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Abstract

We propose new algebraic methods for extracting cylinders and cones from minimal point sets, including oriented
points. More precisely, we are interested in computing e�ciently cylinders through a set of three points, one of them
being oriented, or through a set of �ve simple points. We are also interested in computing e�ciently cones through a set
of two oriented points, through a set of four points, one of them being oriented, or through a set of six points. For these
di�erent interpolation problems, we give optimal bounds on the number of solutions. Moreover, we describe algebraic
methods targeted to solve these problems e�ciently.

Keywords: Mixed set of 3D points, cylinders, cones, interpolation.

1. Introduction

Extracting geometric primitives from 3D point clouds
is an important problem in reverse engineering. These 3D
point clouds are typically obtained from accurate 3D scan-
ners and there exist several methods for extracting 3D geo-
metric primitives [2]. An important category among these
methods is based on the RANSAC approach [8, 11, 2]. For
such methods, the primitives are extracted directly from
the input point cloud. The basic idea is to extract a par-
ticular elementary type of shape, such as planes, spheres,
cylinders, cones or tori, from the smallest possible set of
points and then to judge if this extracted primitive is rele-
vant to the full point cloud. Therefore, for this category of
methods it is very important to compute a particular type
of shape through the smallest possible number of points,
including normals if available. If extracting planes and
spheres is easy, the cases of cylinders and cones are more
involved. In this paper we provide new methods for ex-
tracting these geometric primitives from the smallest pos-
sible number of points, counting multiplicities of oriented
points (i.e. points given with their normal vector). These
methods are intended to serve the larger goal of improv-
ing speed and numerical accuracy in data extraction from
graphical information. As far as we know, and surprisingly,
the above-mentioned problems have not appeared in the
existing literature with the exception of [6, 9]. Instead,
the classical approaches to these interpolation problems
usually extract, actually we should say estimate, these
geometric primitives from an overdetermined number of
points, counting multiplicities (e.g. [10]).

An oriented point is a couple of a point and a nonzero
vector. A surface is said to interpolate an oriented point if
the point belongs to the surface and its associated vector

is collinear to the normal of the surface at this point, we
do not assume that the orientation of the normal of the
point is the same as the orientation of the surface since
often in the data sets normals are unoriented. Moreover,
it is important to deal with inhomogeneous data, that is
to say some points are oriented but not all, in order to
take into account the estimated accuracy of oriented point
clouds that are generated by means of normal estimation
algorithms. Data made of points and oriented points will
be called amixed set of points.

We emphasize that interpolating at a point imposes a
single algebraic condition on a given shape whereas inter-
polating at an oriented 3D point imposes three algebraic
conditions. Typically, a 3D plane is uniquely de�ned either
by three distinct points or by one oriented point. A sphere
is uniquely de�ned either by four points or by one oriented
point and an additional point. In these two cases, it turns
out that there is a unique shape that interpolates a mixed
set of points corresponding to the number of parameters of
this shape (a plane is determined by three parameters and
the sphere is determined by four parameters). In this pa-
per, we will treat interpolation of two other basic shapes,
namely cylinders and cones for which the situation is more
involved.

Our approach is inspired by e�ective methods in al-
gebraic geometry. We consider two families of unknowns.
The �rst one corresponds to the parameters needed to de-
scribe all features of the targeted surface (e.g. the radius
and axis of a circular cylinder) and hence its equation. The
second family consists of auxiliary unknowns (e.g. such as
a special point on that axis) which permit us to describe a
collection of geometric constructions. These constructions
are designed to establish a complete link between the in-
put and the �rst family of unknowns. Then, we translate
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algebraically the collection of constraints attached to the-
ses geometric constructions into a system of polynomial
equations that we further analyze and simplify, discarding
spurious solutions if necessary. Since the input and output
are (and should be) real approximate data, we designed ef-
�cient algorithms to compute very accurate real solutions
of these systems of equations. Indeed, in all the considered
cases, we were able to express the results as the solutions
of (generalized) eigenvalue problems together with close
formulas. These expressions allow us to rely on classical
matrix computation software and achieve accuracy and ef-
�ciency. Prototypes of our algorithms are implemented in
the computer algebra systemMAPLE, and we provide some
statistics and timings (which are quite satisfactory).

2. Interpolation of cylinders

A cylinder (more precisely a right circular cylinder) is
de�ned as the set of points in the three-dimensional a�ne
spaceR3 located at a �xed distance (called the radius of
the cylinder) of a given straight line (called the axis of the
cylinder). It is hence de�ned by means of �ve parameters :
four parameters describe a line inR3 and an additional
parameter measures the radius.

A popular determination of a cylinder is done by in-
terpolating two points with normals, which imposes six
conditions (instead of �ve). So, a priori no cylinder in-
terpolates this data; therefore some approximations are
necessary. In this section, we will give new methods to
compute cylinders using just �ve independent conditions.
There are two possible such minimal con�gurations, either
an oriented point and two other distinct points, or �ve dis-
tinct points.

2.1. Cylinders through a mixed minimal point set

We seek the cylinders that interpolate a given mixed
minimal set of points P. Since a cylinder is given by 5
parameters, P is assumed to be composed of an oriented
point p1 with its normal vector n1 and two other distinct
points p2; p3 in R3.

First, by a linear change of coordinates, one can as-
sume that p1 = (0 ; 0; 0) and n1 = (0 ; 0; 1) and we set
p2 = ( x2; y2; z2) and p3 = ( x3; y3; z3). Then, the axis of a
cylinder interpolating P must be orthogonal to the z-axis
and must intersect it. It follows that a normal plane �
contains the z-axis, hence is given by an equation of the
form lx + my = 0 where t := ( l; m; 0) is the corresponding
direction of the axis. Observe that these directions are in
correspondence with a projective lineP1. For simplicity,
we set � :=

p
l2 + m2 = ktk > 0.

Now, we compute the orthogonal projectionsq1 and
q2 of p2 and p3 onto the plane �. � contains the point
p1 and is generated by the two orthogonal vectorsn1 and

v = n1 ^ t = ( � m; l; 0). The matrix

M =

0

@

l
�

m
� 0

� m
�

l
� 0

0 0 1

1

A

de�nes the change of coordinates from the current coordi-
nate system (x; y; z) to a new coordinate system (x0; y0; z0),
with the same origin p1, de�ned by the three vectors t=�;
v=�; n 1, where � has equation x0 = 0. It follows that the
coordinates (x0

i ; y0
i ; z0

i ) of pi , i = 2 ; 3, in this new coordinate
system are given by

(x0
i ; y0

i ; z0
i ) =

�
x i

l
�

+ yi
m
�

; � x i
m
�

+ yi
l
�

; zi

�
:

Therefore, the coordinates of the orthogonal projections
qi , i = 2 ; 3 are given by

qi =
�

� x i
m
�

+ yi
l
�

; zi

�
2 �

in the basis v=�; n 1.
The existence of a cylinder interpolatingP is equivalent

to the fact that the points p1, q2 and q3 all belong to a circle
whose centerc is located on the z-axis, say c = (0 ; 0; r ).
Such a circle has an equation of the formy02 + ( z0� r )2 =
r 2, or equivalently y02 + z02 � 2rz 0 = 0. Therefore, this
cocyclicity condition can be written as

