may have even more feasible pairs and hence will provide an even
lower bound on the value of the impulse control problem. These observations are
summarized in the following theorem.

Theorem 2 Let V denote the optimal value of the long-term average impulse
control problem, Vlp denote the optimal value of the linear program which seeks
to minimize (3) over measures satisfying (6) and Vaux be the optimal value of
an auxiliary linear program which limits (6) to a smaller collection of functions
f ∈ D1 for some D1 ⊂ D. Then Vaux ≤ Vlp ≤ V.

3 Partial solution: First auxiliary linear program

It would be helpful to reduce the complexity of the linear program by reducing
the number of constraints. We first consider the constraints (6). The intuition is
rather straightforward. Consider a function φ for which Aφ ≡ −1. Then since µ0

is a probability measure for each feasible pair (µ0, µ1), the identity (6) becomes∫
{|z|≤|y|}

Bφ(y, z)µ1(dy × dz) = 1. (7)

The general solution to the equation Aφ ≡ −1 is φ(x) = −x2 + ax+ b, in which
a, b are constants. We shall select a solution φ so that Bφ(x, y) = Ex[τy], where
|x| < |y| and τy := inf{t ≥ 0 : |X(t)| = |x+W (t)| = |y|}. To this end, we notice
that the function u(x) := −x2 + y2 solves the boundary value problem{

Au(x) = −1, x ∈ (−|y|, |y|),
u(−|y|) = u(|y|) = 0.

(8)

Therefore the optional sampling theorem implies that for any x ∈ (−|y|, |y|) and
t ≥ 0, we have

Ex [u(X(t ∧ τy))] = u(x) + Ex
[∫ t∧τy

0

Au(X(s)) ds

]
= u(x)− Ex[t ∧ τy].
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Since X(t ∧ τy) is bounded and τy < ∞ a.s., utilizing the boundary conditions
in (8), letting t → ∞ in the above equation yields Ex[τy] = u(x) = −x2 + y2.
Therefore by selecting φ(x) = −x2, x ∈ R, the term Bφ(x, y) in (7) gives the
expected time it takes the Brownian motion process starting at x to hit the set
{−|y|, |y|}.

In a similar manner, by considering the boundary value problem{
Au(x) = −c0(x), x ∈ (−|y|, |y|),
u(−|y|) = u(|y|) = 0,

(9)

it follows that the function g0(x) := − 1
6 x

4 satisfies

Bg0(x, y) = g0(y)− g0(x) = Ex
[∫ τy

0

c0(X(s))ds

]
, |x| < |y|. (10)

The following proposition establishes the required identity.

Proposition 3 Let (τ, Y ) ∈ A1 and let X denote the resulting impulse con-
trolled process. Recall {tj : j ∈ N} is a set of times such that

t−1j

[∫
c0 dµ

(tj)
0 +

∫
c1 dµ

(tj)
1

]
→ J(τ, Y ).

Let (µ0, µ1) be a weak limit of (µ
(tj)
0 , µ

(tj)
1 ) as j →∞. Then∫

c0(x)µ0(dx) =

∫
Bg0(y, z)µ1(dy × dz). (11)

Proof. Without loss of generality, assume that µ
(tj)
0 ⇒ µ0 and similarly µ

(tj)
1 ⇒

µ1. Using g0 in (4) and taking expectations yields for each tj

Ex0
[g0(X(tj))] = g0(x0) + Ex0

[∫ tj

0

Ag0(X(s)) ds

+

∞∑
k−0

I{τk≤tj}Bg0(X(τk−), X(τk))

]
.

Since for (τ, Y ) ∈ A1, X(t) remains bounded, dividing by tj , using the definitions

of µ
(tj)
0 and µ

(tj)
1 in (2) and letting j →∞ establishes the result. �

We are now ready to define the first auxiliary linear program. Restrict the
constraint to the single function φ(x) = −x2 and use Proposition 3 to rewrite
the objective function. The resulting linear program is

Min.

∫
[c1(y, z) +Bg0(y, z)]µ1(dy × dz)

S.t.

∫
Bφ(y, z)µ1(dy × dz) = 1.

(12)
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Notice the support of each feasible µ1 is in the set {(y, z) ∈ R2 : |z| ≤ |y|}. Thus
Bφ(y, z) = y2−z2 ≥ 0 and the constraint of (12) implies that Bφ(y, z) = y2−z2
is a probability density for every feasible measure µ1 of (12).

