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Abstract

A steady-state analytical model has been developed to determine the thermohydraulic behaviour of a loop heat pipe
with a flat evaporator. Its main originality lies in the combination of energy balance equations for each component of the
system with 2D analytical solutions for the temperature field in the evaporator. Based on Fourier series expansion, heat
transfer in the wick as well as in the evaporator casing are accurately modelled, enabling a thorough consideration of the
parasitic heat fluxes. The model is based on the thermal contact resistance between the wick and the casing, the thermal
conductivity of the wick and the accommodation coefficient. This analytical method offers a simple solution that can
be implemented in LHP design analysis without the need of large computational resources. A sensitivity analysis has
been carried out to evaluate the influence of several parameters on the LHP behaviour. The results show that the main
parameters of the model are independent. Therefore, they could be experimentally determined using an appropriate test
bench with only few temperature measurements. The model has been validated with a set of experimental data from
the literature. A good agreement is found between the theoretical and the experimental results.
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1. Introduction

Loop Heat Pipes (LHP) are two-phase cooling systems
able to passively transport high amounts of heat over dis-
tances up to several meters. Developed in the 1970’s, these
devices have proven their reliability in many spatial appli-
cations and are now candidates for terrestrial cooling so-
lutions. Indeed, their specific design offers robustness and
flexibility for a wide variety of practical applications [1, 2].
As a consequence, many efforts have been dedicated

to understand their operation in order to optimize their
design. A LHP is a complex thermal system including
an evaporator connected to the heat source, a condenser
to dissipate the heat load and vapour and liquid lines
to transport the working fluid between both components.
Coupled thermo-hydraulic phenomena govern the LHP be-
haviour and need to be understood to enable a correct sys-
tem designing. Parameters such as evaporation efficiency,
heat losses to the ambient and parasitic heat flux in the
evaporator as well as condensation heat transfer can be of
great influence on the loop operation.
A lot of papers concerning LHP complete modelling can

be found in the literature [3–6]. However, these numerical
models often imply complex algorithms and large compu-
tational resources which are not always available for up-
stream pre-design applications. An analytical model offers
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the advantage to provide a solution without an excessive
computing time and that can be easily implemented. Some
analytical models of LHP are found in research works.
Maydanik et al.[7] (cited by Launay et al.[8]) suggested
a closed form solution of a LHP analytical model estab-
lishing the energy balance in the reservoir and the pres-
sure balance in the whole system. Furukawa[9] developed
a complete analytical model of a LHP able to enhance the
sizing of the system and to study the influence of many
geometrical parameters on the loop operation. However,
the model requires the operating temperature as input pa-
rameter. Yet in most cases, the evaporator temperature
is the main expected output of a LHP model. Launay
et al.[8] proposed closed-form expressions of the operat-
ing temperature of the LHP, for both the variable and the
fixed conductance mode. Their model is based on energy
balance equations on each system component and on ther-
modynamic equations. The thermal links in the reservoir
are defined as equivalent thermal resistances. Their solu-
tion is a useful tool in the LHP design. However, the heat
transfer in the evaporator is not accurately determined and
has to be adjusted in accordance with experimental data.
The purpose of the present study is to present a com-
plete analytical model of a Loop Heat Pipe accurately tak-
ing into account heat and mass transfer in the evaporator
structure. The model is developed for a flat disk-shaped
evaporator geometry. This model is based on the analyti-
cal study of Launay et al.[8]. However, the present study
rests upon two 2-D analytical solutions describing the tem-
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perature field in the wick and the evaporator casing. Both
solutions enable to determine parasitic heat losses through
the wick and the evaporator body, the sensible heat given
to the liquid flowing through the porous structure as well
as the heat dissipated by evaporation at the wick-groove
interface. A similar approach was implemented in the case
of conventional heat pipes by Lefèvre and Lallemand [10]
and later extended by Lips and Lefèvre [11]. These fea-
tures, coupled with energy balances and thermodynamic
relationships in the rest of the LHP, give a simple solution
for the operating temperature. An iterative procedure is
implemented to calculate the two-phase length in the con-
denser.

2. Model description

2.1. Analytical Model of the LHP

The thermal state of the complete LHP can be deter-
mined using energy balance equations and thermodynamic
relationships. Figure 1 presents the operating principle of
the LHP and the links between its components.
The total heat load to be dissipated by the evaporator

Qin is conducted through the wick or through the evapo-
rator body so that:

Qin = Qw +Qb (1)

The wick is assumed to be fully saturated with liquid. The
thermal heat flux Qw is transversally conducted through
the evaporator wall, the wall-wick interface and then di-
vides up: a partQev is evaporated at the wick-groove inter-
face whereas the rest is dissipated by conduction and con-
vection with the liquid flowing through the porous struc-
ture and with the liquid in the reservoir. Qb is conducted
longitudinally through the evaporator wall to the reservoir
and a part of it, Qext,e, is given by convection to the am-
bient. Both the heat flux through the wick Qw and the
heat flux conducted through the evaporator casing Qb are
functions of the reservoir, the groove, the wick and the
evaporator temperatures Tr, Tv, Twe and Te. The same
dependence applies for Qev and Qext,e:

Qw = f(Tr, Tv, Te) (2)

Qev = ṁlhlv = f(Tr, Tv, Twe) (3)

Qb = f(Tr, Te) (4)

Qext,e = f(Tr, Te) (5)

Qext,e is also a function of Text, which is a given data of
our model. As a result, the heat load Qin can also be
expressed as a function of these four temperatures:

Qin = f(Tr, Tv, Twe, Te) (6)

An analytical expression of Qin will be derived in subsec-
tions 2.2 and 2.3. The part of Qw that is not dissipated by
evaporation is the transversal parasitic heat flux. Part of
this flux is conducted through the wick and released to the
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Figure 1: LHP schematic nodal network

reservoir whereas the rest is dissipated by convection due
to the liquid flow inside the porous structure. At the inter-
face between the wick and the evaporator envelope, there
is a temperature gap Te-Twe due to a contact resistance Rc

defined as:

Rc = Sc
Te − Twe

Qw
(7)

where Sc is the contact surface between the wick and the
evaporator body and Te and Twe are the temperatures on
the envelope side and on the wick side, respectively.
A global heat balance on the evaporator/reservoir gives

the following equation:

Qin = Qev +Qsen +Qsub +Qext,e +Qext,r (8)

where Qsen is the sensible heat given to the liquid, Qsub

is the subcooling due to the liquid entering the reservoir
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and Qext,r is the heat flux dissipated to the ambient by the
reservoir. The determination of Qsen and Qsub leads to:

Qsen = ṁlcp,l (Tv − Tr) (9)

Qsub = ṁlcp,l (Tr − Tr,in) (10)

where Tr,in is the temperature of the liquid coming from
the condenser and flowing back to the reservoir.
To evaluate the heat transfer given by the reservoir to the
ambient, it is assumed that its surface is at a uniform
temperature equal to Tr. Heat transfer with the ambient
Qext,r is then approximated by:

Qext,r = hextSr (Tr − Text) (11)

where Sr is the total external surface of the reservoir. A
single expression of Qin can be derived by combining equa-
tions (3), (5) and (7) to (11):

Qin = f(Tr, Tv, Twe, Te, ṁl, Tr,in) (12)

In some cases, the reservoir can be full of liquid. This phe-
nomenon has been extensively studied by Adoni et al.[12].
In the present model, the existence of a two-phase equilib-
rium in the reservoir is assumed. As shown by Launay et

al. [8], a thermodynamic relationship exists between the
saturation temperature inside the grooves and the one at
the liquid-vapour interface in the reservoir:

∆T = Tv − Tr =

(

∂T

∂P

)

(∆Pv +∆Pl − ρlg∆H) (13)

where ρl is the liquid density and ∆H is the elevation of
the condenser compared to the evaporator. The slope of
the pressure-temperature saturation curve is given by the
Clausius-Clapeyron equation:

∂T

∂P
=

T (1/ρv − 1/ρl)

hlv
(14)

The model can also cope with non-condensable gases
(NCG), which can be generated for various reasons in the
LHP and accumulate in the reservoir, as explained by
Singh et al. [13]. We assume that in operating condi-
tions, these NCG are drained to the reservoir. In order to
take into account the overpressure generated by the NCG
PNCG, equation (13) is modified:

∆T = Tv − Tr =

(

∂T

∂P

)

(∆Pv +∆Pl − ρlg∆H + PNCG)

(15)
The vapour line is considered adiabatic so that the

vapour enters the condenser with a temperature equal to
Tv. Furthermore, the condensation temperature Tc and
the vapour temperature Tv are linked with the thermody-
namic relationship (14). Since the pressure drops in the
vapour line are low, it is assumed that condensation occurs
at temperature Tv (Tc ≈ Tv).
In the part of the condenser where liquid subcooling oc-

curs, heat transfer with the heat sink and with the ambient

are calculated considering a convective heat transfer hsink

and hext, respectively:

Tc,o = Tsink + (Tv − Tsink) (16)

× exp

(

−πDc,i (Lc − L2φ)

ṁlcp,l (1/hl +Dc,i/(hsinkDc,o))

)

where Tc,o is the temperature of the liquid at the condenser
outlet, Lc and L2φ are the lengths of the condenser and
of the two-phase region respectively. Dc,i and Dc,o are the
inner and outer condenser diameters. In a similar way, the
liquid line heat balance is:

Tr,in = Text + (Tc,o − Text) (17)

× exp

(

−πDl,iLl

ṁlcp,l (1/hl +Dl,i/(hextDl,o))

)

where Dl,i and Dl,o are the inner and outer diameters of
the liquid line and Ll its length. Additionally, in the con-
denser, the heat exchange with the heat sink in the two-
phase zone is equal to the latent heat of the condensing
vapour:

ṁlhlv =
1

1
hcondDc,i

+ 1
hsinkDc,o

πL2φ (Tv − Tsink) (18)

Equations (3), (7), (8), (12), (15) to (17) and (18) form
a set of 8 independent equations with 8 unknowns: Twe,
Te, Tr, Tr,in, Tc,o, Tv, ṁl and L2φ. Their solution leads
to the determination of the complete thermal state of the
LHP. The values of Qb, Qw and Qev (equations 2-4) can
be calculated using several methods. In the large majority
of LHP models from the literature, heat transfer in the
evaporator is simply described using equivalent thermal
resistances based on the geometrical characteristics and
the thermophysical properties of the evaporator. However,
such a method does not take into account adequately the
heat flux in the wick and the evaporator body since the
determination of the thermal resistances requires a 2D or
3D approach. Thus, in the present study, an accurate
thermal analysis of the evaporator has been conducted,
based on an analytical approach.

2.2. Analytical Thermal Model of the Wick

The first part of the analytical model of the evaporator
deals with heat and mass transfer inside the porous struc-
ture. As shown in Figure 2, a part of the porous wick is
modelled, bordered on one side by the liquid bulk of the
reservoir and by half of a fin and half of a groove on the
other side.
The 2-D stationary heat equation in the wick is expressed
as:

∂2Tw

∂x2
+

∂2Tw

∂y2
= 0 (19)

where Tw is the temperature of the porous structure and x
and y are the axis coordinates (Fig. 3). A non-dimensional
temperature is defined as:

T ∗

w =
λeff (Tw − Tr)

φ0b
(20)
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Figure 2: Evaporator cross-section

and leads to:

∂2T ∗

w

∂X2
+

1

B2

∂2T ∗

w

∂Y 2
= 0 (21)

with

X =
x

a
, Y =

y

b
and B =

b

a
(22)

where a and b are the lengths of the modelled region in the
x and y directions respectively, λeff is the wick effective
thermal conductivity and φ0 is an arbitrary heat flux.
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Figure 3: Schematic of the wick model

A general expression of the non-dimensional temperature
field expanded in 2-D Fourier series is given by:

T ∗

w(X,Y ) =
∞
∑

m=0

Am(Y )cos(mπX) +Bm(Y )sin(mπX)

(23)

For X = 0 and X = 1, an adiabatic boundary condition is
considered based on a symmetry hypothesis:

∂T ∗

w

∂X

∣

∣

∣

∣

X=0

=
∂T ∗

w

∂X

∣

∣

∣

∣

X=1

= 0 (24)