0 =

�
�
�
�

y02
2 + z2

2 z2

y02
3 + z2

3 z3

�
�
�
�

=
1
� 2

�
�
�
�

(� x2m + y2l )2 + ( l2 + m2)z2
2 z2

(� x3m + y3l )2 + ( l2 + m2)z2
3 z3

�
�
�
� :

Since� > 0, the expansion of this latter determinant allows
us to rewrite this condition as a degree 2 homogeneous
equation al2 + blm + cm2 where the coe�cients a; b; care
given by the following closed formulas

a :=

�
�
�
�

y2
2 + z2

2 z2

y2
3 + z2

3 z3

�
�
�
� ; b := � 2

�
�
�
�

x2y2 z2

x3y3 z3

�
�
�
� ;

c :=

�
�
�
�

x2
2 + z2

2 z2

x2
3 + z2

3 z3

�
�
�
� :

Unless a = b = c = 0, this equation has two roots,
counting multiplicities, in the �eld of complex numbers. If
a real solution is found, that is to say the direction of a
real cylinder interpolating P (observe that one can impose
� = 1 since the condition is homogeneous inl; m), then
the remaining parameter r is uniquely determined by one
of the formulas

2z2r = y02
2 + z2

2 =
1
� 2 (� x2m + y2l )2 + z2

2 ; (1)

2z3r = y02
3 + z2

3 =
1
� 2 (� x3m + y3l )2 + z2

3 ; (2)

depending on whetherz2 6= 0 or z3 6= 0. We notice that if
z2 = z3 = 0 then a = b = c = 0.
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Theorem 1. Given a mixed set of pointsP composed of
an oriented point p1; n1 and two other points p2; p3 such
that

i) p1; p2; p3 are all distinct,

ii) p1; p2; p3 do not belong to a common plane that is
normal to n1,

iii) p2 and p3 are not symmetric with respect to the line
through p1 and generated byn1,

then there exist at most 2 real cylinders interpolatingP.
Otherwise, there exists a cylinder (possibly "at", i.e. with
in�nite radius) interpolating P in any direction that is nor-
mal to n1.

Proof. Following the above discussion, this theorem will be
proved if we show that a = b = c = 0 if and only if at least
one of the three conditions i), ii), iii) holds. It is not hard
to check that if one of the three latter conditions holds
then a = b = c = 0. To prove the converse, we observe
that by a linear change of coordinate, we can assume that
x2 = 0 in addition to the fact that p1 = (0 ; 0; 0) and
n1 = (0 ; 0; 1). Then, we haveb = 2x3y3z2 and hence three
cases to analyze.

If x3 = 0, then c = z2z3(z2 � z3) so that c = 0 implies
that z2 = 0, or z3 = 0 or z2 = z3. If x3 = z2 = 0,
then a = y2

2z3 so that a = 0 implies that i) or ii) hold.
Similarly, if x3 = z3 = 0 then a = y2

3z2 so that a = 0
implies that i) or ii) hold. Finally, if x3 = 0 and z2 = z3

then a = z2(y2
2 � y2

3) so that a = 0 implies that i) or iii)
hold.

The case corresponding toy3 = 0 can be treated ex-
actly as the previous casex3 = 0, exchanging x2 with x3

and y2 with y3 leavesb unchanged and permutea and c.
Finally, if z2 = 0, then c = 0 (recall x2 = 0) and

a = y2
2z3. So a = 0 if either y2 = 0 or z3 = 0. But y2 = 0

means that p1 = p2, i.e. i) holds, and z3 = 0 means that
ii) holds.

When a mixed set of pointsP satis�es conditions i), ii)
and iii) in Theorem 1, then a, b and c are not all zero and
hence whether there are zero, one or two homogeneous real
solutions to the equation al2 + blm + cm2 = 0 is decided
by means of the discriminant � := b2 � 4ac which depends
on the coordinates ofp2 and p3. If � < 0 then there is
no real homogeneous solution, if � = 0 then there exists
a double homogeneous solution and if � > 0 then there
exists two distinct homogeneous solutions. As we have
already observed in the proof of Theorem 1, it is possible to
assume, without loss of generality, thatx2 = 0 in addition
of p1 = (0 ; 0; 0) and n1 = (1 ; 0; 0). Then, a straightforward
computation shows that

� = 4 z2z3
�
y2

2 �
x3

2 + z3
2�

+ z2
2 �

x3
2 + y3

2�

� z2z3

�
x3

2 + y2
2 + y3

2 + ( z2 � z3)2
��

:

From this equation we see directly that there are no real
cylinders interpolating P if p2 and p3 are not on the same
side of the plane through p1 and normal to n1 (i.e. z2

and z3 have opposite signs). Another interesting case is
to assume that p2 belongs to the plane through p1 and
normal to n1 (i.e. z2 = 0). Indeed, in this case � = 0 so
there is a unique cylinder (counted with multiplicity two)
through P : its direction is given by t = ( � b;2a; 0) =
(2x2y2z3; 2y2

2z3; 0) and r is still de�ned by (1) ( z3 is as-
sumed to be nonzero for otherwisea = b = c = 0).

Finally, we notice that if a = 0 then the directions are
given by the equation blm + cm2 = 0 : It follows that these
directions are given by (1; 0; 0) and (� c; b;0). Of course,
if in addition b = 0 then there is a single interpolating
cylinder that appears with multiplicity 2 (the discriminant
vanishes). The radiusr 1 or r 2 is then deduced from (1).
Similarly, if c = 0 then the directions of the interpolating
cylinders are given by (0; 1; 0) and (� b; a;0).

Extraction algorithm. From the above analysis, we deduce
the following extraction algorithm for cylinders from a
mixed point set P:

1. Perform a linear change of coordinates so that the
oriented point is at the origin and its normal vector
is (0; 0; 1). If z2z3 < 0 then there is no solution.

2. Compute the quantities a, b and c. If a = b = c = 0
then stop because there are in�nitely many interpo-
lating cylinders.

3. If a = 0 or c = 0 then compute the interpolating
cylinders as explained above and stop.

4. Otherwise, solve the equational2 + blm + cm2 = 0
and keep only those roots that are real numbers (up
to numerical precision). For each such root, compute
the corresponding radius by means of (1) and return
the interpolating cylinder.

This algorithm has been implemented with the Maple
software and all timings are measured on a Mac laptop
equipped with Intel Core i7 CPU @ 2.8GHz, 16 GB mem-
ory. We observed that computing the cylinders through
a random set of points takes on average 3.5ms (including
all the steps in the above algorithm) and is almost con-
stant, i.e. independent of the point set. The proportion of
the number of cylinders found through random point sets
is given in Table 1 and an illustrative picture is given in
Figure 1.

Number of cylinders 0 2
Proportion (%) 46.87 53.13

Table 1: Proportion of the number of cylinders found through a
thousand random point sets.

2.2. Cylinders through �ve points
The problem of extracting a cylinder passing through

�ve points has already been treated in the literature, see
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Figure 1: A general mixed set of points with the two interpolated
cylinders.

[6, 3, 9] (see also [4, 1]). These works solve the problem
by relying on a polynomial system solver. In this section,
we briey review the model already described in [6] and
then we propose an improvement to gain e�ciently. Our
key ingredient removes some spurious solutions by means
of additional algebraic manipulations.

