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ABSTRACT

This paper considers the single-channel speech separation problem
given a noisy observation recorded by a microphone. More precisely,
we focus on the speaker-dependent approach where spectral charac-
teristic of target speech is learned in advance from a clean example.
In training process, we propose to learn a generic spectral model
for noise source by collecting various types of environmental noise
via the established non-negative matrix factorization framework. In
speech enhancement process, we propose to combine two existing
group sparsity-inducing penalties in the optimization function and
derive the corresponding algorithm for parameter estimation based
on multiplicative update (MU) rule. Experiment result over mixtures
containing different real-world noises confirms the effectiveness of
our approach.

Index Terms— Speaker-dependent speech enhancement, non-
negative matrix factorization, group sparsity, generic spectral model.

1. INTRODUCTION

Speech enhancement has been an active research topic for decades
as it plays an important role in many domains such as telecommu-
nication and robotics [1]. The problem becomes much harder in
single-channel case, as compared to multichannel case, since spa-
tial information about audio sources is missing, and thus any prior
information about either speech or noise source can be very help-
ful. Among various denoising settings, we aim to speaker-dependent
scenario in the paper where clean speech example is assumed to be
available a priori. This use case is very popular e.g., in robotics
where controller’s voice is often known.

The considering approach is adapted from audio source separa-
tion technique [2], where speech and noise are considered as two
distinct sources appearing in a noisy observation. More precisely, a
recent paper by Sun and Mysore [3] proposed to train an universal
speech model by non-negative matrix factorization (NMF) [4] from
different speakers and applied it for the single-channel speech sep-
aration. Similarly, Badawy et. al., exploited generic NMF spectral
models for all audio sources in the context of on-the-fly source sep-
aration [5]. Motivated from those above-mentioned works, we pro-
pose in this paper to train a specific spectral model for speech and a
generic model for noise source in training phase. Then in the speech
enhancement phase, we exploit these pre-learned NMF-based mod-

els together with a novel sparsity constraint to guide the factorization
of the mixture spectrogram into speech part and noise part.

Note that our proposed approach differs from the prior works
in several aspects as follows. Firstly, on the contrary to [3] where
speech model was universal and noise model was updated during
the separation process, we consider noise model as universal and
speech model is fixed during the separation process. Secondly, com-
pared to [3] and [5] where either block sparsity-inducing penalty or
component-sparsity-inducing penalty was used, we propose a com-
bination of these two penalties which would offer better estimating
the parameters in the model fitting in this paper. For the rest of the
paper, Section 2 summarizes the NMF-based supervised signal sep-
aration approach as a background. We then present the proposed
speaker-dependent speech enhancement approach in Section 3 fol-
lowed by experimental evaluation in Section 4. Finally a conclusion
is presented in Section 5.

2. NMF MODEL AND BASELINE ALGORITHM FOR
SIGNAL SEPARATION

Let us start by considering a single-channel signal separation prob-
lem with two sources (speech and noise). Denoting by X ∈ CF×M ,
S ∈ CF×M , and N ∈ CF×M the complex-valued matrices of
the short-time Fourier transform (STFT) coefficients of the observed
mixture signal, the speech signal, and the noise signal, respectively,
where F is the number of frequency bins and M the number of time
frames. The mixing model is written as:

X = S + N. (1)

Let V = |X|.2 be the power spectrogram of the mixture where
X.p is the matrix with entries [X]pil. NMF aims at decomposing
the F ×M non-negative matrix V into two non-negative matrices
W ∈ RF×Q and H ∈ RQ×M , respectively, such that the divergence
between V and WH is minimized in some senses. Popularly for
audio, this decomposition is done by minimizing the Itakura-Saito
divergence, which offers scale invariant property [6]:

min
H≥0,W≥0

D(V‖WH), (2)

where D(V‖V̂) =
∑F
f=1

∑M
m=1 dIS(Vfm‖V̂fm), with V̂ =

WH, f and m denotes frequency bin index and time frame index,



Fig. 1. General workflow of the proposed speaker-dependent speech enhancement approach.

respectively, and dIS(x‖y) = x
y
− log(x

y
) − 1. The parameters

θ = {W,H} are usually initialized with random non-negative val-
ues and are iteratively updated via the well-known multiplicative up-
date (MU) rules [6] as

H← H�
WT

(
(WH).−2 �V

)
WT (WH).−1 (3)

W←W �
(
(WH).−2 �V

)
HT

(WH).−1 HT
(4)

where AT the transposition of matrix A, � denotes the element-
wise Hadamard product, the power and the division is also element-
wise.