Thus equation (23) becomes:

T ∗

w(X,Y ) =

∞
∑

m=0

Am(Y )cos(mπX) (25)

Combining equations (21) and (25) yields:

− (mπB)2 Am(Y ) +
∂2Am(Y )

∂Y 2
= 0 (26)

Solving the previous differential equation leads to:

A0(Y ) = A01Y +A02 if m = 0 (27)

Am(Y ) = Am1e
mπBY +Am2e

−mπBY otherwise (28)

The boundary condition for Y = 0 is a set temperature
profile corresponding to the evaporator temperature Twe

for one side (x 6 a0) and to the groove temperature Tv for
the other side (x > a1). At the junction between the wall
and the groove, the temperature singularity is treated by
considering a linear variation of the temperature between
two fictive points a0 and a1. The slope of the temperature
gradient and thus the position of these points depend on
the maximum evaporation rate at the liquid-vapour inter-
face that can be calculated using the kinetic gas theory,
which gives a heat transfer coefficient hev [14]:

hev =
2aev

2− aev

ρvh
2
lv

Tsat

(

2πRTsat

M

)−0.5(

1−
Psat

2ρvhlv

)

(29)

where aev is the accommodation coefficient. Such an ap-
proach was already used in [15] to cope numerically with
the temperature singularity at the triple line. In the case
of the evaporation of a thin liquid film, the accommodation
coefficient is defined as the ratio of the actual evaporation
rate to a theoretical maximal phase change rate. A coef-
ficient equal to unity describes perfect evaporation while
a lower value represents incomplete evaporation. In the
case of water, values varying from 0.01 to 1 are suggested
in the literature [16]. We assume the following relationship
between hev and the position of a0 and a1:

hev =
λeff

a1 − a0
(30)

The boundary condition for Y = 0 is then defined as:

T ∗

w(X, 0) =























































λeff (Twe − Tr)

φ0b
if 0 < X 6

a0
a

λeff

φ0b

(

(Tv − Tr) + (Twe − Tv)
a1 − aX

a1 − a0

)

if
a0
a

< X <
a1
a

λeff (Tv − Tr)

φ0b
if

a1
a

6 X < 1

(31)
For Y = 1, the reservoir temperature is set:

T ∗

w(X, 1) = 0 (32)
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The non-dimensional temperature field is then:

T ∗

w(X,Y ) = A01Y +A02

+
∞
∑

m=1

(

Am1e
mπBY +Am2e

−mπBY
)

cos(mπX)

(33)

with

A01 = −
λeff

φ0b

(

Tv − Tr + (Twe − Tv)
a0 + a1

2a

)

(34)

A02 =
λeff

φ0b

(

Tv − Tr + (Twe − Tv)
a0 + a1

2a

)

(35)

Am1 = 2
λeff

φ0b

Twe − Tv

m2π2

a

a1 − a0

cos
(

mπ a0

a

)

− cos
(

mπ a1

a

)

1− e2mπB

(36)

Am2 = 2
λeff

φ0b

Twe − Tv

m2π2

a

a1 − a0

cos
(

mπ a0

a

)

− cos
(

mπ a1

a

)

1− e−2mπB

(37)

In equation (33), the liquid flow inside the porous
structure is not taken into account. This flow is two-
dimensional. However, in the present study, we assume
a 1D flow inside the wick, considering a homogeneous vol-
umetric source inside the wick q defined as:

q = −
4ṁlcp,l (Tv − Tr)

πD2
wb

(38)

where ṁl is the total liquid mass flow rate in the wick
and cp,l is the specific heat of the liquid. This assumption
respects the energy balance and enables to derive an ana-
lytical expression for the influence of the liquid flow inside
the wick. The superposition principle enables to add a
simple model of heat transfer in the wick with a homoge-
neous source to the previous developed analysis. It has to
be noted that a 2D approach of heat and mass transfer in
a porous wick was presented by Cao and Faghri [17], but
the model is not entirely analytical. The heat equation in
the wick is thus:

∂2Tc

∂y2
=

q

λeff
(39)

and the boundary conditions are:

Tc(y = 0)− Tc(y = b) = b2
q

λeff
(40)

Tc(y = b) = Tr (41)

This leads to the non-dimensional temperature field im-
plied by the liquid flow inside the wick:

T ∗

c =
qb

2φ0

(

Y 2
− 3Y + 2

)

(42)

This solution is added to the previous one to give a general
expression of the non-dimensional temperature field in the
wick, with consideration of 1-D convection:

T ∗

t = T ∗

w + T ∗

c (43)

The previously described model enables to calculate the
heat flux through the wick Qw and the heat dissipated by
evaporation Qev:

Qw =
Sw

a

∫

a0+a1
2

0

−λeff
∂Tt

∂y

∣

∣

∣

∣

y=0

dx (44)

= −Swφ0

[

a0 + a1
2a

(

A01 −
3qb

2φ0

)

+

∞
∑

m=1

B (Am1 −Am2) sin

(

mπ
a0 + a1

2a

)

]

Qev =
Sw

a

∫ a

a0+a1
2

λeff
∂Tt

∂y

∣

∣

∣

∣

y=0

dx (45)

= Swφ0

[(

1−
a0 + a1

2a

)(

A01 −
3qb

2φ0

)

−

∞
∑

m=1

B (Am1 −Am2) sin

(

mπ
a0 + a1

2a

)

]

2.3. Analytical Thermal Model of the Evaporator Body

The model of the wick is sufficient if the heat losses
through the evaporator body are negligible. Neverthe-
less, the body is usually made of a high conductive ma-
terial. Therefore, it is generally necessary to estimate the
heat transferred by conduction from the evaporator to the
reservoir and to the ambient. A second analytical model
is developed to describe the evaporator casing. As shown
in Figure 4, the evaporator wall is “unwrapped” and mod-
elled as a rectangular domain. At x = 0 and x = c, an
adiabatic condition is assumed due to the symmetry. At
y = 0, a convective heat transfer with the ambient is taken
into account on the whole external surface, including the
heating section (0 6 x 6 c0), where a heat flux φin is also
applied. The inner part of the body is highly influenced by
the reservoir temperature. The rectangular shape chosen
to represents the evaporator body does not consider the
effect of the grooves on the distortion of the temperature
field between the base plate and the wick. We assume,
therefore, a set temperature profile, with the evaporator
temperature Te on one side (0 6 x 6 c0) and the reservoir
temperature Tr on the other side (c1 6 x 6 c) with a linear
profile in-between.