2.2.1. Geometric analysis
Given a set P of �ve points p1; p2; p3; p4; p5 we seek

cylinders through P. First of all, by a linear change of
coordinates, we assume without loss of generality that the
coordinate system (x; y; z) is such that

p1 = (0 ; 0; 0); p2 = ( x2; 0; 0); p3 = ( x3; y3; 0); (3)

p4 = ( x4; y4; z4); p5 = ( x5; y5; z5):

Let us pick a nonzero vectort = ( l; m; n ) (which will
represent the direction of the axis) and denote by � the
plane through the origin which is orthogonal to t. Let us
also denote byqi the orthogonal projection of pi onto �, for
all i = 1 ; : : : ; 5. Then, p1; : : : ; p5 belongs to a cylinder of
direction t if and only if the coplanar points q1; : : : ; q5 are
cocyclic. In order to make explicit this cocyclic condition,
we consider a new system of coordinates (x0; y;0; z0) whose
third axis is parallel to t. More precisely, we choose the
coordinates system (x0; y0; z0) which is obtained from the
coordinate system (x; y; z) by the change of coordinates
de�ned by the orthogonal matrix

M =

0

B
@

p
m 2 + n 2

kt k � lm
kt k

p
m 2 + n 2 � ln

kt k
p

m 2 + n 2

0 np
m 2 + n 2 � mp

m 2 + n 2

l
kt k

m
kt k

n
kt k

1

C
A :

Therefore, the coordinates ofqi in the system (x0; y0; z0)
are given by

 

x i

p
m2 + n2

kt k
�

lm

kt k
p

m2 + n2
yi �

ln

kt k
p

m2 + n2
zi ;

n
p

m2 + n2
yi �

m
p

m2 + n2
zi ; 0

�
=: ( x0

i ; y0
i ; 0):

Now the points q1; q2; q3 and q4 are cocyclic (or aligned,
which corresponds to a circle of in�nite radius) providing

�
�
�
�
�
�
�
�

1 1 1 1
x0

1 x0
2 x0

3 x0
4

y0
1 y0

2 y0
3 y0

4
x02

1 + y02
1 x02

2 + y02
2 x02

3 + y03
3 x02

4 + y02
4

�
�
�
�
�
�
�
�

= 0 :

Sincex0
1 = y0

1 = 0, x0
2 =

p
m 2 + n 2

kt k x2; y0
2 = 0 and

x02
i + y02

i = kqi k2 = kpi k2 �
(t :pi )2

kt k2

for i = 3 ; 4, we deduce that the points p1; p2; p3; p4 all
belong to a cylinder of direction t if and only if

Cp1 ;p2 ;p3 ;p4 (l; m; n ) = 0

where, after some calculations,

Cp1 ;p2 ;p3 ;p4 (l; m; n ) := x2
2(m2 + n2)

�
�
�
�
�
�

l x 3 x4

m y3 y4

n 0 z4

�
�
�
�
�
�

� x2

�
�
�
�
�
�

m y3 y4

n 0 z4

0 kt k2kp3k2 � (t:p3)2 kt k2kp4k2 � (t:p4)2

�
�
�
�
�
�
:

This condition is given by a homogeneous polynomial of
degree 3 inl; m; n . Observe that this polynomial is satis-
�ed for the six particular directions corresponding to the
lines (pi pj ), 1 � i < j � 4. To determine the cylinders
through the �ve points p1; : : : ; p5, we consider the polyno-
mial system of equations

Cp1 ;p2 ;p3 ;p4 (l; m; n ) = Cp1 ;p2 ;p3 ;p5 (l; m; n ) = 0 (4)

Equation 4 corresponds geometrically to the intersection of
two cubic curves, which is composed of nine points when-
ever this intersection is �nite. As already noted, the direc-
tions corresponding to the lines (p1p2), (p1p3) and (p2p3)
are roots of these two equations, but these roots do not im-
ply the existence of a cylinder interpolatingP, they have to
be removed once (if there is indeed a cylinder in this direc-
tion, then it will appear as a multiple solution). Moreover,
when a direction of a cylinder through P is found, then it
is completely determined since its radius and a point on
its axis are given by the center and the radius of the circle
through the points q1; q2; q3; q4; q5. Therefore, we have the
following result.

Theorem 2 ([6]). If the algebraic system of equations(4)
has a �nite number of solutions, then there may be zero,
two, four or six real cylinders through P.

In [6, 3, 9], various polynomial system solvers are used
in order to extract the directions of the cylinders through
P. We will describe a new approach where we �rst simplify
this algebraic system and then rely on eigen-computations.
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To begin, we observe that the three extraneous direc-
tions (p1p2), (p1p3) and (p2p3) which we write as

(x2; 0; 0); (x3; y3; 0); (x3 � x2; y3; 0);

are the common roots of both algebraic equations

F := nx2 = 0 ; G := ( mx3� mx2� ly3)(mx3� ly3)mx2 = 0 :

Then a result in algebraic geometry says that the two poly-
nomials Cp1 ;p2 ;p3 ;p j , j = 4 ; 5, belong to the ideal gener-
ated by F and G; and suggests explicitly computing these
membership relations. Computing the Euclidean pseudo-
division of Cp1 ;p2 ;p3 ;p4 and Cp1 ;p2 ;p3 ;p5 by the polynomial
x2n, we get two homogeneous polynomials of degree 2,

D j (l; m; n ) =
�
� yj y3

2 + yj
2y3 + zj

2y3
�

l2

+ ((2 yj y3x3 � 2yj x j y3) m + zj (x2y3 � 2x j y3) n) l+
�
x2yj x3 � x2x j y3 � yj x3

2 + x j
2y3 + zj

2y3
�

m2

+ zj
�
� x2x3 + x3

2 + y3
2 � 2yj y3

�
nm+

�
x2yj x3 � x2x j y3 � yj x3

2 + x j
2y3 � yj y3

2 + yj
2y3

�
n2

where j = 4 ; 5, such that
�

D4 z4

D5 z5

� �
F
G

�
=

�
Cp1 ;p2 ;p3 ;p4

Cp1 ;p2 ;p3 ;p5

�
:

Proposition 3. If z4 6= 0 (resp. z5 6= 0 ), then the direc-
tions of the cylinders interpolating P correspond to all the
common roots of both equationsCp1 ;p2 ;p3 ;p4 (l; m; n ) = 0
and �( l; m; n ) := z5D4(l; m; n ) � z4D5(l; m; n ) = 0 (resp.
Cp1 ;p2 ;p3 ;p5 (l; m; n ) = 0 and �( l; m; n ) = 0 ).

Proof. If z4 6= 0 then the system (4) is obviously equivalent
to Cp1 ;p2 ;p3 ;p4 = 0 and

z4Cp1 ;p2 ;p3 ;p5 (l; m; n ) � z5Cp1 ;p2 ;p3 ;p4 (l; m; n ) =

nx2(z4D5 � z5D4) = 0 :

The solutions corresponding ton = 0 satisfy n = G = 0
so that they de�ne exactly the three extraneous directions
(p1p2), (p1p3) and (p2p3). Therefore, the remaining poly-
nomial system

Cp1 ;p2 ;p3 ;p4 (l; m; n ) = 0 ; �( l; m; n ) = 0 (5)

gives exactly the six solutions of interest. The casez5 6= 0
is treated similarly.

