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Abstract. The recovery of the causality networks with a number of vari-
ables is an important problem that arises in various scientific contexts.
For detecting the causal relationships in the network with a big number
of variables, the so called Graphical Lasso Granger (GLG) method was
proposed. It is widely believed that the GLG-method tends to overselect
causal relationships. In this paper, we propose a thresholding strategy for
the GLG-method, which we call 2-levels-thresholding, and we show that
with this strategy the variable overselection of the GLG-method may be
overcomed. Moreover, we demonstrate that the GLG-method with the
proposed thresholding strategy may become superior to other methods
that were proposed for the recovery of the causality networks.

Keywords: causality network, gene causality network, Granger causal-
ity, graphical Lasso method, 2-levels-thresholding.

1 Introduction

Causality is a relationship between a cause and its effect (its consequence). One
can say that inverse problems solving, where one would like to discover unob-
servable features of the cause from the observable features of an effect [4], i.e.,
searching for the cause of an effect, can in general be seen as a causality problem.

A causality network is a directed graph with nodes, which are variables
{xj , j = 1, . . . , p}, and directed edges, which are the causal influences between
the variables. We write xi ← xj if the variable xj has a causal influence on the
variable xi. Causality networks arise in various scientific contexts.

For example, In Cell Biology one considers causality networks which involve
sets of active genes of a cell. An active gene produces a protein. It has been
observed that the amount of the protein which is produced by a given gene may
depend on, or may be causally influenced by, the amount of the proteins which
are produced by other genes. In this way, causal relationships between genes
and the corresponding causality network arise. These causality networks are
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Fig. 1. Causality network of the human cancer cell HeLa genes from the BioGRID
database (www.thebiogrid.org).

also called gene regulatory networks. An example of such a network is presented
in Fig. 1. This network is achieved from the biological experiments in [9], and it
can be found in the BioGRID database. This network has been used in several
works [14, 11, 15] as a test network.

Knowledge of the correct causality networks is important for changing them.
In Cell Biology, these networks are used in the research of the causes of genetic
diseases. For example, the network in Fig. 1 consists of genes that are active in
the human cancer cell HeLa [18]. If one wants to suppress the genes expression
in this network, then the primary focus of the suppression therapy should be on
the causing genes. For the use of the causality networks in other sciences see, for
example, [12].

How can causality network be recovered? In practice, the first information
that can be known about the network is the time evolution (time series) of the
involved variables {xjt , t = 1, . . . , T}. How can this information be used for
inferring causal relationships between the variables?

The statistical approach to the derivation of the causal relationships between
a variable y and variables {zj , j = 1, . . . , p} using the known time evolution of
their values {yt, zjt , t = 1, . . . , T, j = 1, . . . , p} consists in considering a model
of the relationship between y and {zj , j = 1, . . . , p}. As a first step, one can

consider a linear model of this relationship: yt ≈
p∑
j=1

βjzjt , t = 1, . . . , T. The

coefficients {βj , j = 1, . . . , p} can be specified using the least-squares method.
Then, in Statistics [19] by fixing the value of a threshold parameter βtr > 0, one
says that there is a causal relationship y ← zj if |βj | > βtr.

For detecting causal relationships between variables {xj , j = 1, . . . , p} the
concept of the so called multivariate Granger causality has been proposed. This
concept originated in the work of Clive Granger [6], who was awarded the Nobel
Prize in Economic Sciences in 2003. Based on the intuition that the cause should
precede its effect, in Granger causality one says that a variable xi can be poten-
tially caused by the past versions of the involved variables {xj , j = 1, . . . , p}.
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Then, in the spirit of the statistical approach and using a linear model for
the causal relationship, we consider the following approximation problem:

xit ≈
p∑
j=1

L∑
l=1

βjl x
j
t−l, t = L+ 1, . . . , T, (1)

where L is the so called maximal lag, which is the maximal number of the
considered past versions of the variables. The coefficients {βjl } can be determined
by the least-squares method. As in the statistical approach, one can now fix the
value of the threshold parameter βtr > 0 and say that

xi ← xj if

L∑
l=1

|βjl | > βtr. (2)

