H. Ammari and F. Santosa, Guided waves in a photonic bandgap structure with a line defect, SIAM J. Appl. Math, vol.64, issue.6, pp.2018-2033, 2004.

Y. Avishai and J. M. Luck, Quantum percolation and ballistic conductance on a lattice of wires, Physical Review B, vol.13, issue.3, p.1074, 1992.
DOI : 10.1080/00018736400101061

F. L. Bakharev, S. A. Nazarov, and K. M. Ruotsalainen, A gap in the spectrum of the Neumann???Laplacian on a periodic waveguide, Applicable Analysis, vol.32, issue.5, pp.1889-1915, 2013.
DOI : 10.1051/m2an/1998320505791

G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, volume 186 of Mathematical Surveys and Monographs

L. Berlyand, G. Cardone, Y. Gorb, and G. Panasenko, Asymptotic analysis of an array of closely spaced absolutely conductive inclusions, Netw. Heterog. Media, vol.1, issue.3, pp.353-377, 2006.

M. Sh, M. Z. Birman, and . Solomjak, Spectral theory of selfadjoint operators in Hilbert space Mathematics and its Applications (Soviet Series). D, 1987.

G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Mathematica, vol.78, issue.0, pp.1-96, 1946.
DOI : 10.1007/BF02421600

B. M. Brown, V. Hoang, M. Plum, and I. Wood, Spectrum created by line defects in periodic structures, Mathematische Nachrichten, vol.33, issue.1, pp.17-181972, 2014.
DOI : 10.1007/BF02790171

B. M. Brown, V. Hoang, M. Plum, and I. Wood, On the spectrum of waveguides in planar photonic bandgap structures, Proc. A, p.47120140673, 2015.
DOI : 10.1137/100791798

R. Carlson, Adjoint and self-adjoint differential operators on graphs, Electronic Journal of Differential Equations, vol.6, pp.1-10, 1998.

B. Delourme, S. Fliss, P. Joly, and E. Vasilevskaya, Trapped modes in thin and infinite ladder like domains: existence and asymptotic analysis, INRIA Research Report, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01287023

M. S. Eastham, The spectral theory of periodic differential equations, 1973.

P. Exner, Lattice kronig-penney models. Physical review letters, p.3503, 1995.

P. Exner, Contact interactions on graph superlattices, Journal of Physics A: Mathematical and General, vol.29, issue.1, p.87, 1996.
DOI : 10.1088/0305-4470/29/1/011

A. Figotin and A. Klein, Localized classical waves created by defects, Journal of Statistical Physics, vol.18, issue.6, pp.165-177, 1997.
DOI : 10.1007/BF02180202

A. Figotin and A. Klein, Midgap defect modes in dielectric and acoustic media, SIAM J. Appl. Math, vol.58, issue.6, pp.1748-1773, 1998.

A. Figotin and P. Kuchment, Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model, SIAM Journal on Applied Mathematics, vol.56, issue.1, pp.68-88, 1996.
DOI : 10.1137/S0036139994263859

A. Figotin and P. Kuchment, Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals, SIAM Journal on Applied Mathematics, vol.56, issue.6, pp.1561-1620, 1996.
DOI : 10.1137/S0036139995285236

N. Filonov, Second-order elliptic equation of divergence form having a compactly supported solution, Journal of Mathematical Sciences, vol.106, issue.3, pp.3078-3086, 2001.
DOI : 10.1023/A:1011379807662

S. Fliss, Etude mathématique et numérique de la propagation des ondes dans des milieux périodiques localement perturbés, 2009.

S. Fliss, A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides, SIAM Journal on Scientific Computing, vol.35, issue.2, pp.438-461, 2013.
DOI : 10.1137/12086697X

URL : https://hal.archives-ouvertes.fr/hal-00937675

L. Friedlander, Absolute continuity of the spectra of periodic waveguides, Contemporary Mathematics, vol.339, pp.37-42, 2003.
DOI : 10.1090/conm/339/06098

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations Theory and algo- rithms, of Springer Series in Computational Mathematics, 1986.

D. Grieser, Spectra of graph neighborhoods and scattering, Proceedings of the London Mathematical Society, vol.97, issue.3, pp.718-752, 2008.
DOI : 10.1112/plms/pdn020

V. Hoang, M. Plum, and C. Wieners, A computer-assisted proof for photonic band gaps, Zeitschrift f??r angewandte Mathematik und Physik, vol.60, issue.6, pp.1035-1052, 2009.
DOI : 10.1007/s00033-008-8021-2

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal -Molding the Flow of Light, 1995.

S. G. Johnson and J. D. Joannopoulos, Photonic Crystal -The road from theory to practice, 2002.

P. Joly, J. Li, and S. Fliss, Exact boundary conditions for periodic waveguides containing a local perturbation, Commun. Comput. Phys, vol.1, issue.6, pp.945-973, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00977852

A. Khrabustovskyi, Opening up and control of spectral gaps of the Laplacian in periodic domains, Journal of Mathematical Physics, vol.22, issue.4, p.121502, 2014.
DOI : 10.1090/S1061-0022-05-00878-2

A. Khrabustovskyi and E. Khruslov, Gaps in the spectrum of the Neumann Laplacian generated by a system of periodically distributed traps, Mathematical Methods in the Applied Sciences, vol.42, issue.6, pp.11-26, 2015.
DOI : 10.1070/RM1987v042n06ABEH001505

D. Klindworth and K. Schmidt, Abstract, Communications in Computational Physics, vol.4, issue.05, pp.1355-1388, 2014.
DOI : 10.1023/A:1013377415134

P. Kuchment, Floquet theory for partial differential equations, volume 60 of Operator Theory: Advances and Applications, 1993.