Notice that the case wherez4 = z5 = 0 corresponds
geometrically to �ve coplanar points. If these points are
also aligned, there are in�nitely many cylinders. If they
belong to an ellipse, there are two non-degenerate cylinders
through these points (they are symmetric with respect to
the planez = 0); if this ellipse is a circle these two solutions
coincide. Otherwise there are no cylinders through these
points. In all cases, these points belong to a degenerate
\at" cylinder (in�nite radius).

2.2.2. Solving via eigencomputations
Now we describe a method that allows us to compute

e�ciently the roots of the system of algebraic equations
given in Proposition 3 as the eigenvalues of a pencil of
matrices given in closed form. This approach is based on
known techniques (see e.g. [12], [5,x1]) that allow us to
recover the solutions in a single computation step (similar
to [6, Appendix] or [3]) with good control on numerical
stability and accuracy [7]. Hereafter, we provide, for the
convenience of the reader, a short review, adapted to our
context, of this matrix-based solution method.

First, in order to treat separately the case n = 0, ob-
serve that the common roots ofCp1 ;p2 ;p3 ;p5 = 0 and � = 0
such that n = 0 are easily computed since these roots
are among the three directions (p1p2), (p1p3) and (p2p3)
(i.e. the roots of n = G = 0) and the decision is given by
the evaluation of the equation �( l; m; n ) at these direc-
tions. For instance, the direction (1; 0; 0) is a solution if
and only if

�(1 ; 0; 0) = z5
�
� y4y3

2 + y4
2y3 + z4

2y3
�

� z4
�
� y5y3

2 + y5
2y3 + z5

2y3
�

= 0 :

Therefore, from now on we setn = 1.
We consider the Sylvester Matrix S of the polynomials

Cp1 ;p2 ;p3 ;p5 (l; m; 1) and �( l; m; 1) seen as univariate poly-
nomials in the variable m. This matrix is a polynomial
matrix of degree 2 in l . More precisely, this matrix is of
the form M 2l2 + M 1l + M 0 where eachM i is a 5� 5-matrix
whose coe�cients are given in closed forms in terms ofP.
For instance,

M 2 :=

0

B
B
B
B
B
B
B
B
@

0 0 x2 y3
2z4 b 0

0 0 0 x2 y3
2z4 b

0 0 a 0 0

0 0 0 a 0

0 0 0 0 a

1

C
C
C
C
C
C
C
C
A

where

a := � y3
2y4 z5 + y3

2z4 y5 + y3 y4
2z5 � y3 z4 y5

2

+ y3 z4
2z5 � y3 z4 z5

2

and
b := � x2 y3

2y4 + x2 y3 y4
2 + x2 y3 z4

2:

Now, following [3], we linearize this polynomial matrix by
considering its companion matrices that are de�ned by

A =
�

0 I
M t

0 M t
1

�
; B =

�
I 0
0 � M t

2

�

whereI stands for the 5� 5-identity matrix and M t
i stands

for the transpose of the matrix M i . These matrices are of
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size 10� 10 and their main feature and importance is the
fact that for all � 2 C and all vector v 2 Cm we have

St (� )v = 0 , (A � �B )
�

v
�v

�
= 0 :

In other words, the solutions to the system

Cp1 ;p2 ;p3 ;p4 (l; m; 1) = 0 ; �( l; m; 1) = 0

can be computed from the eigenvalues and eigenvectors
of the pencil A; B which is given in closed form in terms
of the input data P. We refer the reader to [3] for more
details on these computations.

2.2.3. Extraction algorithm
From the above analysis, we deduce the following ex-

traction algorithm for cylinders through a point set P:

1. Perform a linear change of coordinates so that the
�ve points are of the form (3).

2. If z4 = z5 = 0 the points are coplanar and the algo-
rithm stops here.

3. Assumez4 6= 0. Then instantiate the pre-computed
matrices M 0; M 1; M 2, and henceA; B , with the co-
ordinates of the points pi , i = 1 ; : : : ; 5.

4. Compute the six �nite eigenvalues of the pencilA; B
(see [3] for details), and sort them in order to keep
only those that are real numbers (up to a given pre-
cision).

5. For each real eigenvalue obtained in Step 4, compute
the remaining coordinate of the direction by means
of the associated eigenvectors (see [3] for details);
keep those directions that are given by real numbers.

6. For each real direction of a cylinder throughP, com-
pute q1; q2; q3 then the radius and the center of their
circumcircle.

This algorithm has been implemented with the Maple
software. We observed that the computation of the cylin-
ders through a random set of points takes on average 15ms
(including all the steps in the above algorithm) and is al-
most constant, i.e. independent of the point set. The pro-
portion of the number of cylinders found through random
point sets is given in Table 2; we notice that we recover
essentially those that appear in [9,x4.1]. Some illustrative
con�gurations are presented in Figure 2.

Number of cylinders 0 2 4 6
Proportion (%) 22.7 53.9 21.4 2

Table 2: Proportion of the number of cylinders found through a
thousand random point sets.

3. Interpolation of cones

A cone (more precisely a right circular cone) is a three-
dimensional geometric shape that consists of the locus of

Figure 2: Three con�gurations of P with 2,4 and 6 cylinders passing
through P .

all straight lines (the generatrices) joining a �xed point,
called the apex to the points of a circle, the apex lying
on the line, called the axis, passing through the center of
the circle and normal to the plane containing this circle. A
cone is determined by six parameters : four parameters for
the axis, an additional parameter for the apex, which is a
point on the axis and a last parameter for the angle of the
cone, that is to say the angle made at the apex between
the axis and any of the straight lines generating the cone.

This approach is classical to determine a cone from
three oriented points. Indeed, each normal plane to each
oriented point must contains the apex, so the apex can be
determined as the intersection of three such planes. Never-
theless, this approach is overdetermined in the sense that
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it will not yield a cone in general because three general
oriented points give nine conditions whereas a cone has
only six parameters. Hereafter, we provide methods for
interpolating a cone through a mixed point set that de-
�ne exactly six conditions. There are three possibilities
for such mixed point sets : either two oriented points, or
one oriented point and three other distinct points, or six
distinct points.

3.1. Cones through two oriented points

We seek for cones through a setP of two oriented points
that we will denote by p1; n1 and p2; n2. By a linear change
of coordinates, one can assume without loss of generality
that p1 := (0 ; 0; 0) and n1 := (0 ; 0; 1). For the remaining
data, we setp2 = ( x2; y2; z2) and n2 = ( a2; b2; c2).

Assuming that n2 is not proportional to n1, i.e. a2 6= 0
or b2 6= 0, the normal plane to n1 through p1 and the
normal plane � 2 to n2 through p2 intersect along a lineL .
A key remark is that the apex of a cone throughP must
be on L . This line is de�ned by the equations

L :
�

z = 0
a2x + b2y + c2z � p2:n2 = 0 :

If n2 is proportional to n1, then we get a degenerate situ-
ation. Indeed, either z2 6= 0 and there is no cone through
P, or z2 = 0 and there are in�nitely many cones through
P (the line through p1 and p2 de�ne a generatrix of the
cone and then the apex can be freely chosen on this line, as
well as the angle of the cone). So from now on we assume
that n2 is not proportional to n1, i.e. a2

2 + b2
2 > 0.