It is well known that for a big number of genes p, as it is pointed out for
example in [11], the causality network, which is obtained from the approximation
problem (1), is not satisfactory. First of all, it cannot be guaranteed that the
solution of the corresponding minimization problem is unique. Another issue
is connected with the number of the causality relationships that is obtained
from (1). This number is typically very big, while one expects to have a few
causality relationships with a given gene. To address this issue, various variable
selection procedures can be employed. The Lasso [16] is a well known example
of such a procedure. In the regularization theory, this approach is known as the
l1-Tikhonov regularization. It has been extensively used for reconstructing the
sparse structure of an unknown signal. We refer the interesting reader to [3, 13,
7, 5, 10] and the references therein.

The causality concept that is based on the Lasso was proposed in [1] and
is named Graphical Lasso Granger (GLG) method. However, it is stated in
the literature that the Lasso suffers from the variable overselection. And there-
fore, in the context of the gene causality networks several Lasso modifications
were proposed. In [11], the so called group Lasso method was considered for re-
covering gene causality networks using the multivariate Granger causality. The
corresponding method can be named Graphical group Lasso Granger (GgrLG)
method. And in [15], the truncating Lasso method was proposed. The resulting
method can be named Graphical truncating Lasso Granger (GtrLG) method.

Nevertheless, it seems that an important tuning possibility of the Lasso,
namely an appropriate choice of the threshold parameter βtr, has been overlooked
in the literature devoted to the recovery of the gene causality networks. In this
paper, we are going to show that the GLG-method, which is equipped with an
appropriate thresholding strategy and an appropriate regularization parameter
choice rule, may become a superior method in comparison to other methods
that were proposed for the recovery of the gene causality networks.

The paper is organized as follows. In Sect. 2, we recall the GLG-method. The
quality measures of the graphical methods are presented in Sect. 3. In Sect. 4, we
use the network from Fig. 1 to compare the performance of the known graphical
methods with the ideal version of the GLG-method, which we call the optimal
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GLG-estimator. Such a comparison demonstrates the potential of the GLG-
approach. In Sect. 5, we propose a thresholding strategy for the GLG-method
that allows its automatic realization, which we describe in Sect. 6. Then again
we use the network from Fig. 1 to compare the performance of the proposed
version of the GLG-method with other graphical methods. It turns out that the
proposed method has a superior quality compared to the known methods. The
paper is finished with the conclusion and outlook in Sect. 7.

2 Graphical Lasso Granger method

Let us specify the application of the least-squares method to the approximation
problem (1). For this purpose, let us define the vectors Y i = (xiL+1, x

i
L+2, . . . , x

i
T )′,

β = (β1
1 , . . . , β

1
L, β

2
1 , . . . , β

2
L, . . . , β

p
1 , . . . , β

p
L)′, and the matrix

X =
(

(x1t−1, . . . , x
1
t−L, x

2
t−1, . . . , x

2
t−L, . . . , x

p
t−1, . . . , x

p
t−L); t = L+ 1, . . . , T

)
.

Then, in the least-squares method, one considers the following minimization
problem:

‖Y i −Xβ‖2 → min
β
, (3)

where ‖ · ‖ denotes the l2-norm.
As it was mentioned in the introduction, the solution of (3) defines unsatis-

factory causal relationships and various variable selection procedures should be
employed instead. A well-known example of such procedures is the Lasso [16].
In this procedure, one considers the following minimization problem:

‖Y i −Xβ‖2 + λ‖β‖1 → min
β
. (4)

Solution of (4) for each variable {xi, i = 1, . . . , p} with the causality rule (2)
defines an estimator of the causality network between the variables {xi}, and in
this way one obtains the Graphical Lasso Granger (GLG) method [1].