The sum of two solutions is necessary to take into ac-
count the complete set of boundary conditions. The first
one corresponds to a set temperature profile in the inner
part of the wall, in contact with the wick and the liquid-
vapour bulk in the reservoir. Convective heat losses to the
ambient are assumed for the whole external surface of the
evaporator/reservoir. This hypothesis considers that the
electronic component to cool down dissipates heat with the
LHP on one side and with the ambient on the other. The
second solution adds the heat input to the evaporator.
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Using the same mathematical procedure as previously,
the heat equation becomes:

∂2T ∗

b

∂X2
+

1

D2

∂2T ∗

b

∂Y 2
= 0 (46)

where:

X =
x

c
; Y =

y

d
; D =

d

c
; T ∗

b =
λb (Tb − Tr)

φ0d
(47)

The boundary conditions for the first solution T ∗

b1 are:

∂T ∗

b1

∂X

∣

∣

∣

∣

X=0

=
∂T ∗

b1

∂X

∣

∣

∣

∣

X=1

= 0 (symmetry) (48)

∂T ∗

b1

∂Y

∣

∣

∣

∣

Y=0

= BibT
∗

b1 +
hext

φ0
(Tr − Text)

with Bib =
dhext

λb

(49)

T ∗

b1(X, 1) =































λb (Te − Tr)

φ0d
if 0 < X 6

c0
c

λb

φ0d
(Te − Tr)

c1 − cX

c1 − c0
if

c0
c

6 X <
c1
c

0 if
c1
c

< X < 1

(50)

whereas for the second solution T ∗

b2:

∂T ∗

b2

∂X

∣

∣

∣

∣

X=0

=
∂T ∗

b2

∂X

∣

∣

∣

∣

X=1

= 0 (51)

∂T ∗

b2

∂Y

∣

∣

∣

∣

Y=0

=











−
φin

φ0
if 0 < X 6

c0
c

0 if X >
c0
c

(52)

T ∗

b2(X, 1) = 0 (53)

The combination of equations (46) to (53) and the addition
of both solutions lead to the non-dimensional temperature
field in the evaporator body:

T ∗

b (X,Y ) = C01Y + C02

+

∞
∑

m=1

(

Cm1e
mπDY + Cm2e

−mπDY
)

cos(mπX)

(54)

with

C01 =
Bib

Bib + 1

λb

φ0d

(

(Te − Tr)
c0 + c1

2c
+ (Tr − Text)

)

−
c0
c

φin

φ0
(55)

C02 =
1

Bib + 1

λb

φ0d

(

(Te − Tr)
c0 + c1

2c
−Bib (Tr − Text)

)

+
c0
c

φin

φ0
(56)

Cm1 = 2
λb

φ0d

Te − Tr

m2π2

c

c1 − c0

cos
(

mπ c0
c

)

− cos
(

mπ c1
c

)

emπD + mπD+Bib
mπD−Bib

e−mπD

− 2
φin

φ0

1

m2π2D
sin
(

mπ
c0
c

) 1

1 + e2mπD
(57)

Cm2 = 2
λb

φ0d

Te − Tr

m2π2

c

c1 − c0

cos
(

mπ c0
c

)

− cos
(

mπ c1
c

)

e−mπD + mπD−Bib
mπD+Bib

emπD

+ 2
φin

φ0

1

m2π2D
sin
(

mπ
c0
c

) 1

1 + e−2mπD
(58)

The heat dissipated to the ambient in the evaporator
section of the body is:

Qext,e =

∫ c0

0

hextπx (Tb(x, 0)− Text) dx (59)

+

∫ c1

c0

hextπc0 (Tb(x, 0)− Text) dx

= hextπc0

(

c1 −
c0
2

)

(

Tr − Text +
φ0d

λb
C02

)
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+ hextπ
φ0d

λb

∞
∑

m=1

(Cm1 + Cm2)
c

mπ

×

( c

mπ

(

−1 + cos
(mπc0

2

))

+
c0
mπ

sin
(

mπ
c1
c

))

The heat transferred by thermal conduction through the
evaporator body to the reservoir section is calculated by
integrating the Fourier’s law at y = c1 (Fig. 4). Thus, the
total heat losses through the body is:

Qb = Qext,e +

∫ d

0

−πc0λb
∂Tb

∂x

∣

∣

∣

∣

x=c1

dy (60)

= Qext,e + dc0φ0

∞
∑

m=1

π sin
(

mπ
c1
c

)

×
(

Cm1

(

emπD
− 1
)

− Cm2

(

e−mπD
− 1
))

2.4. Solving procedure

The solving procedure is presented in Figure 5. The set
of equations is not linear. Thus an iterative procedure is
used to solve it. After initialisation of the parameters of
the model, the two-phase length in the condenser L2φ is
set, according to the energy balance for a given heat input
Qin (18). L2φ has a major influence on the determination
of the temperature of the liquid entering in the reservoir
Tr,in (equations 16-17). Then, the thermophysical prop-
erties are calculated, as well as the pressure drops in the
transport lines.
K-coefficients can be defined to reformat the expression

of Qw, Qev, Qb and Tr,in as functions of Tr, Tv, Te and
Twe:

Qw = K1Tr +K2Tv +K3Twe using (34,36,37,44)
(61)

Qev = K4Tr +K5Tv +K6Twe using (34,36,37,45)
(62)

Qext,e = K10Tr +K11Te +K12 using (56,57,58,59)
(63)

Qb = K7Tr +K8Te +K9 using (57,58,60,63)
(64)

Tr,in = K13Tv +K14 using (16,17) (65)

The detailed expression of these coefficients is presented
in Appendix A. Equations (1,7-11, 15-17,61-65) are solved
and give a second-order expression which enables to cal-
culate the vapour temperature Tv (see Appendix B).
This procedure is iterated until the energy balance is

satisfied in the condenser (equation 18). The same method
is computed for each heat input Qin(i). Since the heat
transfer coefficient with the heat sink is generally much
lower than the condensation heat transfer coefficient, the
condensation thermal resistance is neglected to simplify
equation (18).
Equation (15) is a function of the pressure drops ∆Pv

and ∆Pl. These parameters, due to the friction forces in

Parameter initialization, Qin(1)

Setting of the two-phase
length in the condenser

L2φ according to Eq. (18)

Calculation of the thermophysical
properties and the pressure drops

Calculation of the K-
coefficients (See Appendix A)

Determination of the vapour
temperature Tv (Eq. B.1)

Is the energy balance in
the condenser (Eq. 18)

satisfied?