The axis of a cone throughP must intersect the line L 1

through p1 with direction n1 and also intersect the lineL 2

through p2 with direction n2. So to characterize this axis,
we pick a point on each of these lines, sayq1 = � 1n1 2 L 1

and q2 = p2+ � 2n2 2 L 2 where� 1; � 2 2 R, and we consider
the line A through q1 and q2. The only special case when
A is not well de�ned is when L 1 and L 2 intersect and both
q1 and q2 are located at this intersection point. For the
sake of clarity, we will treat this case separately and we
assume for the moment thatL 1 and L 2 do not intersect.

The line A will be the axis of a cone throughP pro-
viding the two following conditions hold:

� A intersects L , in which case the intersection point
is the apex of the cone,

� the angle betweenn1 and A must be equal to the
angle betweenn2 and A.

A can be parameterized as the set of points (1� � )q1 + �q 2

for � 2 R. It is necessary to havez2 + � 2c2 � � 1 6= 0 for
otherwiseA is parallel to the plane z = 0 and hence it does
not intersect L , unless� 1 = z2 + � 2c2 = 0 but in this case
the apex would bep1 which is impossible (normal vector is
not well de�ned at the apex). So, assumingz2+ � 2c2 � � 1 6=

0, the intersection point betweenA and the planez = 0 is
the point with coordinates

�
� � 1

x2 + � 2a2

z2 + � 2c2 � � 1
; � � 1

y2 + � 2b2

z2 + � 2c2 � � 1
; 0

�
: (6)

Substituting this point into L , we get the following �rst
constraint on � 1 and � 2 :

� 1� 2(a2
2 + b2

2) � � 1z2c2 + ( p2:n2)(z2 + � 2c2) = 0 : (7)

Now denote byq the vector q2 � q1; the second condition is
obtained by imposing q:n1 = � q:n2=kn2k; the sign change
arises because the normals are supposed to be oriented
with respect to the interpolating cone. More explicitly, we
obtain the equation

� (z2 + � 2c2 � � 1) = " (� c2� 1 + � 2� 2 + p2:n2); (8)

where � = kn2k =
p

a2
2 + b2

2 + c2
2 and " = � 1. This lat-

ter condition being linear in � 1 and � 2, one can solve the
system of equations (7) and (8) in closed form. More pre-
cisely, once" is �xed, we get the following two solutions :

8
>><

>>:

� 0
1 =

a2
2z2 � a2c2x2 + b2

2z2 � b2c2y2

a2
2 + b2

2

� 0
2 = �

a2x2 + b2y2

a2
2 + b2

2

;

8
><

>:

� 1 =
p2:n2

c2 + "�

� 2 = �
z2

c2 + "�

:

Observe that jc2j 6= � since it is assumed thatn2 is not
parallel to n1. Another important observation is that the
solution (� 0

1; � 0
2) is independent of" and moreover satis�es

z2 + � 0
2c2 � � 0

1 = 0. Therefore, (� 0
1; � 0

2) is not a valid
solution. So we are left with two solutions to our geometric
interpolation problem, namely

8
><

>:

� 1 =
p2:n2

c2 � �

� 2 = �
z2

c2 � �

;

8
><

>:

� 1 =
p2:n2

c2 + �

� 2 = �
z2

c2 + �

: (9)

Once such a solution is chosen, then one can determine
a unique cone throughP : its apex is given by (6), its
direction is given by q = q2 � q1 and its angle is given by
the angle between the vectorsp1 � apex and q.

It remains to treat the case where the linesL 1 and L 2

intersect. Let us denote by � the plane that contains these
two lines, by N1 the normal line in � to L 1 through p1,
by N2 the normal line in � to L 2 through p2 and by ! the
intersection point between N1 and N2. We notice that !
is nothing but the intersection point between � and L ; see
Figure 3 for a geometric illustration.

First, we observe that there are always two cones throu-
gh P. These two cones have the same apex! and their
axes are the perpendicular bisectors of the linesN1 and N2

through ! . Therefore, these two cones are symmetric with
respect to the plane � and their intersection is composed
of the two lines N1 [N 2. There are no other cones through

7



Figure 3: Geometric construction in the case where the lines L 1 and
L 2 intersect.

P whose axis is contained in � (equivalently whose apex
is ! ).

Next we look for cones through P whose apex� is
such that � 2 L n f ! g. Since the axis of such a cone
must intersect L 1 and L 2 and go through � which is not
in �, then the axis must be the line through � and q :=
L 1 \ L 2 2 � (recall that it is assumed that n2 and n1 are
not proportional). The two triangles �qp 1 and �qp 2 are
right angled at p1, respectively at p2, since � belongs to
L = � 2 \ f z = 0g. Therefore, a necessary and su�cient
condition for the existence of a cone throughP, and whose
axis is the line through � and q, is that the angles (�q; �p 1)
and (�q; �p 2) are the same. This condition is equivalent
to the equality kqp1k = kqp2k since the two right triangles
�qp 1 and �qp 2 share the edge�q .

In summary, when the linesL 1 and L 2 intersect there
always exists two cones throughP, whose axis are con-
tained in �. If kqp1k 6= kqp2k then there are no more
cones throughP, otherwise there are in�nitely many cones
through P, more precisely a 1-dimensional family of cones
which is parameterized byL . A last observation is that if
kqp1k = kqp2k then one of the two perpendicular bisectors
of N1 and N2 through ! goes throughq, so that there is
a continuity in this family of cones through P when � is
moving on the line L .

Theorem 4. Given an oriented set of two distinct points
P, denote byL the line throughp1 with direction n1 and by
L 2 the line through p2 with direction n2. If the following
two conditions hold :

i) n1 and n2 are not proportional,

ii) if the lines L 1 and L 2 intersect at a point q then
kqp1k 6= kqp2k,

Figure 4: Two cones through a general set of two oriented points.

then there are exactly two real cones throughP. More-
over, the intersection of these two cones consists only of
the points p1 and p2, except if they share the same apex in
which case their intersection consists of the linesN1 and
N2.

If n1 is parallel to n2 then there is no cone throughP
unless p2 belongs to the lineN1, in which case there are
in�nitely many cones through P.

If the lines L 1 and L 2 intersect at a point q such that
kqp1k = kqp2k, then there are in�nitely many cones through
P.

Extraction algorithm. From the above analysis, we deduce
the following extraction algorithm for cones through a set
of two oriented points P.

1. Perform a linear change of coordinates so thatp1 =
(0; 0; 0) and n1 = (0 ; 0; 1).

2. If n1 and n2 are proportional then check whether
p2 belongs to N1 and return that either there is no
cone through P, or there are in�nitely many cones
through P.

3. If L 1 intersects L 2, then if kqp1k 6= kqp2k return the
two cones through P, otherwise if kqp1k = kqp2k
return that there are in�nitely many cones through
P.

4. Now, sincen1 is not proportional to n2 and L 1 [L 2 =
; , there are exactly two cones throughP that are
computed by means of the closed formulas (9).

This algorithm has been implemented with the Maple
software. We observed that computing the cones through
a random set of points takes in average 3.8ms (including
all the steps in the above algorithm) and is almost con-
stant, i.e. independent of the point set. Some illustrative
con�gurations are shown in Figure 4 and Figure 5.

3.2. Cones through a mixed minimal point set

We seek cones through a setP that is composed of
an oriented point (p1; n1) and three other simple points
p2; p3; p4. By a linear change of coordinates, one can as-
sume without loss of generality that p1 := (0 ; 0; 0) and
n1 := (0 ; 0; 1). For the remaining data, we set p2 =
(x2; y2; z2) , p3 = ( x3; y3; z3) and p4 = ( x4; y4; z4).
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Figure 5: Two cones intersecting along two lines and sharing the
same apex.