We emphasize that the auxiliary linear program includes the cost of any
impulse policy (τ, Y ) ∈ A1. These policies are not required to be of feedback
type or even stationary. It is only required that the resulting controlled process
remain bounded.

Observe that the constraint does not impose any mass restrictions on the set
{(y, z) : Bψ(y, z) = 0}. However, the goal is to minimize the objective function
and since the impulse cost function c1 > k1 > 0 any mass placed on this set
will only increase the cost. We may therefore restrict the optimization to those
measures µ1 having support in {(y, z) : Bφ(y, z) > 0} = {(y, z) : |z| < |y|}. As a
result the objective function can be rewritten as∫

[c1(y, z) +Bg0(y, z)]µ1(dy × dz)

=

∫ (
c1(y, z) +Bg0(y, z)

Bφ(y, z)

)
·Bφ(y, z)µ1(dy × dz)

and so the problem reduces to the minimization of

F (y, z) =
c1(y, z) +Bg0(y, z)

Bφ(y, z)
(13)

over {(y, z) : |z| ≤ |y|}. Observe that F (−y,−z) = F (y, z).

Remark 4 The minimization of F in (13) has a very familiar interpretation.
Let y and z be such that 0 ≤ |z| < |y|. Let τy = inf{t ≥ 0 : |X(t)| = |y|}. Recall
from (10) that Bg0(y, z) represents the expected running cost for the cycle [0, τy).
Now consider the impulse policy in which impulses occur only when the process X
hits either y or −y and then jumps to z or −z, respectively. The symmetry of the
fixed cost function c1 means that c1(y, z) = c1(−y,−z) and this cost is assessed
at the end of the cycle. Note also Bφ(y, z) gives the expected time it takes the
Brownian motion starting from −z or z to reach −y or y. Hence the function F
represents the ratio of the expected cost per cycle over the expected cycle length
taken for such impulse control policies. The significance of this reformulation is
that the linear programming imbedding allows arbitrary impulse policies in the
class A1 yet the resulting nonlinear optimization corresponds to minimizing the
cost over a subclass of these policies.

We now determine an optimal impulse control policy.

Theorem 5 There exist values y∗ > z∗ > 0 such that

F (y∗, z∗) = F (−y∗,−z∗) = inf
(y,z)∈R

F (y, z).
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Proof. First since Bφ(y, z) = y2 − z2 and Bg0(y, z) = 1
6 (y4 − z4), the function

F (y, z) = k1+k2|y−z|
y2−z2 + 1

6 (y2+z2). Observe that as y →∞ or z →∞ or |y−z| → 0,

F (y, z) → ∞. Hence F achieves its minimal value at some point (y∗, z∗) which
by optimality requires y∗ and z∗ to have the same sign. �

Theorem 6 An optimizing pair (y∗, z∗) having positive components is the level

set of the function h(x) = k2
2x + x2

3 at the level F (y∗, z∗).

Proof. Consider the function F on the set {(y, z) : 0 < z < y} so |y− z| = y− z.
the first-order optimality conditions are

[y2 − z2](k2 + (2/3)y3)− [k1 + k2(y − z) + (1/6)(y4 − z4)](2y)

[y2 − z2]2
= 0, (14)

[y2 − z2](−k2 − (2/3)z3) + [k1 + k2(y − z) + (1/6)(y4 − z4)](2z)

[y2 − z2]2
= 0, (15)

which are satisfied for pairs (y, z) such that

F (y, z) = h(y) = h(z), (16)

where the function h is defined in the statement of the theorem. We have h′(x) =
4x3−3k2

6x2 . When x > 0, one observes that h strictly decreases from +∞ until it

reaches a minimum at 3
√

3k2/4 after which it strictly increases to +∞. For x < 0,
h is strictly decreasing from +∞ to −∞. The level sets of h consist of either
a single value with x < 0 when the level lies below the minimum of h over the
positive reals or three points with x < 0 < z < y when the level is above this
minimum value. �

It is still necessary to connect the optimal value of the linear program (12) to
the optimal value of the long-term average impulse control problem. Examine the
relative magnitudes of the roots given in the proof of Theorem 6; by definition
0 < z < y. Observe the root x < 0 is such that |x| > y and hence x < −y < −z.
Theorem 7 The optimal long-term average cost for the restricted impulse con-
trol problem is F (y∗, z∗) and an optimal impulse control policy (τ∗, Y ∗) is defined
by: {

