V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, 2010.
DOI : 10.1007/978-1-4419-5542-5

O. Cârj?-a, M. Necula, and I. I. Vrabie, Tangent sets, necessary and sufficient conditions for viability for nonlinear evolution inclusions. Set-Valued Anal, pp.701-731, 2008.

O. Cârj?-a, M. Necula, and I. I. Vrabie, Necessary and sufficient conditions for viability for semilinear differential inclusions, Transactions of the American Mathematical Society, vol.361, issue.01, pp.343-390, 2009.
DOI : 10.1090/S0002-9947-08-04668-0

O. Cârj?-a and M. Necula, Tangent sets, viability for differential inclusions and applications, Nonlinear Analysis: Theory, Methods & Applications, vol.71, issue.12, pp.979-990, 2009.
DOI : 10.1016/j.na.2009.01.055

O. Cârj?-a and I. I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA Nonlinear Differential Equations Appl, vol.4, pp.401-424, 1997.

M. G. Crandall and T. M. Liggett, Generation of Semi-Groups of Nonlinear Transformations on General Banach Spaces, American Journal of Mathematics, vol.93, issue.2, pp.265-298, 1971.
DOI : 10.2307/2373376

A. Gavioli and L. Malaguti, Viable mild solutions of differential inclusions with memory in Banach spaces, Portugal. Math, vol.57, pp.203-217, 2000.

G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel Journal of Mathematics, vol.4, issue.2, pp.83-100, 1981.
DOI : 10.1007/BF02762855

J. Hale, Functional differential equations, Applied Mathematical Sciences, vol.3, 1971.

V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics, vol.2, 1981.

V. Lakshmikantham, S. Leela, and V. Moauro, Existence and uniqueness of solutions of delay differential equations on a closed subset of a Banach space, Nonlinear Analysis: Theory, Methods & Applications, vol.2, issue.3, pp.311-327, 1978.
DOI : 10.1016/0362-546X(78)90020-2

S. Leela and V. Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, vol.2, issue.1, pp.47-58, 1978.
DOI : 10.1016/0362-546X(78)90040-8

V. Lupulescu and M. Necula, A viability result for nonconvex semilinear functional differential inclusions, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, vol.25, issue.1, pp.109-128, 2005.
DOI : 10.7151/dmdico.1060

M. Necula and M. Popescu, A viability result for differential inclusions on graphs, An. S ¸tiint¸.¸tiint¸. Univ. Al. I. Cuza Ia¸siIa¸si Sect¸, Sect¸. I a Mat, pp.10-2478

M. Necula, M. Popescu, and I. I. Vrabie, Viability for differential inclusions on graphs. Set-Valued Analysis, pp.961-981, 2008.

M. Necula, M. Popescu, and I. I. Vrabie, Evolution equations on locally closed graphs and applications, Nonlinear Analysis: Theory, Methods & Applications, vol.71, issue.12, pp.2205-2216, 2009.
DOI : 10.1016/j.na.2009.04.044

N. H. Pavel and F. Iacob, Invariant sets for a class of perturbed differential equations of retarded type, Israel Journal of Mathematics, vol.46, issue.3, pp.254-264, 1977.
DOI : 10.1007/BF02759812

I. I. Vrabie, Compactness methods for nonlinear evolutions. Second Edition, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol.75, 1995.