The axis of a cone throughP must intersect the line
generated by n1 through p1 in a point q = (0 ; 0; r ). Ob-
serve that r must be nonzero otherwisep1 would be the
apex of such a cone, which is impossible since it is a non-
singular point. In addition, the apex of a cone through P
must belong to the normal plane to n1 through the point
p1 and we choose to represent the coordinates of this point
by p = ( ar; br; 0). Again, observe for the same reason that
a and b must be nonzero, i.e.a2 + b2 6= 0.

Now a point m = ( x; y; z) belonging to a cone through
P must satisfy

( ~pm� ~pq)2 = kpmk2kpqk2�;

that is to say

r 2 (� a(x � ar ) � b(y � br) � z)2 =

r 2 �
(x � ar )2 + ( y � br)2 + z2� �

a2 + b2 + 1
�

�

where � > 0 is a constant that corresponds to the angle of
the cone. The factor r 2 can be cancelled out. Moreover,
the cone goes throughp1 so we deduce that

r 2 �
a2 + b2� 2

= r 2 �
a2 + b2� �

a2 + b2 + 1
�

�:

Substituting into the previous equation, we �nally deduce
that the point m = ( x; y; z) belonging to a cone through
P must satisfy F (x; y; z) = 0 where

F (x; y; z) = 2
�
a2 + b2�

zr +
�
a2 + b2 � 1

�
z2

� 2 (ax + by) z + ( bx � ay)2 :

The three parametersa; b and r are to be determined and
we will use the three pointsp2; p3 and p4 for that purpose.

Assume that one of the pointsp2; p3; p4, say p2, is not
in the plane z = 0 (the case where all the points are in this
plane is a special case of the situation discussed at the end
of Section 3.3). Hencez2 6= 0. Then there exists a cone
through P if and only if

F (x2; y2; z2) = 0 ; z3F (x2; y2; z2) � z2F (x3; y3; z3) = 0 ;

z4F (x2; y2; z2) � z2F (x4; y4; z4) = 0 :

It turns out that the two last equations are independent
of r ; for i = 3 ; 4 we have

zi F (x2; y2; z2) � z2F (x i ; yi ; zi ) =
�
y2

2zi � yi
2z2 + z2

2zi � z2zi
2�

a2 � (2x2y2zi � 2x i yi z2) ab

� (2x2z2zi � 2x i z2zi ) a+
�
x2

2zi � x i
2z2 + z2

2zi � z2zi
2�

b2

� (2y2z2zi � 2yi z2zi ) b� z2
2zi + z2zi

2:

Since these two equations are quadratic ina and b, they
have four common roots. Oncea and b are determined
then r is uniquely de�ned by the equation F (x2; y2; z2) = 0
which is linear in r . So, we have proved the following
result.

Theorem 5. Given a general mixed point setP, there are
0, 2 or 4 cones throughP.

Extraction algorithm. From the above analysis, the ex-
traction algorithm for cones through a mixed point set P
composed of an oriented point and three other distinct
points relies on solving two algebraic equations in two
variables. To solve such systems, we proceed as in Sec-
tion 2.2.2 by means of eigen-computations from a pencil
of matrices which is in closed form in terms of the input
data. This pencil A; B of 8 � 8 matrices is obtained as
the companion matrices of both equationszi F (x2; y2; z2) �
z2F (x i ; yi ; zi ) = 0, i = 3 ; 4.

1. Perform a linear change of coordinates so thatp1 =
(0; 0; 0) and n1 = (0 ; 0; 1).

2. Instantiate the pencil of matrices A; B with the co-
ordinates of the input points.

3. Compute the eigenvalues and eigenvectors and de-
duce the real cones throughP.

This algorithm has been implemented with the Maple
software. We observed that computing the cones through
a random set of points takes in average 7.5ms (including all
the steps in the above algorithm) and is almost constant,
i.e. independent of the point set. The proportion of the
number of cones found through random point sets is given
in Table 3 and some illustrative con�gurations are shown
in Figure 6.

Number of cones 0 2 4
Proportion (%) 6.9 85.9 7.2

Table 3: Proportion of the number of cones found through a thousand
random point sets.

3.3. Cones through six points
We seek cones through a setP composed of six simple

points p1; p2; p3; p4; p5; p6. By a linear change of coordi-
nates, we can assume without loss of generality that

p1 = (0 ; 0; 0); p2 = ( x2; 0; 0); p3 = ( x3; y3; 0); (10)

p4 = ( x4; y4; z4); p5 = ( x5; y5; z5); p6 = ( x6; y6; z6):
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Figure 6: Two con�gurations of P with 2 and 4 cones passing through
P .

Geometric analysis. The general equation of a cone de-
pends on 6 parameters:

F (x; y; z) :=

(x� a)2+( y� b)2+( z� c)2 � (l (x � a)+ m(y� b)+ n(z� c))2

(11)

where (a; b; c) are the coordinates of the apex and the vec-
tor ( l; m; n ) encodes the direction of the axis as well as the
angle of the cone (l2 + m2 + n2 = 1=cos2(� ), � being the
angle of the cone).

We introduce the quantity k := al + bm+ cn. Sincep1

is the origin, we get the equation

F (p1) = a2 + b2 + c2 � k2 = 0 : (12)

Moreover, we observe that the polynomial

F (x; y; z) � F (p1) = 2 ( lx + my + nz) k � 2(ax + by+ cz)

� 2lmxy � 2lnxz � 2mnyz� l2x2� m2y2� n2z2+ x2+ y2+ z2

(13)

is linear in a; b; cand k. From the equation

F (p2) � F (p1) = 2 lx 2k � 2x2a � l2x2
2 + x2

2 = 0

we get, assumingx2 6= 0, i.e. p2 6= p1,

a = lk +
x2

2
(1 � l2): (14)

Now we have that

F (p3) � F (p1) = 2 my3k � 2y3b+ x3l2x2

� l2x3
2 � 2lmx 3y3 � m2y3

2 � x3x2 + x3
2 + y3

2 = 0

and we get, assumingy3 6= 0, i.e. assuming that p1; p2 and
p3 are not aligned,

b = mk +
1

2y3

�
x3l2x2 � l2x3

2 � 2lmx 3y3

� m2y3
2 � x3x2 + x3

2 + y3
2�

: (15)

Continuing this way, we get the equation

F (p4) � F (p1) = 2 z4nk � 2z4c

+
1
y3

(� l2x2x3y4 + l2x2x4y3 + l2x3
2y4 � l2x4

2y3

+ 2 lmx 3y3y4 � 2lmx 4y4y3 � 2lnx 4z4y3 + m2y3
2y4

� m2y4
2y3 � 2mny4z4y3 � n2z4

2y3 + x2x3y4 � x2x4y3

� x3
2y4 + x4

2y3 � y3
2y4 + y4

2y3 + z4
2y3) = 0

and we get, assuming that z4 6= 0, i.e. assuming that
p1; p2; p3 and p4 are not coplanar,

c = nk +
1

2y3z4
(� l2x2x3y4 + l2x2x4y3 + l2x3

2y4 � l2x4
2y3

+2 lmx 3y3y4 � 2lmx 4y4y3 � 2lnx 4z4y3+ m2y3
2y4 � m2y4

2y3

� 2mny4z4y3 � n2z4
2y3 + x2x3y4 � x2x4y3 � x3

2y4 + x4
2y3

� y3
2y4 + y4

2y3 + z4
2y3): (16)

