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Abstract. Reuse, enabled by modularity and interfaces, is one of the
most important concepts in software engineering. This is evidenced by an
increasingly large number of reusable artifacts, ranging from small units
such as classes to larger, more sophisticated units such as components,
services, frameworks, software product lines, and concerns. This paper
presents evidence that a canonical set of reuse interfaces has emerged
over time: the variation, customization, and usage interfaces (VCU). A
reusable artifact that provides all three interfaces reaches the highest
potential of reuse, as it explicitly exposes how the artifact can be manip-
ulated during the reuse process along these three dimensions. We demon-
strate the wide applicability of the VCU interfaces along two axes: across
abstraction layers of a system specification and across existing reuse tech-
niques. The former is shown with the help of a comprehensive case study
including reusable requirements, software, and hardware models for the
authorization domain. The latter is shown with a discussion on how the
VCU interfaces relate to existing reuse techniques.

Keywords: Reuse, Interfaces, Variability, Customization, Configuration,
Extension, Usage, Concern-Oriented Reuse

1 Introduction

Complex systems are rarely built from scratch, but rather rely on the existence of
reusable artifacts for improved productivity and higher quality. Reuse of artifacts
comes in very different flavors, and can be investigated by looking at how the
reusable artifact is manipulated during the reuse process, and by looking at
various reuse techniques.

A long list of reuse techniques exist, each with its own unit of reuse [15]. Many
of them are considered success stories, starting from isolated classes managed



in libraries to sophisticated components and services [6] and finally to large
reusable entities such as frameworks and Software Product Lines [20]. Recently,
concerns have been proposed as variable and generic units of reuse [3]. Successful
reuse also includes development artifacts, such as analysis and design models
describing interaction, function, data, or architecture. In recent years, it has
been shown that even crosscutting elements can be reused with aspect-based
merging and weaving techniques. Instead of concrete artifacts, it is also possible
to reuse conceptual knowledge, such as design patterns [8], or to encode reuse
knowledge in model transformations or code generators.

Dimensions of reuse may be considered by categorizing the manipulations
performed on the reusable artifact during the reuse process. These manipula-
tions range from the simple act of using an existing artifact to the more mature,
coordinated customization (also called adaptation or extension) of reusable ar-
tifacts to a new reuse context, and thus also include white-box and black-box
forms of reuse. As a prerequisite to all previously mentioned activities, a spe-
cific reusable artifact must first be identified (i.e., selected from a set of possibly
applicable reusable artifacts). The following paragraph gives some examples of
these common activities.

A simple example of repeated use of an artifact is the common case of a
software application started several times. Often, however, a reusable artifact
needs to be adapted to its reuse context. Source code may be reused through
copy/paste and free adaptation (a common, but bad form of reuse as it is error-
prone and difficult to maintain). On the other side of the reuse spectrum, there
is the common reuse scenario, where, e.g., an operating system is installed on
different computers with different, predefined features required for different forms
of use and preferences. This is a case of reuse of an artifact through the selection
from a planned set of variations, which also is the case for the popular Software
Product Lines (SPL) paradigm. Modern applications more and more often have
the ability to adapt themselves to their environment, i.e., to automatically select
the most appropriate variation depending on their context. This requires the
consequences of a selection on the system to be made explicit, so that it can
be reasoned about. Last but not least, a piece of software can also be reused
by embedding it in different applications (e.g., generic reusable class libraries,
components, and frameworks). However, genericity is hard to achieve. While
class libraries provide crisp interfaces describing an intended form of reuse, they
may easily be too narrow to be usable. Frameworks often add customization
ability through subclassing of their concepts to cover a wider range of supported
reuse contexts.

Nowadays, it is generally agreed that reuse of artifacts with explicitly de-
fined, clear boundaries through their interfaces is the most appropriate to reach
high levels of reuse maturity. In this way, internal complexity and properties
are encapsulated, and thus do not affect the (re-)users. While interfaces have
traditionally been mostly employed to formalize the usage of an artifact, we
stipulate that all forms of manipulating a reusable artifact should be supported
by interfaces in today’s complex development processes, starting with identifi-



cation, followed by customization, and finally the usage of a reusable artifact.
Consequently we have identified the need for three interfaces that every reusable
artifact should consider providing:

– a Variation (V) Interface,
– a Customization (C) Interface, and
– a Usage (U) Interface.

