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Continuous-time local model network for the
boost-pressure dynamics of a turbocharger
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1 Control Engineering Group, TU Ilmenau, Germany
2 Engine Systems, IAV GmbH, Gifhorn, Germany

Abstract. In this paper we consider continuous-time local model net-
works (LMN) to model dynamical processes with strong nonlinearities.
The local model approach allows for simple black-box identification pro-
cedures using experimental data. Using LoLiMoT algorithm the num-
ber of models can be significantly reduced and may yield insights into
the nonlinearities driving the process. We propose a variation of the
LoLiMoT algorithm that partitions the operating range in a more effi-
cient manner and proves particular suited for heterogenous nonlineari-
ties.
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1 Introduction

Mathematical modelling is an essential tool for system analysis and control.
In this regard we motivate our aim to derive a mathematical model that de-
scribes the considered process in an adequate fashion. Precise physical models,
however, are often hard to obtain and are frequently challenged by tedious pa-
rameter estimation. Moreover, physical models can be very sensitive with respect
to parameter variations such that an appropriate set of parameters is very hard
to obtain. In particular nonlinear dynamical processes suffer from this problem.
Resorting to grey-box models that are driven by experimental data can often re-
solve this problem. For processes with nonlinear dynamics local-model networks
can be used to represent the global dynamics by identifying simple linear models
locally and combine them to a network that matches the nonlinear global dy-
namics sufficiently. This is particular useful in industrial practice where simple
controller structures with few tunable parameters are often preferred. Therefore
we aim for an continuous-time LMN such that most common manual control-
design methods are readily applicable.

The basic concepts for local model networks have been developed in the
nineteens, see e.g. [1, 2], for early work. Ever since local model networks have been
studied for various system classes and applications range from mechatronical
systems to process engineering. Typical issues that arise in most studies pertain
to the implementation of the local model network. In [3, 4] the local models
are realised each having their own local state-space. The overall output of the
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model network is then obtained by interpolation of the local model outputs.
The complement approach is taken in [5], where the state is shared by all local
models. Here the parameters are interpolated in appropriate fashion to emulate
the nonlinear dynamics of the process. The vast majority of the publications,
however, consider discrete-time systems.

An important roll for the complexity of the local model network plays the
choice of the operating regimes of the individual models. In this regard several
methods have been proposed to partition the scheduling space. A summary on
existing partitioning strategies is given in [6] and [7].

More details on local models trees based on recursive orthogonal splitting
(LoLiMoT) give [8–10, 2, 11]. This partitioning strategy uses hyper-rectangles
and is time-consuming regarding large scheduling problems. Axis oblique par-
titioning strategies using the HiLoMoT algorithm can be found in [6] and [12].
Other publications focus on the optimisation of the partitions for a fixed num-
ber of models [5] itself. Based on the chosen partitioning the used weighting
functions have an additional effect on the performance of the model [13].

In this contribution we investigate the suitability of local model network for
continuous-time domain. In regard to the controller design the dynamics and the
gain of the process are equally important. In particular whenever the dominating
time-constant of the dynamics vary within the operating range, good knowledge
of the latter is vital in order to design high-performing controllers. Therefore we
choose an approach that is able to map individual dynamics to different points
in the scheduling space, as well as individual gains.

For the resulting local model network we address in particular issues re-
garding the offsets of the local models and suitable partitioning techniques. For
processes that exhibit strong nonlinear dynamics, the local model network may
need a very large number of models to match the behaviour appropriately, when
the local operating points are evenly distributed. In order to keep the number
of local models moderately large, we apply the LoLiMoT algorithm and propose
a novel technique that is able to introduce multiple partitions in each iteration
and may lead to partitions that fit the nonlinearity better.

The described techniques are applied to model the boots-pressure dynamics
of a turbo charged combustion engine. The experimental data for modelling and
verification are obtained from a full-scale test rig.