From here, we substitute a; b and c by the above quan-
tity that we found in both equations F (pi ) � F (p1) = 0
with i = 5 ; 6. Notice that these two equations do not de-
pend on k because of the cancellation of the two terms
2 (lx + my + nz) k � 2(ax + by + cz) in (13) by this sub-
stitution. We get two equations H i (l; m; n ), i = 5 ; 6, that
satisfy

y3z4H i (l; m; n ) =

(x2x3y4zi � x2x3yi z4 � x2x4y3zi + x2x i y3z4

� x3
2y4zi + x3

2yi z4 + x4
2y3zi � x i

2y3z4
�

l2

+ ( � 2x3y3y4zi + 2x3y3yi z4 + 2x4y3y4zi � 2x i y3yi z4) lm

+ (2 x4y3z4zi � 2x i y3z4zi ) ln

+
�
� y3

2y4zi + y3
2yi z4 + y3y4

2zi � yi
2y3z4

�
m2

+ (2 y3y4z4zi � 2y3yi z4zi ) mn +
�
y3z4

2zi � zi
2y3z4

�
n2

� x2x3y4zi + x2x3yi z4 + x2x4y3zi � x2x i y3z4

+ x3
2y4zi � x3

2yi z4 � x4
2y3zi + x i

2y3z4 + y3
2y4zi

� y3
2yi z4 � y3y4

2zi + yi
2y3z4 � y3z4

2zi + zi
2y3z4 = 0 :
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These equationsH5 and H6 are polynomials of degree 2 in
l; m; n and only the constant term and monomials of degree
2 have nonzero coe�cients. The equationH5 depends on
the coe�cients of p2; p3; p4 and p5 whereasH6 depends
on the coe�cients of p2; p3; p4 and p6. Applying the same
substitutions and replacing k by its de�ning value in (12),
we get another equationH0(l; m; n ) which is of degree 6 in
l; m; n and such that only monomials of even degree have
nonzero coe�cients. Observe that H0 depends only on the
coordinates ofp2; p3 and p4. To give an idea, we have

4y2
3z2

4 (l2 + m2 + n2 � 1)H0 =
�
� x2

2x3
2y4

2 � x2
2x3

2z4
2 + 2x2

2x3x4y3y4 � x2
2x4

2y3
2

+2x2x3
3y4

2 + 2x2x3
3z4

2 � 2x2x3
2x4y3y4

� 2x2x3x4
2y3y4 + 2x2x4

3y3
2 � x3

4y4
2 � x3

4z4
2

+2x3
2x4

2y3y4 � x4
4y3

2�
l6 + � � �

We notice that the quantity l2+ m2+ n2 � 1 can be assumed
to be nonzero because cones such thatl2 + m2 + n2 = 1
degenerate to straight lines.

The common roots of the equationsH0; H5 and H6

yield exactly all the cones through P. If �nite, this num-
ber is at most 2� 2 � 6 = 24 because of the B�ezout the-
orem. However, each cone throughP yields two solutions
of this polynomial systemH0 = 0 ; H5 = 0 ; H6 = 0, namely
(l0; m0; n0) and (� l0; � m0; � n0). This latter property is a
consequence of the fact thatH0; H5; H6 can be written as
monomials of even total degree inl; m; n . Therefore, we
deduce that there are at most 12 cones throughP. Never-
theless, in order to devise an e�cient algorithm for com-
puting those cones throughP, we apply a transformation
(called a � -processor a blow-up in birational geometry) in
order to break the above central symmetry and reduce the
degree of the equations so that each cone will correspond
to a unique root of the new polynomial system.

Consider the transformation

� : R3 ! R3

(l; m; n ) 7!
�

u :=
l
n

; v :=
m
n

; n
�

:

Since the equationsH0; H5 and H6 contain only even de-
gree monomials, their transform under � will be a poly-
nomial in n2 (and not only a polynomial in n). More
precisely, setting w := n2, we have

H0(un; vn; n ) = w3P(u; v) + w2Q(u; v) + wR(u; v) + S;

H5(un; vn; n ) = wH (u; v) + C;

H6(un; vn; n ) = wK (u; v) + D;

where H; K; P; Q; R are polynomials in u; v of degree 2, 2,
6, 4, 2 respectively, and whereC; D; S are constants that
depend only on thex i 's, yi 's and zi 's. Since the last two
equations are linear inw we can simplify this polynomial

system in w, assumingw 6= 0, to get

E0(u; v) = C3P(u; v) � C2Q(u; v)H (u; v) (17)

+ CR(u; v)H (u; v)2 � SH(u; v)3;

E1(u; v) = DH (u; v) � CK (u; v);

E2(u; v; w) = wK (u; v) + D:

The two equations E0 and E1 are bivariate polynomials in
u; v of degree 6 and 2 respectively. Therefore, they de�ne
at most 12 solutions. In addition, for each solution the
value of w can be computed fromE2. As a consequence,
we have just proved the following result.

Theorem 6. Given a point set P composed of six distinct
points then, if �nite, there is an even number of cones
through P, which is possibly 0 and at most 12.

Proof. Solving the polynomial system given by the equa-
tions E0(u; v) = 0 and E1(u; v) = 0 leads to an even num-
ber of real solutions with a maximum of 12 = 6 � 2 solu-
tions. So the only thing to show is that there is a bijection
between these solutions and the cones throughP. For that
purpose, we �rst observe that the value of w is uniquely
determined from each of those roots by equationE2. And
then the solutions (u; v; w) uniquely pull back to a solution
(l; m; n ) under � .

So it remains to show that once a solution (l; m; n )
is computed, then the parametersa; b and c are uniquely
determined. This is indeed the case becausea; b and c
can actually be given in closed form in terms ofl; m; n
and the coordinates of the input points because the three
equations (14), (15) and (16) yield a linear system ina; b; c
after replacing k by its de�ning value al + bm + cn.

In Figure 7 it is shown that all the possible solutions
are reached in practice. Finally, observe that the particu-
lar casew = n2 = 0 can be treated independently in the
same vein as above. Indeed, the remaining variablesl; m
can be computed from the equationsH5(l; m; 0) = 0 and
H6(l; m; 0) = 0. Moreover, to solve e�ciently this system
one can perform a transformation similar to � by consider-
ing the equationsH5(um; m; 0) = 0 and H6(um; m; 0) = 0
that are linear equations in m2. At the end, the computed
solutions must satisfy the equation H0 in order to vali-
date that they correspond to cones through the given set
of points P.

Extraction algorithm. Summarizing the above analysis, solv-
ing for the cones throughP can be done as follows.

1. Perform a linear change of coordinates so that the
�ve points are of the form (10).

2. If x2, y3 or z4 is equal to zero then we are in a partic-
ular con�guration (see Section 3.3) so this algorithm
stops here.

3. Build the system of equations (17) which is given in
closed form in terms of the coordinates of the input
points.

11



Figure 7: Con�gurations of points P with 2, 4, 6, 8, 10 and 12 cones
passing through P .

