M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, and D. Schipani, Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures, Post-Quantum Cryptography 2013, pp.1-15, 2013.
DOI : 10.1007/978-3-642-38616-9_1

S. L. Paulo, R. Barreto, M. A. Misoczki, . Jr, and . Simplicio, One-time signature scheme from syndrome decoding over generic error-correcting codes, Journal of Systems and Software, vol.84, issue.2, pp.198-204, 2011.

N. Courtois, M. Finiasz, and N. Sendrier, How to Achieve a McEliece-Based Digital Signature Scheme, Advances in Cryptology -ASIACRYPT 2001, pp.157-174, 2001.
DOI : 10.1007/3-540-45682-1_10

URL : https://hal.archives-ouvertes.fr/inria-00072511

P. Cayrel, A. Otmani, and D. Vergnaud, On Kabatianskii-Krouk-Smeets Signatures, Lecture Notes in Comput. Sci, vol.4547, pp.237-251, 2007.
DOI : 10.1007/978-3-540-73074-3_18

URL : https://hal.archives-ouvertes.fr/hal-00259021

V. Jean-charles-faugère, A. Gauthier, L. Otmani, J. Perret, and . Tillich, A distinguisher for high rate McEliece cryptosystems, Proc. IEEE Inf, pp.282-286, 2011.

V. Jean-charles-faugère, A. Gauthier, L. Otmani, J. Perret, and . Tillich, A Distinguisher for High-Rate McEliece Cryptosystems, IEEE Transactions on Information Theory, vol.59, issue.10, pp.6830-6844, 2013.
DOI : 10.1109/TIT.2013.2272036

M. Finiasz, Parallel-CFS, Selected Areas in Cryptography 17th International Workshop, pp.159-170, 2010.
DOI : 10.1007/3-540-45708-9_19

P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor, RankSign: An Efficient Signature Algorithm Based on the Rank Metric, Post-Quantum Cryptography 2014, pp.88-107, 2014.
DOI : 10.1007/978-3-319-11659-4_6

URL : https://hal.archives-ouvertes.fr/hal-01261425

D. Gligoroski, S. Samardjiska, H. Jacobsen, and S. Bezzateev, McEliece in the world of Escher. IACR Cryptology ePrint Archive, 2014.

G. Kabatianskii, E. Krouk, and B. J. Smeets, A digital signature scheme based on random error-correcting codes, IMA Int. Conf., volume 1355 of Lecture Notes in Comput. Sci, pp.161-167, 1997.
DOI : 10.1007/BFb0024461

G. Kabatianskii, E. Krouk, and B. J. Smeets, Error Correcting Coding and Security for Data Networks: Analysis of the Superchannel Concept, 2005.
DOI : 10.1002/0470867574

C. Löndahl and T. Johansson, A New Version of McEliece PKC Based on Convolutional Codes, Information and Communications Security, pp.461-470, 2012.
DOI : 10.1007/978-3-642-34129-8_45

G. Landais and N. Sendrier, Implementing CFS, Progress in Cryptology -IN- DOCRYPT 2012, pp.474-488, 2012.
DOI : 10.1007/978-3-642-34931-7_27

URL : https://hal.archives-ouvertes.fr/hal-00880644

G. Landais and J. Tillich, An Efficient Attack of a McEliece Cryptosystem Variant Based on Convolutional Codes, Lecture Notes in Comput. Sci, vol.7932, pp.102-117, 2013.
DOI : 10.1007/978-3-642-38616-9_7

URL : https://hal.archives-ouvertes.fr/hal-00880654

M. Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology -EUROCRYPT'93, pp.386-397, 1993.
DOI : 10.1007/3-540-48285-7_33

J. Florence, N. J. Macwilliams, and . Sloane, The Theory of Error-Correcting Codes, 1986.

H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, pp.159-166, 1986.

A. Otmani and J. Tillich, An Efficient Attack on All Concrete KKS Proposals, Post-Quantum Cryptography 2011, pp.98-116, 2011.
DOI : 10.1007/BFb0019850

URL : https://hal.archives-ouvertes.fr/hal-00913500