Qin(i + 1) = Qin(i) + ∆Qin

Qin(i + 1) > Qmax

Plot of the operating curve

yes

no

no

yes

Figure 5: Solving algorithm flowchart

the vapour and the liquid lines, depend on the fluid flow
regime. They are calculated as follows:

∆P =
f

2ρD

(

ṁ

A

)2

L (66)

where A is the cross-section area of the tube. For a smooth
tube wall of diameter D and length L, the friction factor
f is expressed by:

f =











64/Re if Re ≤ 2000

0.032 if 2000 < Re < 9150

0.316Re−0.25 if Re ≥ 9150

(67)

Equation (15) also includes the pressure of non-
condensable gases PNCG. In order to take into account
the NCG, it is necessary to calculate the liquid level in the
reservoir that depends on the heat load. We assume that
the void fraction of the two-phase flow in the condenser is
0.5 and that the vapour density is negligible compared to
the liquid density. The liquid level el in the reservoir is
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therefore expressed as:

el =
1

Sw

(

mf

ρl
− εSwew −

LlπD
2
l,i

4
−

(Lc −
1
2L2φ)πD

2
c,i

4

)

(68)
where mf is the total fluid charge in the system and ew is
the wick thickness. The total volume of NCG and vapour
in the reservoir Vv is equal to:

Vv = Sw (er − el) (69)

with er the thickness of the reservoir. Considering the non-
condensable gases as ideal gases, their partial pressure is
calculated by:

PNCG =
mNCGRTr

MNCGVv
(70)

where R is the ideal gas constant and mNCG and MNCG

are the NCG total mass and the molar mass, respectively.
To solve equations (16-18), the heat sink heat transfer

coefficient hsink is determined in accordance with the con-
denser design, whereas the heat transfer coefficient of the
liquid hl is calculated assuming a laminar fully-developed
flow and a constant Nusselt number NuD = 4.36 [18].
Equations (11) and (17) depend on the heat transfer

coefficient with the ambient hext. It is given by the corre-
lation of Churchill and Chu [18] for free convection on the
surface of an isothermal cylinder:

hext =
λair

D






0.60 +

0.387Ra
1
6

D
(

1 + (0.559/Pr)
9
16

)
8
27







2

(71)

This correlation is valid for Rayleigh numbers RaD lower
than 1012. The determination of the effective thermal con-
ductivity of the porous structure will be discussed in the
next section.

3. Results and discussion

This section presents a sensitivity analysis to show the
influence of different parameters on the LHP performance.
The LHP geometry considered for this analysis is similar
to standard systems used for electronic cooling applica-
tions. Its geometrical characteristics are based on the ex-
periments of Singh et al.[19] and Choi et al.[20]. A valida-
tion of the model is presented in the last paragraph.

3.1. Standard case

The properties of this “ standard” LHP, having a flat
disk-shaped evaporator, is defined in Table 1. The system
is supposed to be in horizontal orientation. The wick is
made of nickel and the working fluid is water. The main
parameters for the wick are the effective thermal conduc-
tivity, the accommodation and the contact thermal resis-
tance between the wick and the casing.

Extensive studies have been undertaken to develop mod-
els able to predict accurately the effective thermal conduc-
tivity of a porous structure. Thus, many different corre-
lations can be found in the literature to determine the
effective thermal conductivity of a porous material [21–24]
Table 2 presents the results obtained for a nickel wick of
75% porosity saturated with water, using various correla-
tions. This thermophysical property depends not only on
the conductivity of the materials constituting the wick but
also on geometrical parameters such as the porosity, the
mean pore diameter and the pore size distribution. The
results are very different according to the chosen correla-
tion. This shows that this parameter is difficult to evalu-
ate accurately. For the standard case, an effective thermal
conductivity equal to 5W ·m=1 ·K=1 is chosen, which cor-
responds to the wick properties of Singh et al.[19].

Correlation λeff (W · m=1
·K=1)

Alexander 5.82
Chaudhary-Bandhari 4.06
Maxwell 16.96
Parallel scheme 23
Zehner-Schlunder 1.75

Table 2: Effective thermal conductivity calculation with a water-
saturated nickel wick, 75% porosity

Information from the literature concerning the thermal
contact between a porous structure and a solid base plate
is very scarce. This parameter depends on many geomet-
rical and manufacturing characteristics. Choi et al.[20] in-
vestigated new techniques to enhance the thermal contact
conductance of evaporators in LHPs. Several channel de-
signs have been tested and compared. An estimation of the
contact thermal resistance (including in practice thermal
conduction in the base plate, in the wick and an evapora-
tion resistance) is given and values ranging from 7 · 10=5

to 3 · 10=4m2 ·K ·W=1 have been obtained. Based on this
work, a constant contact resistance of 10=4m2 ·K ·W=1 is
chosen for the standard case.

Although the accommodation coefficient is a key pa-
rameter in the determination of the LHP temperature, its
value is very difficult to predict. In the literature, several
studies are dedicated to the determination of this param-
eter for various fluids[16]. However, the scattering of the
results confirms the difficulty of describing the evapora-
tion accurately. For water, values ranging from 0.01 to 1
have been found. Therefore, an accommodation coefficient
equal to 0.1 is chosen for the standard case.