In training phase of the supervised setting, spectral model for
speech and noise, denoted by W(S) and W(N), respectively, is
firstly learned from the corresponding training examples by optimiz-
ing similar criterion as (2). Then spectral model for two sources W
is obtained by W = [W(S),W(N)]. In testing phase (speech en-
hancement process), this spectral model W is fixed, and the time
activation matrix H is estimated via the MU rule as (3). Note that
H is also partitioned into two block as H = [HT

(S),H
T
(N)]

T , where
H(S) and H(N) denotes block characterizing the time activations for
speech and noise, respectively.

Once the parameters θ = {W,H} are obtained, the speech
STFT coefficients are computed by Wiener filtering as

Ŝ =
W(S)H(S)

WH
�X. (5)

And finally, the estimated time domain speech signal are ob-
tained via the inverse STFT.

3. PROPOSED SPEAKER-DEPENDENT SPEECH
SEPARATION ALGORITHM

General workflow of the proposed supervised approach for speech
separation is shown in Fig. 1. In the following paragraphs, we first
present the NMF-based models for speech and noise, which are

learned during training process, in Section 3.1. We then describe
the model fitting with the proposed group sparsity constraint for the
speech enhancement process in Section 3.2. Finally, we derive the
corresponding parameter estimation algorithm in Section 3.3.

3.1. Pre-trained models for speech and noise

3.1.1. Speaker-dependent speech spectral model

Assuming that V(S) = |S|.2 is the spectrogram of a clean speech
example. Speech model W(S) is learned given V(S) by optimizing
the criterion (similar to (2)):

min
H(S)≥0,W(S)≥0

D(V(S)‖W(S)H(S)), (6)

where H(S) is the corresponding time activation matrix.

3.1.2. Generic spectral noise model

Assuming that V(p)

(N) = |N(p)|.2, 1 ≤ p ≤ P is the spectrogram of

p-th noise examples. First V(p)

(N) is used to learn the NMF spectral

model, denoted by W
(p)

(N), by optimizing the criterion (similar to
(2)):

min
H

(p)
(N)
≥0,W

(p)
(N)
≥0

D(V
(p)

(N)‖W
(p)

(N)H
(p)

(N)), (7)

where H
(p)

(N) is time activation matrix. Given W
(p)

(N) for all noise
examples p = 1, ..., P , the generic spectral models for noise is con-
structed as

W(N) = [W
(1)

(N), . . . ,W
(P )

(N)]. (8)

In the practical implementation, we may need several examples
of different types of noise such as wind sound, cafeteria, waterfall,
street noise, etc.,. (e.g., P = 7).



Fig. 2. Estimated activation matrix H: (a) without a sparsity con-
straint, (b) with a block sparsity-inducing penalty (10), (c) with a
component sparsity-inducing penalty (11), and (d) with the proposed
mixed group sparsity constraint (12).

3.2. Proposed group sparsity constraint for model fitting

The generic noise model W(N) constructed in (8) becomes a large
matrix when the number of examples increases, and it is actually
redundant since different examples may share some similar spectral
patterns. Thus in the model fitting for the mixture spectrogram in the
speech enhancement process, sparsity constraint is naturally needed
so as to fit only a subset of the W(N) to the actual noise representing
in the mixture [7]. In other words, the mixture spectrogram V =
|X|.2 is decomposed by solving the following optimization problem

min
H≥0

D(V‖WH) + λΩ(H(N)) (9)

where Ω(H(N)) denotes a penalty function imposing sparsity on the
activation matrix H(N), and λ is a trade-off parameter determining
the contribution of the penalty. When λ = 0, H(N) is not sparse and
the entire generic model is used as illustrated in Fig. 2a. Recent work
in audio source separation has considered two penalty functions as
the following [5].