We call them interfaces, because people with different roles interact with
the artifact during different activities of the development process through the
appropriate interface to achieve a desired result. Each interface targets a different
dimension of reuse, and together they streamline the reuse process. However,
depending on the reusable artifact, these interfaces may be broader or smaller
and explicit or implicit.

In the remainder of this paper, we first introduce the VCU interfaces in more
detail in Section 2. The following two sections intend to provide convincing
evidence that these three interfaces capture all dimensions required to achieve
effective reuse. Section 3 presents several example models from the Authorization
domain expressed in different modeling notations that were made reusable by
adding VCU interfaces. In Section 4, we discuss how the explicit and implicit
interfaces of existing units of reuse can be categorized with the VCU approach.
Section 5 presents our conclusions and discusses future work.

2 The VCU Approach - Definitions

VCU stands for the three interfaces: variation, customization, and usage. We
start with the last and most known.

2.1 Usage Interface

The Usage Interface (UI) describes what functionality can be requested by the
developer of the application who wants to reuse the artifact, i.e., which structural
and behavioral elements within the artifact are accessible. For example, the UI of
a software design artifact is typically comprised of the public classes and methods
made available by the artifact. For a reusable security artifact this might include
an authentication operation that an administrator can invoke in order to gain
access to restricted behavior. Sometimes usage interfaces are explicitly published,
which includes the promise of developers that those are stable over evolution
steps.

2.2 Customization Interface

The Customization Interface (CI) describes how the developer of an applica-
tion tailors a generic artifact to a specific application. The term customization
here has an extended meaning compared to the SPL paradigm. A reusable ar-
tifact is described as generically as possible to increase reusability. Therefore,



some elements in the artifact are only partially specified and need to be comple-
mented with concrete modeling elements of the application that intends to reuse
the artifact. Sometimes, parameters have to be filled in a template. Sometimes,
complete new classes have to be provided and injected into the reused artifact,
e.g., as hot spots in frameworks or as plug-ins in pluggable applications. The
CI is hence used when a reusable artifact is composed with the application. For
example, a security artifact may define generic Users and Administrators as
partial classes that need to be merged with the concrete application classes that
describe the actual users of the system, e.g., Customer or CrisisCoordinator,
respectively. At the implementation/source code level, Java generics, for exam-
ple, exist, which require the provision of a concrete type when they are reused.
Databases are customized with schema definitions. The Eclipse IDE framework
became so popular, because it is strongly decoupled and structured as a plug-in
system, allowing the IDE to be customized.

2.3 Variation Interface

The Variation Interface (VI) exposes the available variants that the artifact
encapsulates and from which the developer has to choose. It helps organize pos-
sible variations and their impact on goals and system qualities. From this VI
the application developer selects one concrete variant of the artifact that fits the
stakeholders needs best. Variations are typically described by a feature model [11]
that specifies the individual features of the artifact, as well as their mandatory,
optional, alternative, requires, and excludes relationships. The impact of choos-
ing a feature can be specified with goal models [10] when relationships among
goals are more complex or otherwise with attributed feature models [4]. For
example, a reusable authentication artifact may offer various alternatives for
authentication, from key-based to biometrics-based solutions, each with differing
impacts on the level of security as well as cost and end-user convenience.

2.4 VCU Approach to Reuse

Usage (U)Variation (V) Customization (C)

Fig. 1. The VCU Reuse Approach

Variant selection and customization typically happen during development
time. Use of an artifact in terms of connecting it to the rest of the application
also happens at development time, while actually using its functionality happens



at runtime when the application is executed. Some kinds of artifacts allow defer-
ring the variant selection and customization at least partially to installation or
runtime. Modern operating systems allow users to customize or at least adapt
customization during installation, prior to or even while executing it. Plug-in
systems allow extending an application and thus building new variants partially
even at runtime. Recently, adaptive systems have started to automate the selec-
tion process, switching among variations at runtime. Still, the three interfaces
should be methodically distinguished to simplify understanding of reusability
techniques.