2 Local model networks

The local model network (LMN) approach [1] uses the strategy of divide and
conquer to describe a complex and non-linear behaviour of a dynamical system,
given by:

y = h(x(t),u(t), t) . (1)

First of all the operating range of the system is divided in M regions, wherein
the dynamics can be approximated by a more simple (e.g. linear or affine) model
h̃i(x(t),u(t), t).
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In order to cover the complete operating range the interaction of the local
models is controlled by the scheduler Φ, a vector of exogenous or system variables
prior chosen. Each model is weighted with a functions ρi(Φ) ∈ [0, 1], represent-
ing the range of validity of the i-th model. The system dynamics (1) are then
approximated by the LMN by the interpolation of the local models

ỹ =

M∑

i=1

ρi(Φ) h̃i
(
x(t),u(t), t

)
with

M∑

i=1

ρi(Φ) = 1 .

In this paper we examine the application of the LMN approach to nonlinear
dynamical systems of the form

ẋ(t) = f(x(t),u(t)), x(0) = x0 with: x ∈ IRn,y ∈ IRq,u ∈ IRp

y(t) = h(x(t),u(t)) .
(2)

The nonlinear dynamics shall be approximated by linearisations at M stationary
solutions (x∗

i ,u
∗
i ) with f(x∗

i ,u
∗
i ) = 0:

ẋ(t) = f(x∗
i ,u

∗
i ) +Ai(x(t)− x∗

i ) +Bi(u(t)− u∗
i )

y(t) = h(x∗
i ,u

∗
i ) +Ci(x(t)− x∗

i ) +Di(u(t)− u∗
i ) .

(3)

Following [3] we can define M models with local states x̃i(t) = x(t)−x∗
i , inputs

ũi(t) = u(t) − u∗
i and outputs ỹi(t) = y(t) − h(x∗

i ,u
∗
i ). This leads to a local-

state representation of the LMN where the output is a weighted sum of the single
models’ outputs. This description proves sufficient for controller design based on
local observes as discussed in [3].

However, simulation purposes or even stability analysis may pose further re-
quirements onto the LMN [14, 15]. In a local-state architecture, the initial state of
the local model may induce strong transient responses at the switching instance
which are not desirable and may affect stability [16]. Furthermore, whenever
the scheduling variable switches different output signals between the subsequent
local models will cause discontinuities of the output, which will not be observed
in the original nonlinear process behaviour.

Therefore we shall choose a global-state representation of the LMN, where the
state-vector x is shared by all local models. Then the linearisation (3) becomes
an affine system with local system-offset Ki and the local output-offset Li:

Ki = −(Aix
∗
i +Biu

∗
i )

Li = h(x∗
i ,u

∗
i )− (Cix

∗
i +Diu

∗
i ) .

(4)

For the global-state LMN we obtain the parameter-varying affine system

ẋ = A(Φ)x+B(Φ)u+K(Φ)
y = C(Φ)x+D(Φ)u+L(Φ)

, (5)

where A(Φ) =
∑M

i=1 ρi(Φ)Ai and B(Φ), K(Φ), C(Φ), D(Φ) and L(Φ) with
according interpolations.

Note that the state-space of the global-state LMN has M -time smaller dimen-
sion than that of the local-state LMN. Furthermore, the state is continuous for
all variations in Φ. With some mild assumptions the same holds for the output.
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3 Experimental identification of the pressure-dynamics

Modern combustion engines are frequently equipped with an exhaust turbo-
charger that boosts the pressure of the intake air in order to increase the amount
of oxygen in the cylinder. Often the compressor power can be manipulated by
varying the geometry of the turbine, so-called variable-geometry turbine (VGT).
This allows for influencing the charging pressure within certain constraints.
While the physical relations of the quantities are well known, e.g. [17], deriving
a dynamical model of the pressure dynamics and identifying its parameters is
very time-consuming as such models exhibit strong non-linearities and are very
sensitive with respect to certain parameter variations [18–20]. A data-driven
black-box approach may therefore prove valuable in this context and, thus, the
pressure dynamics are a very suitable process to investigate properties and chal-
lenges of the LMN approach.
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Fig. 1. Sample of data time-series and identification result

The data-base for identification consists of 16 time-series of experimental
input-output data at various engine operating points (ni, qi). Within one test-
cycle the engine speed ni and injection rate qi was maintained constant whereas
the compressor power PC was increased stepwise, see Fig. 1 for a sample time-
series.