(i) Block sparsity-inducing penalty:

Ω1(H(N)) =

G∑
g=1

log(ε+ ‖H(g)

(N)‖1), (10)

where H
(g)

(N) is a subset of H(N) representing the activation coeffi-
cients for g-th block, G is the total number of blocks, ε is a non-zero
constant, and ‖.‖1 is `1-norm. In the considered setting, a block
represents one training example and G is the total number of used
examples (G = P ). This penalty enforces the activation for relevant
nosie examples only while omitting the poorly fitting examples since
their corresponding activation block will likely converge to zero, as
visualized in Fig. 2b (similar figure can be seen also in [5]).

(ii) Component sparsity-inducing penalty:

Ω2(H(N)) =

K∑
k=1

log(ε+ ‖hk(N)‖1), (11)

where hk(N) denotes k-th row of H(N). As explained in [5], this
penalty is motivated by the fact that only a part of the spectral model
learned from an example may fit well with the targeted source in the

mixture, while the remaining components in the model do not. Thus
instead of activating the whole block, the penalty Ω2(H(N)) allows
to select only the more likely relevant spectral components from W.
An example of H(N) after convergence is shown in Fig. 2c (similar
figure can be seen also in [5]).

Motivated by penalties mentioned above, we propose a so-called
mixed group sparsity constraint combining (10) and (11) as

Ωnew(H(N)) = α

G∑
g=1

log(ε+‖H(g)

(N)‖1)+(1−α)

K∑
k=1

log(ε+‖hk(N)‖1),

(12)
where α weights the contribution of each term. (12) can be seen as
the generalization of (10) and (11) in the sense that when α = 1,
(12) is equivalent to (10) and when α = 0, (12) is equivalent to
(11). Fig. 2d shows an example of the activation matrix H(N) after
convergence when the novel penalty (12) is used. It can be seen that
some block converge to zero due to the contribution of the first term
in (12), while in the remaining blocks, some components are zeros
due to the second term in (12).

3.3. Derived algorithm for parameter estimation

In order to derive the parameter estimation algorithm optimizing (9)
with the proposed penalty function (12), one can rely on MU rules
and the majorization-minimization algorithm. The resulting algo-
rithm is summarized in Algorithm 1, where Y(g) is a uniform matrix
of the same size as Hg

(N) and zk a uniform row vector of the same
size as hk(N).

Algorithm 1 Parameter estimation algorithm with mixed group spar-
sity constraint
Require: V, W(N), W(S), λ, α
Ensure: H(S), H(N)

Initialize H(S), H(N) randomly, H = [HT
(S),H

T
(N)]

T

V̂ = WH, where W = [W(S),W(N)] fixed
repeat

// Taking into account block sparsity-inducing penalty
for g = 1, ..., G do

Y(g) ← 1

ε+‖H(g)
(N)
‖1

end for
Y = [YT

(1), . . . ,Y
T
(G)]

T

// Taking into account component sparsity-inducing penalty
for k = 1, ...,K do

zk ← 1

ε+‖hk
(N)
‖

end for
Z = [zT1 , . . . , z

T
K ]T

// Updating activation matrices

H(S) ← H(S) �
WT

(S)(V̂
.−2�V)

WT
(S)

(V̂.−1)

H(N) ← H(N) �
(

WT
(N)(V̂

.−2�V)

WT
(N)

(V̂.−1)+λ(αY+(1−α)Z)

). 1
2

V̂←WH
until convergence

4. EXPERIMENTS

We first described the data set, algorithm settings, and evaluation
criteria in Section 4.1, then the result is discussed in Section 4.2.