Existing techniques (see Section 4) may only use some of the three interfaces
from the least mature to the most mature levels of reuse: only U, V&U, C&U,
and all three interfaces as indicated in Fig. 1. Actually, a developer that wants
to reuse an artifact is typically exposed to the VCU interfaces of the artifact
in the opposite order (V, then C, then U), roughly following these methodical
guidelines:

1. The developer determines the variant of the artifact that best suits her needs.
This is done by selecting the feature(s) with the best impact on relevant
stakeholder goals and system qualities from the VI of the artifact based on
provided impact analysis.

2. The developer customizes the resulting artifact by filling all parameteriza-
tions (generics, partial elements), connecting the resulting artifact to the
application under development with the help of the CI.

3. The developer actually uses the UI of the artifact in the rest of the appli-
cation under development, such that the artifacts structural and behavioral
properties are integrated at the desired locations.

In practice, however, this is an evolutionary process, e.g., changing the chosen
variant due to adapted goals and therefore switching between variant selection,
customization, and usage.

3 VCU Interfaces Across Levels of Abstraction

This section illustrates the applicability of the VCU approach by building a
unit that encapsulates reusable requirements, design, and hardware models that
describe general structural and behavioral properties of Authorization. The ap-
proach that was followed to create these models is called concern-orientated reuse
(CORE), and described in more detail in [3].

Among authorization models, the most used ones are based on access control
policy. The main idea is that access to a resource is controlled by some rules,
such as, e.g., in the widely used Role-Based Access Control (RBAC) [7, 21]. In
RBAC, the access of a user to a resource is based on the role of the user in the
system to which RBAC rules are applied (e.g., in a banking institution, the role
of a user can be customer or teller). Access to a resource is usually defined as
a set of actions that the user can perform on the resource (e.g., a customer can
withdraw or deposit money from or in an account).
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Fig. 2. Authorization Variation Interface

We first model the VI of Authorization, i.e., the different RBAC and Authen-
tication features and their impacts using feature diagrams and impact models
(Section 3.1). We then present the interaction workflow of Authorization using
Aspect-oriented Use Case Maps (Section 3.2), the structural and behavioral de-
sign models using class and sequence diagrams with Reusable Aspect Models
(RAM) (Section 3.3), as well as the hardware configurations using enhanced
SysML block diagrams (Section 3.4). For space reasons, the descriptions focus
mostly on the CI and UI of each model. Then, we show how to reuse the Autho-
rization concern in a simple bank application (Section 3.5).

3.1 Variation Interface Models

Inspired by the RBAC specification in the NIST standard [7] and an RBAC
feature model [14], we created a feature model [11] for the Authorization concern
as shown at the top of Fig. 2.



The base functionality that any RBAC system must provide is encapsulated
in the root feature Authorization and the mandatory Authentication child fea-
ture. The optional feature Hierarchical adds the ability for role inheritance,
whereas SeparationOfDuty (SoD) adds the ability to restrict permissions based
on constraints. Furthermore, the child features of Authentication provide dif-
ferent means for performing authentication (Password and Biometrics with its
three sub-options), as well as the optional features Access Blocking, Auto Logoff,
and Password Expiry. Hardware variability is also depicted by different Camera
configurations and an optional LightSensor for FacialRecognition.

The impact model of the Authorization concern is shown at the bottom
of Fig. 2. Four high-level goals are defined: Increase Security, Decrease Cost,
Increase User Convenience, and Improve Security Management. The impact of
variable features on these goals are indicated with weighted contributions in a
relative way, e.g., the Facial Recognition feature impacts security sixteen times
more than the Auto Logoff feature (80 vs. 5).