The temperatures at different locations in the LHP are
plotted in Figure 6 for heat inputs ranging between 10W
and 110W. A temperature difference of several degrees be-
tween Te and Twe shows the impact of the thermal contact
resistance between the wick and the casing, particularly at
high heat inputs. Since the mass flow rates in the trans-
port lines and the condenser are moderate due to the high
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Evaporator design Flat disk-shaped
Wick diameter 40mm
Wick thickness 3mm
Wick effective thermal conductivity 5W · m=1

· K=1

Vapour groove width 1mm
Wick-wall contact resistance 10=4 K · m2

·W=1

Accommodation coefficient 0.1
Reservoir depth 10mm
Evaporator diameter 41mm
Evaporator wall material Stainless steel
Working fluid Water
Fluid charge 7 g
Condenser and transport lines i/o diameters 2/2.4mm
Transport lines length 200mm
Condenser length 100mm
Heat sink temperature 22 ◦C
Heat transfer coefficient with the heat sink 2000W · m=2

· K=1

Ambient temperature 22 ◦C
Heat transfer coefficient with the ambient 5W · m=2

· K=1

Table 1: Definition of the standard LHP for the sensitivity analysis

latent heat of vaporization of water, pressure drops in the
loop are not significant. Therefore, the saturation temper-
atures in the reservoir and in the grooves, Tr and Tv, are
almost equal. The values of Tc,o and Tr,in are also very
similar because the heat transfer between the liquid line
and the ambient is limited.
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Figure 6: Temperature of the LHP in the standard case

A clear transition between the variable conductance
mode and the fixed conductance mode is observed around
60W. For lower heat inputs, the temperature of the liquid
exiting the condenser is constant and equal to the heat

sink temperature. Above this point, Tc,o starts to increase
and the shape of all the temperature curves in the LHP is
quasi-linear.
Figure 7 shows the temperature in the porous structure

in the standard case, for a total heat load Qin of 50W. For
y = 0mm, the temperature profile shows a sharp discon-
tinuity at the transition between the groove and the fin.
The intense evaporation occurring at x = 0.5mm causes
the convergence of the heatlines toward this point and a
sharp distortion of the lines in its neighbourhood. As y in-
creases, the temperature profile flattens until the temper-
ature is uniform in the x-direction for y > 2mm. Then,
the alternation between the fin and the groove does not
have any influence and the temperature field in the wick
in contact with the liquid bulk of the reservoir is uniform.
As defined in Equation 13, the difference between the

groove temperature and the reservoir temperature is set
only by the pressure losses in the transport lines, the
hydrostatic pressure difference and the non-condensable
gases partial pressure. Smooth tubes with a relatively
large diameter lead to reduced pressure losses. There-
fore, the LHP operates with a groove temperature and
a reservoir temperature almost equal. As a consequence,
the convective cooling due to the liquid flow in the wick is
extremely low and heat transfer in the porous structure is
mainly controlled by heat conduction.
Figure 8 shows the effect of non-condensable gases on

the evaporator temperature. Various quantities of air
ranging between 1 µg and 200µg are simulated in the reser-
voir. For a NCG mass below 10µg, corresponding to a
partial pressure PNCG equal to about 400Pa, NCG do not
have a determinant influence on the evaporator temper-
ature. However, when the mass of NCG in the LHP is
larger, its partial pressure is more important than the sum
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Figure 7: 2-D temperature field in the wick

of the pressure drops in the whole loop. The influence of
NCG becomes then important at low heat input, leading
to a significant increase of the evaporator temperature. As
a consequence, the shape of the characteristic curve of the
LHP is flattened.
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Figure 8: Influence of the NCGs on the evaporator temperature

These results are in accordance with Singh et al.’s exper-
imental study [13]. Their work shows that the net effect of
the generated NCG in the LHP was to produce an overall

rise in the steady-state operating temperature. Besides, it
was observed that the performance degrading effect of the
NCG was more pronounced at low heat loads.

3.2. Sensitivity analysis

The LHP operation depends on many distinct param-
eters: the geometrical design (size, shape) of the system,
the thermophysical properties of the working fluid and of
the materials of the loop elements, the heat transfer char-
acteristics inside and outside the LHP and the pressure
losses in the system. Most of these parameters are easy
to determine if the LHP geometry and the working fluid
properties are known. However, some parameters are very
difficult to determine precisely theoretically as it has been
seen in the previous section: the effective thermal con-
ductivity of the wick λeff, the contact resistance between
the wick and the evaporator envelope Rc and the accom-
modation coefficient aev. Furthermore, the heat sink heat
transfer coefficient hsink and the heat transfer coefficient
with the ambient hext are also calculated using correlation
being inherently inaccurate. Thus, in the present section,
a sensitivity analysis is conducted on these parameters to
see their influence on the model.
The sensitivity coefficient of the function T =

f(xi, xj, xk, ...) in relation to the parameter xi is defined
as:

Si =
∂T

∂xi

∣

∣

∣

∣

xj,xk,...

(72)

In order to compare several parameter sensitivities, it is
convenient to define relative sensitivities:

S∗

i = xiSi = xi
∂T

∂xi

∣

∣

∣

∣

xj,xk,...

(73)

This coefficient enables to quantify the variation ∆T
caused by a relative variation ∆xi/xi of the parameter xi.
The greater the absolute value of the coefficient, the more
the function is sensitive to the parameter.
Unless otherwise mentioned, the sensitivity analysis is

conducted with the standard LHP defined in Table 1. A
slight variation (5%) of each studied parameter is applied,
the value of the other parameters being constant. This
effect on the temperatures at different locations of the LHP
is predicted by the model.
Figure 9 presents the relative sensitivity of Te, Tv, Tr,in

and Tc,o to the heat transfer coefficient with the ambient.
Sensitivities of Te and Tv are significant for low heat inputs
and decrease with the heat load. Heat transfer with the
ambient cools the loop down and leads to a lower opera-
tional temperature. As expected, hext does not have any
influence on Tr,i and Tc,o in variable conductance mode
because their value is only set by the heat sink. For higher
heat loads, the increase of the heat losses to the ambi-
ent lead to a lower operational temperature. As a conse-
quence, a larger part of the condenser is used to conden-
sate the vapour, the subcooling length in the condenser is
smaller and Tc,o increases. The same effect is observed on
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Tr,in, but partially offset by the heat losses from the liquid
line to the ambient.
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Figure 9: Relative sensitivity of the LHP temperatures to hext