3.1 LMN identification

The engine speed and injection rate are natural scheduling variables from an
engineering point of view. We can further observe that the dynamics vary signif-
icantly for different levels of the compressor power PC , cf. Fig. 1. Therefore we
choose Φ = [n, q, PC ]T as scheduling vector; the system’s input is the compressor
power u := PC , the output is boost-pressure y := p2.

Based on the data structure the most simple partitioning approach of a regu-
lar grid is used to divide the total working range into 256 local regions. For each
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of these local regions we choose a grey-box approach to identify the local dy-
namics. In our case physical considerations lead to the following parametrisation
of the local models:

G(s) = V
τ1s+ 1

(τ2s+ 1)(τ3s+ 1)
.

The parameters (Vi, τ1i, τ2i, τ3i) of the local models i = 1, . . . ,M are obtained
by least-square optimisation for each individual step in the time-series with re-
moved offsets. In order to cast the local models in into state-space representation
(5) we choose the observer canonical form which has constant output matrix that
renders the output continuous for all variations of Φ. The regions of validity of
each model are defined by triangular weighting functions ρi.

The offset parameters Ki and Li in (4) are chosen to account for the removed
offset in the local identification. Without loss of generality we choose Li = 0 for
all i. For calculating Ki we note, that the second state-component is the output
and thus can be taken from the data. For the first local model of each time-series
then we have:

Ki = −Biu(0)−Ai

(
x1(0)
y(0)

)
,

where only x1(0) can be chosen arbitrarily. For the second step of a given time-
series we obtain the initial condition from the final state using the already iden-
tified parameters of the first model, etc. Determining the offsets in this fashion
yields a continuous output for each time-series as shown in Fig. 1.

3.2 Verification of the LMN

In order to verify the LMN’s ability to match the non-linear process dynamics,
we simulate the LMN using a highly dynamic verification-cycle covering the full
operation range. Fig. 2 shows the evolution of the scheduling variable’s com-
ponents during that test-cycle featuring steep sloped jumps as well as various
smooth transitions.
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Fig. 2. Evolution of the scheduling variables during the validation cycle.

The overall performance of the LMN is quite satisfactory with a mean square
error of MSE = 2.72× 103 hPa2 and a maximum error |emax| = 223.6 hPa. Fig.
3 shows two details of the full cycle. The model matches the experimental data
very well for dynamical (right) and stationary (left) areas. However, we note that
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for high compressor powers the stationary error may rise as high as 100 hPa.
This may be due to high noise-levels in the data for these operating points that
prohibit a precise estimate of the DC-gain in this regions.

10 20 30 40 50 60 70 80

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t in s

y
=

 p
2
/p

m
a
x

 

 

exp. data

LMN: M=256

450 500 550 600

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t in s

y
=

 p
2
/p

m
a
x

 

 

exp. data

LMN: M=256

Fig. 3. Simulation result using the validation cycle with 256 local models.

4 Local model trees

The grid-based approach of the previous section typically leads to a large number
of local models that are equally spaced in the operating range, irrespective of the
character of the nonlinearity. Local model tree algorithms address these issues
by starting with a low number of models and improving the model network
iteratively by introducing additional models, if the error is large in a certain
region. Thereby, only few models will be placed in regions where the process
behaves in an almost linear fashion and local over-fitting is avoided.

While there are a number of partitioning strategies available, an orthogonal
partitioning appears to be a natural choice in our case, as the data for iden-
tification is distributed in a grid-like fashion within the scheduling space. The
classical LoLiMoT-algorithm presented in [9], [10] uses such orthogonal parti-
tioning. In each iteration the region of the worst performing local model is split
in 2 hyper-rectangles wherein the parameters for new local models are identi-
fied. Every possible division (one for each dimension of the scheduling space) is
analysed and the best division is chosen.

4.1 Local error based partitioning (LEB)

The classical LoLiMoT considers the accumulated quadratic error to evaluate
the performance of the model and thus does not use the full available informa-
tion at each iteration. In this section we propose a novel partitioning strategy
that uses the signed error at each point in the scheduling space in relation to
certain thresholds τ− and τ+ dividing the scheduling space into 3 regions in one
iteration. As illustrated in Fig. 4 this may lead to a better approximation of
the nonlinearity by using a smaller number of models compared to the classical
bisection.
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Fig. 4. Illustration of local error based partitioning (left) and classical LoLiMoT par-
titioning (right) for a simple static nonlinearity.