The Variation Interface (VI) for the Authorization concern is comprised of
the feature and impact models. The feature model presents all encapsulated vari-
ants of the concern to the developer, and the impact model helps the developer
to determine the best solution for a specific reuse context by enabling impact
analysis on high-level system qualities. It is the VI that all other requirements,
design, and hardware models presented in the remainder of this section have in
common, i.e., the other models are realizations of the features defined in the fea-
ture model and the impact model relates the impact of these realization models
to system qualities.

3.2 Requirements Models

The workflow model describes the two main user-system interactions of the Au-
thorization concern in Fig. 3. First, the |Administrator may choose to define
roles at any time (define start point), possibly using hierarchies (Hierarchical)
and constraints (SeparationOfDuty). Second, the |User may have to authenti-
cate herself (authenticate start point), but the authentication behavior must be
combined with application-specific behavior of the system reusing Authoriza-
tion. Therefore, a pointcut stub (dashed diamond shape with P) represents all
those locations in the application that require authentication. Those locations
are identified with a pattern, stating that authentication is needed when the
|User interacts with a |ProtectedResource by attempting a |protectedAction.

The vertical bar | in the model highlights generic model elements that need
to be customized to the actual application under development, i.e., these model
elements constitute the Customization Interface (CI) of the workflow model. In
Fig. 3 the CI elements are highlighted in orange. For example, |ProtectedResource
may have to be matched against Account and |protectedAction against withdraw
and transfer. Given these customizations, the authenticate behavior would be
composed with the withdraw and transfer actions, resulting in an authentication
check before performing these actions (because the authenticate behavior occurs
before the requiresAuthentication pointcut stub).
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Fig. 3. Authorization Requirements Models

The UI is defined by the start points (i.e., define, authenticate, and all start
points of lower-level workflow models of the variable features depicted by stubs
(diamonds)). In Fig. 3 the UI elements are highlighted in yellow.

We used Aspect-oriented Use Case Maps (AoUCM) to represent the workflow
of Authorization. However, the approach is not AoUCM-specific and could have
considered other languages like activity diagrams or BPMN models and their
aspect-oriented extensions.

3.3 Design Models

To illustrate reusable software design models, we design realization models for
each feature of Authorization using RAM [13]. For space reasons, only the RAM
model realizing the root feature of Authorization is shown in Fig. 4. The RAM
model comprises two compartments, the structural view showing the class dia-
gram and the message view defined using sequence diagrams. The partial struc-
tural entities such as the class |User and the operation |execute again designate
the CI. The UI is comprised of all public classes and operations.

3.4 Hardware Models

Often, software is connected to specific hardware elements with which it tightly
interacts. In the context of Authorization, this is the case for specific Authenti-
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cation Means like Fingerprint or Facial Recognition. To illustrate that our in-
terfaces are also capable of dealing with hardware, we present hardware models
realizing the Facial Recognition feature in the System Model in Fig. 5.

We used SysML to represent the execution platform of Authorization because
a Block in SysML can be realized by hardware or physical elements. However,
the approach is not SysML-specific and could have considered other suitable
modeling languages like MARTE or AADL. Features are therefore realized not
only by workflow models and UML design models, but also by a SysML block
diagram specifying the hardware and by a SysML allocation model specifying
how the software is linked to the hardware.

Our facial recognition artifact could contain lots of hardware variability (such
as different quality cameras, optional light sensors) as shown in the feature
model, but for space reasons we are only illustrating one hardware model using
a video camera and a luminosity sensor.

The SysML internal block diagram describes the hardware elements that Fa-
cialRecognition provides to measure physical data: a VideoCamera and a Light-
Sensor. It also depicts required hardware elements, such as a PowerSource, a
LightSource, a USB plug, and at least one CPU, and specifies how they are
connected to the provided hardware. These elements constitute the CI of our
hardware model, highlighted again with the vertical bar. Allocations of drivers
to �part� model elements show how the software relates to the hardware.