In many experimental configurations, an adequate ther-
mal insulation of the entire LHP enables to reduce con-
siderably the heat losses to the ambient. In the following,
this parameter is set to zero in order to better highlight
the effect of the other parameters on the LHP.
The relative sensitivity of the vapour temperature to

the other parameters is shown in Figure 10. It is clear
that heat transfer inside the evaporator (function of the
parameters λeff, Rc and aev) governs the operation in vari-
able conductance mode whereas at high heat loads, hsink

becomes the dominant parameter. Indeed, at low heat
loads, Tc,o equals Tsink so the heat transfer coefficient with
the heat sink has no influence on the subcooling of the
liquid and on the LHP operation in general. In fixed con-
ductance mode, heat transfer in the condenser sets the
LHP operational temperature and the sensitivity of Tv to
hsink is linear. The parameters aev, λeff and Rc have a
moderate influence on the vapour temperature and this
influence decreases as the heat load increases.
The relative sensitivity of Te to the same parameters is

shown in Figure 11. The influence of the accommodation
coefficient and of the heat transfer with the heat sink is
almost the same as for Tv. However, the sensitivities to
Rc and λeff have a different behaviour. While the contact
resistance has a limited effect on Tv, its influence on Te

is large and increases with the heat input. Indeed, the
difference between Te and Twe is proportional to the heat
transfer rate Qw and to Rc. As the heat input Qin in-
creases, Qw increases almost linearly and leads to a higher
sensitivity of Te to the contact resistance.
The particular shape of the relative sensitivity of Te to
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Figure 10: Relative sensitivity of Tv to various parameters

λeff is discussed in the following; it requires a more detailed
analysis on the effect of λeff on the LHP thermal behaviour.
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Figure 11: Relative sensitivity of Te to various parameters

Figure 12 shows the variation of the vapour tempera-
ture with the effective thermal conductivity of the wick
for several heat loads. An optimal value of λeff is found
between 1 and 2W ·m=1 ·K=1 whatever the heat input.
This minimum value of Tv is a consequence of the evolution
of the heat transferred from the casing to the evaporation
zone. As the thermal conductivity of the wick increases,
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the heat entering the wick becomes larger at the expense
of the longitudinal parasitic heat flux. Figure 13 shows the
distribution of heat transfer in the evaporator. The largest
part of the heat load Qin enters the wick (Qw), whereas
the rest is thermally conducted through the evaporator
body (Qb). When the value of λeff is very low, increas-
ing the conductivity enhances both the evaporation (Qev)
and the transversal parasitic heat flux (Qw −Qev). When
λeff exceeds 1W ·m−1 ·K−1, the increase of the heat flux
entering the wick Qw is smaller, leading to an increase of
the transversal parasitic heat flux at the expense of Qev,
that decreases as λeff becomes larger. The maximum evap-
oration heat flux leads to a minimum vapour temperature
(Figure 12). The same conclusion has been drawn in the
numerical study of Siedel et al.[15].
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Figure 12: Influence of λeff on Tv

The evolution of the temperature difference Te−Tv with
λeff for several heat inputs is given in Figure 14. As ex-
pected, this difference decreases when the thermal con-
ductivity of the wick increases. Indeed, a higher value of
λeff leads to lower thermal resistances in the evaporator
(Figure 1). Figure 15 presents the evolution of Te with
λeff, which is a consequence of the results obtained in fig-
ures 12 and 14. An optimal effective thermal conductivity
exists, for which Te is minimal. However, its value is also
dependent on the heat input Qin, contrary to the tem-
perature of the vapour (Figure 12). The optimal value of
λeff (obtained for the minimum value of Te) increases from
2W ·m=1 ·K=1 to 10W ·m=1 ·K=1 with the increase of
the heat input from 10W to 110W. Therefore, there is
not an optimal value of the thermal conductivity of the
wick but a range of optimal values depending on the heat
load.

Figure 15 shows that at a given λeff (for example

0.5 1 2 3 5 10 20
0

5

10

15

85

90

95

100

λ
eff

 (W.m-1.K-1)
Q

/Q
in

 (
%

)

 

 

Q
w

Q
ev

Q
w
-Q

ev

Q
b

≈

Figure 13: Distribution of heat transfer in the evaporator (Qin =
50W)

5W ·m=1 ·K=1 in the standard case), the sign of the
slope of the temperature curve changes as the heat flux
increases. As a consequence, the sign of the sensitivity of
Te to λeff changes when increasing the heat load, as it is
shown in Figure 11. This is not the case for Tv, since the
minimum of the curves Tv(λeff) does not depend on the
heat flux (Figure 12).
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Figure 14: Influence of λeff on Te − Tv

This sensitivity analysis shows that the main parame-
ters of the model are independent. Therefore, their in-
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Figure 15: Influence of λeff on Te

fluence can be differentiated from each other. Thus, the
availability of precise experimental data of several repre-
sentative temperatures of the LHP for various heat inputs
may theoretically lead to a precise determination of these
parameters and provide the model with adequate input
parameters. This sensitivity analysis also shows the large
influence of the tested parameters on the LHP operation.
Their inaccurate determination can lead to a major error
on the LHP operation prediction.

3.3. Model validation

The present analytical model is compared to an ex-
perimental data set from Singh et al. [19] for a valida-
tion purpose. These authors studied the operational char-
acteristics of a flat disk-shaped evaporator LHP, 30mm
in diameter, using water as working fluid. The 3mm
thick porous wick is made of sintered nickel and its ther-
mal effective conductivity is considered equal to about
5.87W ·m=1 ·K=1 using Alexander’s formula and based
on Singh et al.’s study[22]:

λeff = λl

(

λl

λwm

)