Our optimisation data is given at discrete points of the scheduling space.
Therefore we can define the local error

el(Φk) :=

tend∫

0

[ŷ(t)− y(t)] ρk (Φ(t)) dt

for each local model k = 1, 2, . . . ,Mmax. In order to find the best cut in the
scheduling space the local error is projected onto one component by the weighted
sum of the local errors of the remaining dimensions.

For the boost-pressure dynamics we obtained either a quadratic or linear
distribution of this projected local error (PLE), cf. Fig. 5. Based on this classi-
fication of the PLE distribution an adaptive threshold τ is calculated:

1. If the PLE shows a parabolic distribution (with 2 zero-crossings) the thresh-
old is set to zero τ = 0 defining three regions, based on the assumption that
the area of validity of a local model should be compact.

2. If the PLE shows a linear distribution (with a single zero-crossing) the
symmetric thresholds |τ+| = |τ−| are calculated based on the PLE: τ± =
±κ ·min{el,min; el,max} with a constant factor κ < 1 three regions are set.

3. If the PLE distribution cannot be categorised clearly, the classical bisection
is applied defining two new regions.

Finally we embedded this approach into the LoLiMoT algorithm [9] (see Fig. 5):

1. The weighting functions of the initial model are calculated. If only one global
model is used, the global weight is set to ρ1(Φ) = 1.

2. The partitioning criterion is evaluated choosing the worst model. If the cho-
sen model covers the smallest possible region given by the data structure its
partitioning criteria is set to zero and the next model is chosen.
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Fig. 5. LoLiMoT algorithm with local error based (LEB) partitioning algorithm.

3. The local error for the complete operation range is calculated.
4. For every scheduling variable Φ1, . . . , ΦN do:

(a) The projected local error and the partitioning thresholds are calculated,
if the original region is minimal regarding the dimension i, the temporary
partitioning criteria is set to infinity and the following steps are skipped.

(b) The model parameters are optimized locally.
(c) The weighting function and the partitioning criteria of the new models

are determined.

5. The best partitioning is chosen and the number of local models increased.
6. If any abort criterion is reached (e.g. maximum number of models), the LMN

is completely defined. Otherwise the iteration starts again at point 1.

The inner loop can be evaluated using parallel computing with one threat cov-
ering each dimension of the scheduling vector. If linear triangular weighting
functions are used, only a part of the weighting functions needs to be updated.
Because every iteration leads to 2 new local models (best case) the approach
reduces the number of optimisation tasks from 4N(M − 1)/2 + 1 optimisation
task for the classical LoLiMoT to 3N(M − 1)/2 + 1 where M denotes the total
odd number of models and N the dimension of the scheduling vector.
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4.2 Results and comparison of the partitioning techniques

We used the LoLiMoT with LEB partitioning technique as well as the classical
bisection method to obtain a reduced LMN. To have a fair comparison we ran
the latter for more iterations to obtain the same number of local models. Both
networks are then compared to the full-grid LMN obtain in Section 3 using the
verification cycle, see Fig. 6.

Table 1. LMN error development regarding the validation cycle.

LoLiMoT Local error based

M MSE/hPa2 |emax|/hPa MSE/hPa2 |emax|/hPa

10 4.1e3 253.9 2.4e3 203.8
30 2.7e3 200.5 2.8e3 165.5
45 2.4e3 208.9 2.3e3 157.5
60 2.4e3 208.9 2.2e3 159.6

Both networks (with only 10 local models each) are able to match the non-
linear dynamics reasonably well. However, the stationary error is significantly
larger compared to the full-grid LMN with 256 models. Increasing the number of
models reduces both algorithms can reduce the error measure as to be expected.
Often the LEB-network shows better stationary behaviour than the bisection-
network, but the data does not allow for a strong statement here. However, the
overall error of the LEB-network is significantly better than the errors produced
by the bisection-model, see Table 1. This holds in particular for the maximum
error which is up to 25% lower for the LEB-network.
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Fig. 6. Comparison of the LMN performances using the verification cycle.