The remainder of this subsection summarizes the VCU interfaces for a reusable
artifact for system modeling, i.e., when software and hardware are to be made
reusable. In this case, the VI also includes the hardware variability offered by
the unit of reuse, and the resulting impacts on high-level goals such as cost,
power consumption, impact on environment, and noise. The CI also includes
hardware elements or physical elements in addition to software elements (e.g.,
the temperature in the environment), and constraints on their properties (e.g.,
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greater than 100 Watt). The UI includes the functionality needed by the user of
the hardware artefact during execution/simulation of the model, i.e., interfaces
offered by the drivers (e.g., takePicture()) but it also includes the physical data
flow ports needed to make the system operational (e.g., a specific amount of
electricity through a power connection, a minimum and maximum quantity of
lumens into a lens). This hardware model highlights that even if the nature of
the UI is different from the one in a software model (i.e., it is not based only on
method declarations), the notion of UI is still valid and correctly encompasses
these different notions.

3.5 Reusing Authorization

This section illustrates how the Authorization concern is reused in a simple ATM
machine. The ATM developer selects from the Authorization VI the desired fea-
tures with the best impact (step 1 in 2.4). Based on this selection, the workflow,
design, and system models linked to the selected features are composed by the
reuse tool to create workflow, design, and system models for Authorization that
only contain the selected features.

The next step (step 2 in 2.4) is to customize each kind of model by es-
tablishing mappings from the Authorization CI to the ATM models. To cus-
tomize Authorization to the ATM context at the workflow and design level,
|User of Authorization is mapped to the Customer component in the ATM
workflow model and the Customer class in the ATM design model. Similarly,
|ProtectedResource in the workflow as well as |Action and |Resource in the
design are mapped to Account. Finally, the |protectedAction responsibility in



the workflow and the |execute operation of Action are mapped to the withdraw
and deposit responsibilities and operations of Account, respectively: |User →
Customer; |ProtectedResource → Account; |protectedAction → withdraw,
deposit; |Action, |Resource → Account; |execute → withdraw, deposit.

The internal block diagram model of the ATM machine contains parts rep-
resenting the specific CPU that was chosen, the memory used, the USB ports,
the specific power source chosen, etc. To customize the Authentication hard-
ware model, mappings must be established that link the CI model elements to
model elements in the ATM machine that satisfy the property constraints, e.g.:
|PowerSource → SeaSonicSS; |USB → MediasonicHP1-U34F; ...

4 VCU Interfaces Across Reuse Techniques

While the last section demonstrated the use of the VCU interfaces in require-
ments, design, and hardware models across various levels of abstraction, this
section focuses on VCU interfaces in existing reuse techniques.

Usage Interface: The prototypical example of a UI is the API of a class in
an object-oriented programming language. Standard classes do not have a cus-
tomization interface, as all of their public operations and attributes are fully
specified and defined (as opposed to generic classes described in the next para-
graph). UIs can also be of considerable size, such as the API of an entire library.
Libraries, even if comprised by several classes that offer alternative functionality,
typically do not have an explicit VI. Information about variants encapsulated in
the library, and impacts of the different variants on non-functional requirements
and qualities are informally described in textual documentation, if at all.

Customization and Usage Interfaces: Generic classes are a popular reuse mech-
anism in programming languages, such as Ada, Java, and C++ (where they are
called template classes). In essence, a generic class provides a crisp set of func-
tionalities, and for that purpose encapsulates some structure and behavior that
is generically applicable for all parameter types. The CI is defined by the param-
eters, which are classes, types, and often also operations that define what the
generic class needs from the reuse context. The programmer must provide the
correct parameters at development time, when instantiating the generic class, to
customize the class to a particular reuse context and to access its tailored UI.

In modeling, the CI is defined in similar form. The UML template parameters
provide the mechanism to tailor models to different reuse contexts. They can be
applied to a class as in programming languages. However, template parameters
can also be applied to UML packages, thus effectively parameterizing the entire
model contained in the package. Many aspect-oriented modeling techniques offer
UML template parameters or similar CIs to adapt aspect models that encapsu-
late reusable structure and behavior to specific reuse contexts (e.g., [3]).