3 Quality measures of the graphical methods

A graphical method is a method that reconstructs the causality network, which is
a directed graph, with the variables {xj}. The quality of a graphical method can
be estimated from its performance on a known causality network. The network
in Fig. 1 has been used for testing methods’ quality in several publications [14,
11, 15]. What measures can be used for estimating the quality of a graphical
method?

First of all, let us note that a causality network can be characterized by the
so called adjacency matrix A = {Ai,j | {i, j} ⊂ {1, . . . , p} } with the following
elements:

Ai,j = 1 if xi ← xj ; Ai,j = 0 otherwise.
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The adjacency matrix Atrue for the causality network in Fig. 1 is presented in
Fig. 2. There, the white squares correspond to Ai,j = 1, and the black squares
— to the zero-elements. The genes are numbered in the following order: CDC2,
CDC6, CDKN3, E2F1, PCNA, RFC4, CCNA2, CCNB1, CCNE1.

Now, imagine that there is a true adjacency matrix Atrue of the true causality
network, and there is its estimator Aestim, which is produced by a graphical
method. The quality of the estimator Aestim can be characterized by the following
quality measures: precision (P), recall (R), F1-score (F1). See, for example, [12]
for the detailed definition of these measures.

As it was already mentioned, the causality network in Fig. 1 has been used
for testing quality of graphical methods. In particular, in [15] one finds the
above mentioned quality measures for the following methods: GgrLG, GtrLG
and CNET. CNET is a graph search-based algorithm that was introduced in
[14]. The data {xjt} is taken from the third experiment of [18] consisting of
47 time points, and the maximal lag L is taken to be equal to 3. The quality
measures from [15] are presented in Table 1.

Table 1. Quality measures of the known graphical methods.

P R F1

GgrLG 0.24 0.44 0.3

GtrLG 0.3 0.33 0.32

CNET 0.36 0.44 0.4

As it is seen from the table, CNET has the highest F1-score. However, CNET
is the most computationally expensive among the considered methods that does
not allow its application to large networks. GgrLG has a good recall but a poor
precision, and thus, GtrLG can be considered as a better method among the
considered methods.

4 Optimal GLG-estimator

As we have seen in the previous section, the graphical methods, which are based
on the Lasso modifications, were tested on the network in Fig. 1 (Table 1).
However, the application of the graphical method that is based on the pure
Lasso (GLG) to the network in Fig. 1 has not been reported. Moreover, it seems
that the possibility of varying the threshold parameter βtr in GLG also has not
been considered in the literature devoted to the reconstruction of the causality
networks.

Assume that the true causality network with the variables {xj} is given by
the adjacency matrix Atrue. Assume further that the observation data {xjt} is
given. What is the best reconstruction of Atrue that can be achieved by the
GLG-method? The answer to this question is given by, what we call, the optimal
GLG-estimator. Let us specify its construction.
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First of all, let us define the following quality measure, which we call Fs-
measure: Fs = 1

p2 ‖A
true − Aestim‖1, 0 ≤ Fs ≤ 1. Fs-measure represents the

number of false elements in the estimator Aestim that is scaled with the total
number of elements in Aestim.

Now, let βi(λ) denote the solution of the minimization problem (4) in the
GLG-method, and βji (λ) = (βj1,i, . . . , β

j
L,i). Then, the GLG-estimatorAGLG(λ, βtr)

of the adjacency matrix Atrue is defined as follows:

AGLG
i,j (λ, βtr) = 1 if ‖βji (λ)‖1 > βtr; AGLG

i,j (λ, βtr) = 0 otherwise.

The optimal GLG-estimator AGLG,opt of the true adjacency matrix Atrue

is the GLG-estimator AGLG(λ, βtr) with the parameters λ, βtr such that the
corresponding Fs-measure is minimal.