−(1−ε)0.59

(74)

where λl and λwm are the thermal conductivities of the
liquid and of the wick material respectively and ε is the
porosity, equal to 75%. The wick is embedded in a copper
evaporator. The vapour and liquid lines, of internal diame-
ter 2mm, are 150mm and 290mm long respectively. A fin-
and-tube condenser, 50mm long, dissipates heat by forced
convection of air at ambient temperature (i.e. 22 ◦C).
No parasitic heat transfer through the evaporator body is
taken into account, since an O-ring seal prevents heat con-
duction to the reservoir. Figure 16 shows the comparison

between the experimental results and the calculated tem-
peratures of the evaporator wall and of the vapour in the
grooves. A good agreement is found between the experi-
mental data and the model. Several unknown parameters
were identified by comparison of the predicted values with
the experimental data of Singh et al.: the heat transfer co-
efficient between the condenser wall and the heat sink, the
evaporator wall thickness, the contact resistance and the
accommodation coefficient. As a result, a straight-tube
equivalent condenser is simulated with a heat transfer co-
efficient hsink fixed to 3.2 kW ·m=2 ·K=1, considering an
outside diameter of 2.4mm for the tubes. The accommo-
dation coefficient is equal to 0.4. The value of Rc is set to
10=5K ·m2 ·W=1. The value of Rc that enables to fit at
best the results is very small, but it has to be noted that Tv

is not really the experimental measurement of the vapour
temperature, but the temperature of the tube at the exit
of the evaporator. Therefore, these experimental results
are not sufficient to estimate accurately the parameters.
Nevertheless, the order of magnitude of the parameters
are close to the one defined for the standard case.
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Figure 16: Comparison between the model and data from Singh et

al. [19]

4. Conclusion

In this paper, a complete analytical model of a LHP has
been developed. Its originality lies in the combination of
energy balance equations for each component of the sys-
tem with analytical solutions for the temperature field in
the evaporator. Based on Fourier series expansions, heat
transfer in the wick as well as in the evaporator casing are
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accurately modelled. This analytical method offers a sim-
ple solution that can be implemented in LHP design anal-
ysis without the need of large computational resources.
A sensitivity analysis has been undertaken to assess the
influence of five parameters on the loop operation. This
analysis enables a better comprehension of the operating
mechanisms of the LHP as well as a comparative study of
the parameters affecting its temperatures. It appears that
these parameters can be experimentally determined using
an appropriate test bench with only few temperature mea-
surements.
This model has been validated with a set of experimental
data from the literature. A good agreement has been met
between the simulation and the experimental results.
The model results show that convection inside the wick
does not play a major role and can be neglected. More-
over, the temperature field in the wick is almost uniform
far from the grooves.
In accordance with experimental data from the literature,
the presence of NCGs in the reservoir leads to an increase
of the evaporator temperature. This degrading effect is
more pronounced at low heat loads.

Nomenclature

A Fourier series coefficient
cross-sectional area [m2]

a, a0, a1 length [m]
aev accommodation coefficient
B length ratio

Fourier series coefficient
b length [m]
C Fourier series coefficient
c, c0, c1 length [m]
cp specific heat [J.kg−1.K−1]
D diameter [m]

length ratio
d length [m]
e thickness [m]
f friction factor
g gravitational acceleration [m.s−2]
H height [m]
h heat transfer coefficient [W.m−2.K−1]
hlv enthalpy of vaporization [J.kg−1]
K coefficient
L length [m]
M molar mass [kg.mol−1]
m,n Fourier series increment
mf total fluid charge [kg]
ṁ mass flow rate [kg.s−1]
P pressure [Pa]
Q heat transfer rate [W ]
q volumetric heat source [W.m−3]

Rc contact resistance [K.m2.W−1]
S surface area [m2]
Si absolute sensitivity
S∗

i relative sensitivity
T temperature [K]
T ∗ non-dimensional temperature
V volume [m3]
X,Y non-dimensional coordinates
xi,j,k sensitivity parameter
x, y axis coordinates [m]

Greek Symbols

∆ difference
ε porosity
λ thermal conductivity [W.m−1.K−1]
φ, φ0 heat flux [W.m−2]
ρ density [kg.m−3]

Subscripts

2φ two-phase
air air
b evaporator body
c condenser, convective, contact
e evaporator
eff effective
ev evaporation
ext external, ambient
i inner
in input, inlet
l liquid
NCG non condensable gas
o outlet, outer
r reservoir
sen sensible
sink heat sink
sub subcooling
t total (including convection)
v vapour
w wick
we wick side of the wick-envelope interface
wm wick material

Non Dimensional Numbers

Bi Biot number
Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
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Appendix A. Detailed expression of the K-coefficients
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+ ṁlcp,l

6

πD2
w

)

(A.1)

K2 = Sw

[

∞
∑

m=1

2
λeff

a1 − a0

1

m2π2
sin

(

mπ
a0 + a1

2a

)

(

cos
(mπa0

a

)

− cos
(mπa1

a

))(

(

1− e2mπB
)

−1
−
(

1− e−2mπB
)

−1
)

+
a0 + a1

2a

(

λeff

b

(

1−
a0 + a1

2a

)
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Appendix B. Second order equation for the determination of Tv

0 =T 2
v [cp,l (1−K13) (K6 (K1 +K2 +K7)− (K4 +K5) (K3 +K8) +K8Rc/Sc (K6 (K1 +K2)−K3 (K4 +K5)))]

+ Tv [cp,l (1−K13) ((K3 +K8)K4∆T + (K3K4 −K1K6)K8∆TRc/Sc +K6 (−K1∆T −K7∆T +K9 −Qin))

+ (hlv − cp,lK14) (K6 (K1 +K2 +K7 +K8 (K1 +K2))− (K4 +K5) (K3 +K8 +K3K8Rc/Sc)) (B.1)

+hlv (K11 (K1 +K2 +K7 +K3K7Rc/Sc)− (K3 +K8 +K3K8Rc/Sc) (K10 + hextSr))]

+ cp,lK14 (K6 (Qin −K9) + ∆T (K6 (K1 +K7 +K1K8Rc/Sc)−K4 (K3 +K8 +K3K8Rc/Sc)))
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+ hlv∆T ((K3 +K8) (K4 +K10)− (K6 +K11) (K1 +K7) +K3K8 (K4 +K10)Rc/Sc − (K3K7K11 +K1K6K8)Rc/Sc)

+ hlv ((K3 +K8 +K3K8Rc/Sc) (Qin −K12 + hextSr (∆T + Text))− (K6 +K11 +K3K11Rc/Sc) (Qin −K9))
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