4.1. Data and evaluation metrics

We created two training sets including for speech and noise source.
Training speech example was 10 seconds long and was made by
the same person with speech in the tested mixtures 1. Noise exam-
ples were 7 types of environmental noise2: kitchen sound, waterfall,
square, metro, living sound, presto, bird song with duration varies
from 5 to 15 seconds. These training examples were used to learn
the spectral model for speech and noise as described in Section 3.1.

We evaluated the performance of the proposed algorithm via a
test set containing 5 single-channel mixtures of speech and noise
artificially mixed at 0 dB signal-to-distortion ratio. 5 different noise
sources considered were forestbird+car, office sound, traffic + wind
sound, oceanwaves, and park sound. The mixtures were sampled at
16000 Hz and have duration between 5 and 10 seconds.

Our algorithm settings are as follows. The number of iterations
for MU updates in all algoritms was 100 for both training and testing.
The number of NMF components was set to 32 for speech and 16
for noise. The trade-off parameter λ determining the contribution of
the sparsity-inducing penalty were tested with values ranging from
0.001 to 1000 for each algorithm in order to choose the best values.
The factor α weighting the contribution of each penalty term in (12)
were tested with values ranging from 0.001 to 0.9.

The speech enhancement performance was evaluated by the
source-to-distortion ratio (SDR), source-to-interference ratio (SIR),
and source-to-artifacts ratio (SAR) measured in dB where the higher
the better. These criteria, known as BSS-EVAL metrics, have been
mostly used in the source separation community [8].

4.2. Simulation result

We compare the speech enhancement performance obtained by our
approach using mixed group sparsity constraint in (12) (named
”Proposed approach”) with two state-of-the-art algorithms exploit-
ing block sparsity penalty and component sparsity penalty only
(named ”State of the art”) [5], which are closest to our approach.
After fine-tuning to choose the parameter which yields the highest
SDR for speech3, we set λ = 0.02 for NMF with block sparsity;
λ = 0.04 for NMF with component sparsity; and λ = 0.02, α = 0.4
for the proposed algorithm.

The result for each testing mixtures is shown in Table 1. Note
that due to the lack of space, Table 1 shows only the highest result
obtained by either block sparsity or component sparsity constraint
(the two algorithms we aim to compare with) in the ”State of the
art” row. One can see that the proposed algorithm offers a better
speech enhancement performance in terms of both SDR, SIR and
SAR compared to the existing ones. More precisely, it gained 0.2
dB SDR higher than the state-of-the-art algorithm.

5. CONCLUSION

In this paper, we have presented a novel speaker-dependent single-
channel speech separation algorithm based on NMF formulation.
The presenting approach exploits a generic noise model learned from
different types of environmental noise. Additionally, we have pro-
posed to combine two existing sparsity-inducing constraints for the

1Speech files are from the International Signal Separation and Evaluation
Campaign (SiSEC): http://sisec.wiki.irisa.fr.

2Some noise files are from the Diverse Environments Multichannel
Acoustic Noise Database (DEMAND): http://parole.loria.fr/DEMAND/.

3Note that among the considered criteria, SDR is the most important one
since it measures the overall signal distortion.

Method Mixture SDR SIR SAR

State of the art

Mix 1 9.4 16.6 10.4
Mix 2 13.9 27.8 14.2
Mix 3 0.8 1.8 10.2
Mix 4 2.8 4.8 8.6
Mix 5 7.1 11.4 9.4
Average 6.8 12.5 10.5

Proposed approach

Mix 1 9.6 16.7 10.4
Mix 2 14.1 28.0 14.2
Mix 3 0.8 1.7 10.2
Mix 4 3.0 4.9 8.7
Mix 5 7.3 11.5 9.6
Average 7.0 12.6 10.6

Table 1. Speech separation performance (criteria are measured in
dB, the higher the better).

parameter estimation process so as to potentially improve the sepa-
ration performance. Experiment with mixtures containing different
types of real-world noise confirms the effectiveness of the proposed
algorithm. Future research can be devoted to extend the work to
multi-channel case where a spatial model, such as the one consid-
ered in [9], for audio sources is incorporated.
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