The optimal GLG-estimator of the adjacency matrix for the causality net-
work in Fig. 1 is presented in Fig. 2. Its quality measures can be found in Table 2.
We used the same data {xjt} as in [14, 11, 15]. Also, as in [11, 15], we take the
maximal lag L = 3. As one can see, the optimal GLG-estimator reconstructs
almost completely the causing genes of the most caused gene in the network.
The recall of AGLG,opt is equal to the highest recall in Table 1, but precision and
F1-score are considerably higher.

Of course, AGLG,opt is given by the ideal version of the GLG-method, where
we essentially use the knowledge of Atrue. How close can we come to AGLG,opt

without such a knowledge? To answer this question, let us first decide about the
choice of the threshold parameter βtr.

5 Thresholding strategy

The purpose of the threshold parameter βtr is to cancel the causal relationships
xi ← xj with small ‖βji (λ)‖1. When can we say that ‖βji (λ)‖1 is small? We
propose to consider the following guideindicators of smallness:

βimin(λ) = min{ ‖βji (λ)‖1, j = 1, . . . , p | ‖βji (λ)‖1 6= 0 },
βimax(λ) = max{ ‖βji (λ)‖1, j = 1, . . . , p }.

(5)

In particular, we propose to consider the threshold parameter of the following
form:

βitr,α(λ) = βimin(λ) + α( βimax(λ)− βimin(λ) ). (6)

As a default value we take α = 1/2.

In the optimal GLG-estimator AGLG,opt
tr,1/2 with the threshold parameter βitr,1/2

we choose λ such that the corresponding Fs-measure is minimal. For the causal-
ity network in Fig. 1, this estimator is presented in Fig. 2. Its quality measures
can be found in Table 2. One observes that although there is some quality de-
crease in comparison to AGLG,opt, the quality measures are still higher than for
the methods in Table 1. However, can this quality be improved?
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The choice of the threshold parameter βitr,1/2 rises the following issue. With

such a choice we always assign a causal relationship, unless the solution of (4)
βi(λ) is identically zero. But how strong are these causal relationships compared
to each other? The norm ‖βji (λ)‖1 can be seen as a strongness indicator of the
causal relationship xi ← xj .

Let us now construct a matrix AGLG,opt;β
tr,1/2 , similarly to the adjacency matrix

AGLG,opt
tr,1/2 , where instead of the element 1 we put the norm ‖βji (λ)‖1, i.e.

AGLG,opt;β
tr,1/2 (i, j) =‖βji (λ

tr,1/2
opt,i )‖1 if ‖βji (λ

tr,1/2
opt,i )‖1 > βitr,1/2,

AGLG,opt;β
tr,1/2 (i, j) =0 otherwise.

This matrix is presented in Fig. 2. One observes that the false causal relationships
of the estimator AGLG,opt

tr,1/2 are actually weak. This observation suggests to use a

second thresholding that is done on the network, or adjacency matrix, level.
We propose to do the thresholding on the network level similarly to the

thresholding on the gene level. Namely, let us define the guideindicators of small-
ness on the network level similarly to (5):

Amin = min{ AGLG,opt;β
tr,1/2 (i, j) 6= 0 },

Amax = max{ AGLG,opt;β
tr,1/2 (i, j) }.

And similarly to (6), define the threshold on the network level as follows:

Atr,α1 = Amin + α1( Amax −Amin ). (7)

We find it suitable to call the described combination of the two thresholdings
on the gene and network levels as 2-levels-thresholding. The adjacency matrix
obtained by this thresholding strategy is the following:

AGLG,opt
tr,1/2;α1

(i, j) =1 if AGLG,opt;β
tr,1/2 (i, j) > Atr,α1 ,

AGLG,opt
tr,1/2;α1

(i, j) =0 otherwise.

It turns out that with α1 = 1/4 in (7) the optimal GLG-estimator can be
fully recovered.