Conclusions

In this work we apply a continuous-time global-state local model network to iden-
tify the boost-pressure dynamics of an exhaust turbocharger using experimental
input-output data. The approach is feasible to match the strongly nonlinear dy-
namics and may therefore be suitable as a basis for control design. We discuss
several implementation issues such as the choice of state-space representation,
global-state implementation and the use of discontinuous time-series at various



352 C. Weise, K. Wulff, M.-H. Höper, R. Hurtado

operation points. We propose a novel partition strategy that is computationally
more efficient compared to the classical bisection method and also yields better
results in the global performance using an independent verification-cycle.

References

1. Murray-Smith, R., Johansen, T.A., eds.: Multiple model approaches to modelling
and control. Taylor & Francis, London [u.a.] (1997)

2. Nelles, O.: Nonlinear system identification with local linear neuro-fuzzy models.
PhD thesis, TU Darmstadt, Aachen (1999)

3. Gawthrop, P.: Continuous-time local state local model networks. In: IEEE Int.
Conference on Systems, Man and Cybernetics. Volume 1. (Oct 1995) 852–857

4. Hentabli, K.: State-space local model networks based continuous-time gpc. appli-
cation to induction motor. In: American Control Conference. Volume 6. (1998)

5. Verdult, V.: Non linear system identification : a state-space approach. PhD thesis,
University of Twente, Enschede (2002)

6. Nelles, O.: Axes-oblique partitioning strategies for local model networks. In: Joint
CCA, ISIC and CACSD. (Oct 2006) 2378–2383

7. Hartmann, B., Skrjan, I., Nelles, O.: Recent partitioning strategies for local model
networks. In: Workshop Model-Based Calibration Methods, TU Wien (2011)

8. Johansen, T.A., Foss, B.: Constructing narmax models using armax models. In-
ternational Journal of Control 58(5) (1993) 1125–1153

9. Nelles, O., Sinsel, S., Isermann, R.: Local basis function networks for identification
of a turbocharger. In: UKACC International Conference on Control. (1996) 7–12

10. Nelles, O., Isermann, R.: Basis function networks for interpolation of local linear
models. In: 35th IEEE Conference on Decision and Control. (1996) 470–475

11. Bänfer, O., Hartmann, B., Nelles, O.: Polymot versus hilomot - a comparison of two
different training algorithms for local model networks. In: 16th IFAC Symposium
on System Identification. (2012) 1569–1574

12. Hametner, C., Jakubek, S.: Neuro-fuzzy modelling using a logistic discriminant
tree. In: American Control Conference. (Jul 2007) 864–869

13. Hartmann, B., Nelles, O.: On the smoothness in local model networks. In: Amer-
ican Control Conference, 2009. ACC ’09. (Jun 2009) 3573 –3578

14. Leith, D., Shorten., R., Leithead, W., Mason, O.: Issues in the design of switched
linear control systems: A benchmark study. International Journal of Adaptive
Control and Signal Processing 17 (2003) 103–118

15. Wulff, K., Wirth, F., Shorten, R.: A control design method for a class of SISO
switched linear systems. Automatica 45(11) (2009) 2592–2596

16. Wulff, K., Wirth, F., Shorten, R.: On the stabilisation of a class of SISO switched
linear systems. In: 44th IEEE Conference on Decision and Control European
Control Conference. CDC-ECC ’05. (Dec 2005) 3976–3981

17. Moran, M.J., Shapiro, H.N.: Fundamentals of engineering thermodynamics. 6. ed.
edn. Wiley, Hoboken, NJ (2008)

18. Jankovic, M., Jankovic, M., Kolmanovsky, I.: Constructive lyapunov control design
for turbocharged diesel engines. Transactions on Control Systems Technology 8(2)
(2000) 788–299

19. Jung, M., Glover, K.: Calibratable linear parameter-varying control of a turbo-
charged diesel engine. Trans on Control Systems Technology 14(1) (2006) 45–62

20. Schollmeyer, M.: Beitrag zur modellbasierten Ladedruckregelung für Pkw-
Dieselmotoren. PhD thesis, Universittät Hannover (2010)