P. Kuchment and B. Ong, On guided waves in photonic crystal waveguides, Waves in periodic and random media, pp.105-115, 2002.
DOI : 10.1090/conm/339/06102

P. Kuchment, Quantum graphs. I. Some basic structures. Waves Random Media, pp.107-128, 2004.

P. Kuchment, Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs, Journal of Physics A: Mathematical and General, vol.38, issue.22, pp.4887-4900, 2005.
DOI : 10.1088/0305-4470/38/22/013

P. Kuchment, Quantum graphs, of Proc. Sympos. Pure Math, pp.291-312, 2008.
DOI : 10.1088/0959-7174/14/1/007

P. Kuchment and B. Ong, On guided electromagnetic waves in photonic crystal waveguides In Operator theory and its applications, volume 231 of Amer, Math. Soc. Transl. Ser, vol.2, pp.99-108, 2010.

P. Kuchment and Y. Pinchover, Integral Representations and Liouville Theorems for Solutions of Periodic Elliptic Equations, Journal of Functional Analysis, vol.181, issue.2, pp.402-446, 2001.
DOI : 10.1006/jfan.2000.3727

P. Kuchment and H. Zeng, Convergence of Spectra of Mesoscopic Systems Collapsing onto a Graph, Journal of Mathematical Analysis and Applications, vol.258, issue.2, pp.671-700, 2001.
DOI : 10.1006/jmaa.2000.7415

S. Nazarov, On the spectrum of the Laplace operator on the infinite Dirichlet ladder, St. Petersburg Mathematical Journal, vol.23, issue.6, pp.1023-1045, 2012.
DOI : 10.1090/S1061-0022-2012-01228-8

S. A. Nazarov, ELLIPTIC BOUNDARY VALUE PROBLEMS WITH PERIODIC COEFFICIENTS IN A CYLINDER, Mathematics of the USSR-Izvestiya, vol.18, issue.1, pp.101-112, 1981.
DOI : 10.1070/IM1982v018n01ABEH001384

S. A. Nazarov, An example of multiple gaps in the spectrum of a periodic waveguide, Sbornik: Mathematics, vol.201, issue.4, pp.99-124, 2010.
DOI : 10.1070/SM2010v201n04ABEH004082

S. A. Nazarov, Opening of a gap in the continuous spectrum of a periodically perturbed waveguide, Mathematical Notes, vol.87, issue.5-6, pp.764-786, 2010.
DOI : 10.1134/S0001434610050123

S. A. Nazarov, The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids, Journal of Mathematical Sciences, vol.22, issue.1, pp.247-301, 2012.
DOI : 10.1023/A:1011469822255

S. A. Nazarov, Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder, Computational Mathematics and Mathematical Physics, vol.54, issue.8, pp.1261-1279, 2014.
DOI : 10.1134/S0965542514080090

S. Nazarov, Trapped modes in a T-shaped waveguide, Acoustical Physics, vol.56, issue.6, pp.1004-1015, 2010.
DOI : 10.1134/S1063771010060254

S. Nazarov, A. Boris, and . Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, 1994.
DOI : 10.1515/9783110848915

G. P. Panasenko and E. Perez, Asymptotic partial decomposition of domain for spectral problems in rod structures, Journal de Math??matiques Pures et Appliqu??es, vol.87, issue.1, pp.1-36, 2007.
DOI : 10.1016/j.matpur.2006.10.003

L. Parnovski, Bethe???Sommerfeld Conjecture, Annales Henri Poincar??, vol.9, issue.3, pp.457-508, 2008.
DOI : 10.1007/s00023-008-0364-x

L. Parnovski and A. V. Sobolev, Bethe-Sommerfeld conjecture for periodic operators with strong perturbations, Inventiones mathematicae, vol.2, issue.2, pp.467-540, 2010.
DOI : 10.12988/ijcms.2007.07003

O. Post, Spectral Convergence of Quasi-One-Dimensional Spaces, Annales Henri Poincar??, vol.7, issue.5, pp.933-973, 2006.
DOI : 10.1007/s00023-006-0272-x

O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Mathematics, vol.2039
DOI : 10.1007/978-3-642-23840-6

M. Reed and B. Simon, Methods of modern mathematical physics v. I-IV, pp.1972-1978

J. Rubinstein and M. Schatzman, Variational Problems??on Multiply Connected Thin Strips I:??Basic Estimates and Convergence??of the Laplacian Spectrum, Archive for Rational Mechanics and Analysis, vol.160, issue.4, pp.271-308, 2001.
DOI : 10.1007/s002050100164

Y. Saito, The limiting equation for Neumann Laplacians on shrinking domains, Electron. J. Differential Equations, vol.25, issue.31, p.pp, 2000.

V. Alexander, J. Sobolev, and . Walthoe, Absolute continuity in periodic waveguides, Proc. London Math. Soc, vol.85, issue.33, pp.717-741, 2002.

T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the magnetic schrödinger operator with a metric in a two-dimensional periodic waveguide, Algebra i Analiz, vol.14, pp.159-206, 2002.

M. Vorobets, On the Bethe???Sommerfeld conjecture for certain periodic Maxwell operators, Journal of Mathematical Analysis and Applications, vol.377, issue.1, pp.370-383, 2011.
DOI : 10.1016/j.jmaa.2010.10.067