τ∗1 = 0,
Y ∗1 = z∗ − x0,

{
τ∗k = inf{t > τ∗k−1 : X(t−) = ±y∗},
Y ∗k = sgn(X(τ∗k−))z∗ −X(τ∗k−),

k ≥ 2. (17)

Remark 8 Due to the nature of the long-term average criterion, many other
optimal policies exist. In fact, any impulse control policy (τ, Y ) ∈ A1 can be
used for a finite length of time so long as after some point the process is in the
interval [−y∗, y∗] and the policy of jumping to z∗ when the process hits y∗ and
jumping to −z∗ at the time of hitting −y∗ is adopted.

Proof. Consider the impulse control policy (17) and observe that (τ∗, Y ∗) ∈ A1.

Also for each t > 0 by (2), µ
(t)
1 has its support on the set

{(x0, z∗), (−y∗,−z∗), (y∗, z∗)}

but the limiting measure µ1 only has mass on {(−y∗,−z∗), (y∗, z∗)}. As a result,
J(τ∗, Y ∗) = F (y∗, z∗) and hence by Theorem 2 is optimal. �
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4 General solution

The solution obtained in the previous section does not include impulse control
policies which allow the process X to become unbounded in either direction. It
is therefore necessary to show that such policies cannot provide a lower cost.

Theorem 9 The optimal long-term average cost over the collection of all ad-
missible impulse control policies is F (y∗, z∗) and any policy which eventually
only impulses when the process reaches ±y∗, with impulses respectively to ±z∗,
is optimal.

Proof. Let (τ, Y ) be an arbitrary admissible impulse control policy in A and
let X denote the resulting process. We shall prove that F∗ is a lower bound on
J(τ, Y ) and since F∗ is achieved by the impulse control policy (17), this will
establish the result.

We use a localization argument. For each n ∈ N, define the stopping time
σn = inf{t ≥ 0 : |X(t)| ≥ n} and to simplify notation, let F∗ = F (y∗, z∗). We
consider the function f(x) = F∗φ(x) − g0(x) = 1

6x
4 − F∗x2, x ∈ R. Due to the

choices of φ and g0, we have Af(x) = c0(x)− F∗, and for any |z| < |y|,

Bf(y, z) = F∗(φ(z)− φ(y))− (g0(z)− g0(y))

≤
c1(y, z) + g0(z)− g(y)

φ(z)− φ(y)
· (φ(z)− φ(y))− (g0(z)− g0(y)) = c1(y, z).

Then applying Itô’s formula yields

f(X(t ∧ σn)) = f(x0) +

∫ t∧σn

0

Af(X(s)) ds+

∫ t∧σn

0

f ′(X(s)) dW (s)

+

∞∑
k=1

I{τk≤t∧σn}Bf(X(τk−), X(τk))

≤ f(x0) +

∫ t∧σn

0

[c0(X(s))− F∗] ds+

∫ t∧σn

0

f ′(X(s)) dW (s)

+

∞∑
k=1

I{τk≤t∧σn}c1(X(τk−), X(τk)).

Taking expectations on both sides, and rearranging the terms, it follows that

F∗Ex0
[t ∧ σn] ≤ f(x0)− Ex0

[f(X(t ∧ σn))] + Ex0

[∫ t∧σn

0

c0(X(s))ds

]
+ Ex0

[ ∞∑
k=1

I{τk≤t∧σn}c1(X(τk−), X(τk))

]

≤ f(x0)−K + Ex0

[∫ t∧σn

0

c0(X(s)) ds

]
+ Ex0

[ ∞∑
k=0

c1(X(τk−), X(τk))I{τk≤t∧σn}

]
,
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where the last inequality follows from the observation that f(x) = 1
6 x

4−F∗x2 ≥
K > −∞ for some constant K. Letting n→∞, we know σn →∞ almost surely
so the monotone convergence theorem yields

F∗t ≤ f(x0)−K + Ex0

[∫ t

0

c0(X(s)) ds+

∞∑
k=0

c1(X(τk−), X(τk))I{τk≤t}

]
.

Dividing by t and letting t→∞, we obtain

F∗ ≤ lim sup
t→∞

t−1Ex0

[∫ t

0

c0(X(s)) ds+

∞∑
k=1

c1(X(τk−), X(τk))I{τk≤t}

]
= J(τ, Y ). �
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