6 An automatic realization of the GLG-method

For an automatic realization of the GLG-method, i.e. a realization that does
not rely on the knowledge of the true adjacency matrix Atrue, in addition to a
thresholding strategy one needs a choice rule for the regularization parameter
λ in (4). For such a choice, we propose to use the so called quasi-optimality
criterion [17, 2, 8]. Some details of the application of this criterion can be found
in [12].
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The reconstruction obtained by the GLG-method with the 2-levels-thresholding
and quasi-optimality criterion AGLG,qo

tr,1/2;1/4 is presented in Fig. 2. Its quality mea-

sures can be found in Table 2. One observes that there is a little decrease in
recall in comparison to the optimal GLG-method; however, this recall is the
same as for the GtrLG-method (Table 1). But due to the highest precision, the
F1-score remains to be higher than for the methods in Table 1. Thus, one may
say that the proposed realization of the GLG-method outperforms the methods
in Table 1.

Nevertheless, one may still wonder, why the proposed realization of the GLG-
method captures only the causal relationships of the most caused gene. It appears
that the value of the maximal lag L plays an important role in the selection of
the causal relationships.

In the modifications of the GLG-method the authors of [11, 15] considered
L = 3. All results presented so far were also obtained with L = 3. It turns out
that for L = 4 the optimal GLG-estimator (see Fig. 2) delivers a much better
reconstruction of the causality network. In particular, two more caused genes
are recovered.

The proposed automatic realization of the GLG-method with L = 4 (Fig. 2)
recovers an additional caused gene in comparison to the realization with L = 3.
Also, all considered quality measures for our automatic realization of the GLG-
method with L = 4 (Table 2) are considerably higher than for the methods in
Table 1. We would like to stress that no use of the knowledge of Atrue is needed
for obtaining AGLG,qo

tr,1/2;1/4, and no readjustment of the design parameters α, α1 is
necessary.

Table 2. Quality measures of the various GLG-estimators.

Fs P R F1

GLG-opt 6.2% 1 0.44 0.62

GLG-opt; tr, 1/2 14.8% 0.38 0.56 0.45

GLG-qo; tr, 1/2; 1/4 7.4% 1 0.33 0.5

GLG-opt, L = 4 3.7% 0.88 0.78 0.82

GLG-qo;L = 4;tr, 1/2; 1/4 7.4% 0.71 0.56 0.63

7 Conclusion and outlook

The proposed realization of the Graphical Lasso Granger method with 2-levels-
thresholding and quasi-optimality criterion for the choice of the regularization
parameter shows a considerable improvement of the reconstruction quality in
comparison to other graphical methods. So, the proposed realization is a very
promising method for recovering causality networks. Further tests and develop-
ments of the proposed realization are worthwhile. In particular, applications to
larger causality networks are of interest.
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Fig. 2. The adjacency matrix Atrue for the causality network in Fig. 1 and its various
GLG-estimators.

As an open problem for the future, one could consider a study of the choice
of the maximal lag and its possible variation with respect to the caused and
causing genes.
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5. M. Fornasier, editor. Theoretical foundations and numerical methods for sparse
recovery. Berlin: de Gruyter, 2010.

6. C. Granger. Investigating causal relations by econometric models and crossspectral
methods. Econometrica, 37:424–438, 1969.

7. M. Grasmair, M. Haltmeier, and O. Scherzer. Sparse regularization with lq penalty
term. Inverse Probl., 24(5):13, 2008.

8. S. Kindermann and A. Neubauer. On the convergence of the quasioptimality
criterion for (iterated) Tikhonov regularization. Inverse Probl. Imaging, 2(2):291–
299, 2008.

9. X. Li and et al. Discovery of time-delayed gene regulatory networks based on
temporal gene expression profiling. BMC Bioinformatics, 7(26), 2006.

10. D. A. Lorenz, P. Maass, and Q. M. Pham. Gradient descent for Tikhonov function-
als with sparsity constraints: theory and numerical comparison of step size rules.
Electronic Transactions on Numerical Analysis, 39:437–463, 2012.

11. A. C. Lozano, N. Abe, Y. Liu, and S. Rosset. Grouped graphical Granger modeling
for gene expression regulatory networks discovery. Bioinformatics, 25:110–118,
2009.
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