Application frameworks are also composed of classes, but usually focus on
providing reusable structure and behavior related to a specific domain (e.g.,



Graphical User Interfaces, Persistence, Banking). By definition, frameworks im-
pose an application architecture, drive the execution control flow, and require
the programmer to tailor the framework to their needs and integrate the appli-
cation’s behavior by implementing interfaces or extending classes provided by
the framework. The CI of a framework is defined by the interfaces and abstract
classes that need to be subclassed by the programmer to reuse the framework.
The UI of the framework consists of the public (or published) operations defined
in its API.

Components are broad units of reuse that encapsulate a set of classes whose
instances collaborate to provide a reusable service. The required interface of a
component is a form of CI, since it allows the component to list the services it
needs from the reuse context in order to be operational. The provided interface
describes the service(s) that the component offers, and hence is equivalent to the
UI.

All four discussed mechanisms have clearly defined CIs and UIs. Customiza-
tion is in all forms applied by binding open holes, namely generic parameters
or super classes, with concrete types or subclasses. Usage in all forms is defined
by the public (published) interfaces. None of them however explicitly provide
mechanisms for expressing the variation they encapsulate, if any. It would be
very interesting to add such explicit variation mechanisms into the respective
programming or modeling techniques, in order to allow documenting and under-
standing possible variation and selecting variants at design time. Currently vari-
ation can only implicitly be achieved by using the UI, i.e., calling mode-setting
functions to adapt behavior, or using the CI by defining several subclasses for
hot spots in frameworks. In the latter case, creational design patterns such as
Factory [8] can be used to select variations encapsulated by the framework at
initialization time or at run time.

Variation and Usage Interfaces: A common approach to handle variability at
the domain level is to follow a Software Product Lines (SPL) approach [20]. SPL
engineering focuses on how to organize similar software products as a family
within a closed domain, exploiting commonalities, and managing variabilities
among them. Many implementation techniques have been proposed for SPLs,
but when the variability is explicitly represented, feature models [11] are then
widely used. In this context, feature models are a perfect mechanism for the VI,
as they express the (closed) variability of an SPL.

The UI is usually obtained by a derivation process on the SPL assets. As-
sets can be code, models, or other software artifacts. Two main groups can be
distinguished by their way to derive a product, i.e., annotative and composi-
tional. At the model level, annotative approaches [5] normally use annotations
on model elements and prune them during derivation. On the other hand, com-
positional approaches rely on several models or fragments corresponding to the
selected features that then need to be well integrated. For structural models, such
as class diagrams composition, techniques can notably rely on aspect-oriented
modeling [17], model merging [19] or delta modeling techniques [9]. Related to
our authorization case study, a recently proposed compositional approach [14]



captures the variability of RBAC models in a feature model to configure an
associated UML model.

In the SPL field, researchers have also proposed extensions to feature models
so that the VI is enriched with properties on features. This can be done with
attributes on features [4], typically representing non-functional properties within
the SPL that can be reasoned about. By the scoped and closed nature of a SPL,
the CI is not explicitly present, but it is of course possible that the selected and
composed assets provide individual customization mechanisms.

The Service-Oriented Architecture (SOA) is a software architecture style that
views the system as set of services that are self-contained, loosely coupled, and
can be easily composed. SOA provides guidelines that govern how services are
represented and used. Services are designed to address business-related behaviour
and logic, and are meant to be assembled to build enterprise solutions [16].
Connections between services are flexible, as services are dynamically invoked
at run time through a UI that is described, for instance, by means of the Web
Service Description Language (WSDL).

There exist SOA approaches that provide a sort of variability interface, which
is helpful in choosing the most appropriate service during run-time. Service Level
Agreements (SLAs) specify non-functional properties of services, which is a way
of specifying the impacts of services that allows for a limited form of trade-off
analysis when multiple services providing similar functionality are available.