4. Solve the systemE0(u; v) = E1(u; v) = 0 in the two
variables u; v by means of eigenvectors and eigenval-
ues computations, as explained in Section 2.2.2 (see
[3] for details). This computation returns a list of an
even number between 0 and 12 of real solutions (up
to a given precision).

5. For each above solution (ui ; vi ), compute the corre-
sponding value ofwi using the equationE2(ui ; vi ; wi ) =
0. Then pullback the solution (ui ; vi ; wi ) under � to
get the solutions (l i = ui ni ; mi = vi ni ; ni =

p
wi ) of

the polynomial system H0 = H5 = H6 = 0.
6. For each solution (l i ; mi ; ni ), compute the correspond-

ing (ai ; bi ; ci ) (as explained in the proof of Theorem
6) and return the corresponding cone throughP.

This algorithm has been implemented with the Maple
software. We observed that computing the cones through
a random set of points takes in average 80ms (including all
the steps in the above algorithm) and is almost constant,
i.e. independent of the point set. In Table 4, we provide
the distribution of the number of cones through a set of
points P for a random sample of a thousand point setsP.

Some particular con�gurations. If every subset of four po-
ints in P is coplanar then all the six points in P are nec-
essarily coplanar. In such a con�guration, there exists a

Number of cones 0 2 4 6
Proportion (%) 1 10,5 28,7 36,3

Number of cones 8 10 12
Proportion (%) 18,7 3,9 0,9

Table 4: Proportion of the number of cones found through a thousand
random point sets.

cone through P if and only if P can be interpolated by
a conic section (parabola, hyperbola or ellipse). If this is
the case, then there are in�nitely many cones throughP.
When a subset of �ve points in P are coplanar then we get
interesting particular con�gurations.

Theorem 7. Given a point set P where �ve points are
coplanar but not six. There exists a cone throughP if
these �ve points are located on an ellipse or a hyperbola.
Moreover, if this is the case there are at most four cones
through P.

More speci�cally, if the �ve points are co-circular, then
there are two cones throughP and if the �ve points are on
a parabola then there are at most 3 cones throughP.

Proof. It is clear that the �ve coplanar points must be
on a conic section if there exists a cone throughP. By
a change of coordinate system, one can assume that this
conic section lies in the planez = 0 and is in its canonical
form. We examine below the three cases that correspond
to an ellipse, a hyperbola and a parabola.

Ellipse. The equation of the conic section is of the form

�x 2 + �y 2 � 1 = 0; �; � > 0

and it must coincide with the intersection of the implicit
equation of a cone (11) after the substitution z = 0. Now
we proceed by identifying the monomial coe�cients of
these two equations. the coe�cient of the monomial xy
yields the condition 2lm = 0 so that l = 0 or m = 0.
If l = 0, then the coe�cients of y2 yields the condition
m2 = 1 � �=� and if m = 0 then the coe�cients of x2

yields the condition l2 = 1 � �=� . Depending on the ratio
�=� , only one case leads to real solutions. From now on
we assume that �=� � 1, the other case can be treated
similarly. So we have that

l = 0 ; m2 = 1 �
�
�

� 0:

The coe�cient of the monomial x yields the condition a =
0 and the coe�cient of y gives the condition

b = �
cmn

m2 � 1
=

�
�

cmn (18)

(observe that m2 � 1 6= 0). Finally, the coe�cients of the
monomial 1 yields the condition

(�n 2 � � )c2 �
�
�

= 0 : (19)
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Now let (x0; y0; z0) be the coordinates of the sixth point.
Evaluating (11) at this point together with the conditions
l = 0 ; a = 0 and (18) yields the condition

c2
�

n2 �
�
�

�
� 2cz0

�
n2 �

�
�

�
+ ' 2(n) = 0 (20)

(recall that �; � > 0 and in particular m2 � 1 6= 0) where

' 2(n) :=
�
� m2z0

2 + z0
2�

n2 +
�
� 2m3y0z0 + 2 my0z0

�
n

� m4y0
2 + m2x0

2 + 2 m2y0
2 + m2z0

2 � x0
2 � y0

2 � z0
2

is a degree 2 polynomial inn that is independent of c. The
cones throughP are in correspondence with the solutions
of the equations (19) and (20) in the variablesc and n.
Using (19), Equation (20) becomes

2cz0
�
�n 2 � �

�
= �' 2(n) +

�
�

and hence we get

�
�' 2(n) +

�
�

� 2

= 4c2z2
0 (�n 2 � � )2 = 4z2

0
�
�

(�n 2 � � )

which is an equation of degree 4 inn. Therefore, once
m is chosen from the conditionm2 = 1 � �=� , we obtain
at most 4 values of n and all the other parameters are
uniquely determined. We conclude that we have at most
four cones throughP, as claimed.

If the conic section is a circle, i.e. � = � , we have
l = m = 0. In this case, ' 2(n) = z2

0 (n2 � 1) � (x2
0 + y2

0) and
hence the degree 4 equation inn is actually an equation
in n2. Therefore, the 4 solutions come in pairs of opposite
solutions and we deduce that we have two cones through
P.

Hyperbola. The equation of the conic section is of the form

�x 2 � �y 2 � 1 = 0; �; � > 0

and we proceed similarly to the case of the ellipse. The
identi�cation of xy implies that 2lm = 0 so we have two
cases to consider, namelyl = 0 and m = 0.

If l = 0 then the coe�cient of y2 yields m2 = 1 + �=� .
The coe�cient of x shows that a = 0 and the coe�cient
of y gives

b = �
�
�

cmn:

Then the constant term yields the equality

b2 + c2 � (bm + cn)2 = �
1
�

that becomes, after substituting b,

c2
�

1 +
�
�

n2
�

= �
1
�

:

Therefore, there are no real solutions in this case.

Now if m = 0, then l2 = 1 + �=� . The coe�cient of y
shows that b = 0 and the coe�cient of x gives

a = �
ncl

l2 � 1
= �

�
�

ncl:

Then the constant coe�cient yields the equation

c2(l2 + n2 � 1)
l2 � 1

=
1
�

:

From here, we use the sixth point as in the case of the
ellipse and we get again 4 possible real cones throughP.

Parabola. The equation of the conic section is of the form

x2 � �y = 0 ; � > 0:

Again we inspect the coe�cients of (11) after substituting
z = 0. The coe�cient of x2 gives l = 0 and the coe�cient
of y2 gives m2 = 1. The coe�cient of x gives a = 0 and
the coe�cient of y gives 2cmn = � � . Finally, the constant
coe�cient yields

b = �
c2(1 � n2)

�
:

Now choosingm = 1 and using the sixth point of coordi-
nates (x0; y0; z0), Equation (11) gives an equation of degree
3 in n, namely

� 2z0
2n3 + ( � �z 0 � 4y0z0) n2

+
�
� 2y0� + 2x0

2 + 2z0
2�

n + �z 0 = 0

and from here c can be uniquely determined.

4. Conclusion

We have presented several methods in order to extract
e�ciently cylinders and cones from minimal point sets. We
have also provided a detailed analysis of these interpola-
tion problems and we have given optimal bounds on the
number of solutions. Our approach relies on closed alge-
braic formulas that have been computed and experimented
with the help of a computer algebra system. In the near fu-
ture, we plan to incorporate these methods into an e�cient
C++ library in order to experiment our new methods in
the framework of a RANSAC-based extraction algorithm.
Another future research direction will be extracting tori
from a minimal point set, tori being described by means
of seven parameters.
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