Table 1. Summary of Common Units of Reuse

Units of Reuse
Usage

Interface
Customization

Interface
VI

Variation
VI

Impact

Classes Yes No No No

Generic Classes Yes Yes No No

Components Yes Yes No No

Frameworks Yes Yes Informal Informal

SPL Features Yes No Yes No

SPL Features
with Attributes

Yes No Yes Yes

Services Yes No Limited Limited

Variation, Customization, and Usage Interfaces: A summary of the analysis of
the most common units of reuse and their support for usage, customization and
variation interfaces is shown in Table 1. Although none of the units provides
out-of-the-box support for all three interfaces, there has been lots of research
extending their reuse potential.

Perrouin et al. [19] have proposed an approach to provide some flexibility by
broadening the scope of the captured variability. In a first reuse step, variability
is resolved from a feature model selection and a product is generated by auto-
matically merging model elements associated to the selected features. A second



reuse step involves a customization process implemented by a model transfor-
mation and validated by OCL constraints defined on the model elements. This
can be seen as a first, but not very explicit, form of the CI.

Handling variability while being able to consider unplanned contexts is a
problem that has already been tackled in other works, mainly by introducing
variability management in reusable units such as components [18, 22] or mod-
ules [12]. van der Storm defines variable components [22] and uses solving tech-
niques for checking compatibility among them. In a similar way, Plastic Partial
Components [18] are components equipped with several variable interfaces and
implemented internally with aspect-oriented techniques in model-driven software
architectures. These approaches are more flexible than common SPL techniques,
as they are handling variability at the component level, providing VIs (although
with limited support for specifying impacts) and UIs. Nevertheless, the cus-
tomization part is not as fine-grained as in our definition, as it is obtained by
the different compositions of components, and not at the level of each compo-
nent.

Recently, Kästner et al. [12] proposed a core calculus for variability-aware
modules, complemented by a C-based implementation. Variability is handled on
module interfaces and inside modules, providing a solution that covers all three
VCU interfaces. Modular type checking of internal variability is supported and
the composition of two compatible modules yields a well-typed module with
combined variabilities. However, the notion of impact model in the VI is not
covered.

Finally, there have also been efforts to provide CI for services through pa-
rameterization and personalization [1] and using templates [23]. [2] proposes an
approach that allows customized use of web services in XML documents. The
approach uses an XML schema that allows to specify elements/subelements of
the XML document that can be specified/replaced dynamically. They provide
an example of a schema for news exchange, where the element <item> can be
given by a service call that matches the news service call pattern, which allows
to use any service call that returns an element (news <item>) of the correct
type.

5 Conclusion

Reuse is one of the most important concepts in software engineering to improve
system quality, product reliability and in particular developer efficiency, thus re-
ducing development costs. This paper argues that while there is a huge variety in
the kinds of reusable artifacts, almost all forms of reuse have in common the need
to provide some or all of three key interfaces, i.e., the variation, customization,
and usage interface, summarized as VCU interfaces. We have discussed the com-
monalities and potential consequences of different kinds of reuse dimensions: a)
selecting a variant based on information about impacts, b) adapting the generic
artifact to a specific context, and c) using the functionality. Furthermore, we
discussed how the three interfaces explicitly pinpoint down ”where” this reuse



happens. The variation interface is needed to select from a set of choices offered
by a reusable artifact while being informed about the impact of the selection.
The customization interface is required to adapt a generic reusable artifact to a
specific reuse context. The usage interface is needed to define how the services
of a reusable artifact may be accessed.

For a better understanding of these interfaces, we have examined their con-
crete appearance across levels of abstraction (i.e., from requirements to software
design and hardware design model) and across reuse techniques (from classes
and components to software product lines and services). Based on these find-
ings, we have found that all examined reusable artifacts indeed make use of and
only of the VCU interfaces. Today we do not know of situations, where the VCU
modeling approach will not hold, but these are preliminary findings. We invite
the software reuse community to challenge the sufficiency of the VCU interfaces
in the context of reuse. In the future, we plan to make generic support for the
VCU interfaces available to several mainstream modeling notations.
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19. Perrouin, G., Klein, J., Guelfi, N., Jézéquel, J.M.: Reconciling automation and
flexibility in product derivation. In: SPLC. pp. 339–348. IEEE Computer Society
(2008)
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