R. Aboulaich, A. B. Abda, and M. Kallel, Missing boundary data reconstruction via an approximate optimal control, Inverse Problems and Imaging, vol.2, issue.4, pp.411-426, 2008.
DOI : 10.3934/ipi.2008.2.411

S. Andrieux, T. N. Baranger, and A. B. Abda, Solving Cauchy problems by minimizing an energy-like functional, Inverse Problems, vol.22, issue.1, pp.115-133, 2006.
DOI : 10.1088/0266-5611/22/1/007

URL : https://hal.archives-ouvertes.fr/hal-00139569

I. Babuska, R. Tempone, and G. E. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.1251-1294, 2005.
DOI : 10.1016/j.cma.2004.02.026

I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations, SIAM Journal on Numerical Analysis, vol.42, issue.2, pp.800-825, 2005.
DOI : 10.1137/S0036142902418680

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics, pp.183-197, 2010.
DOI : 10.1016/j.probengmech.2009.10.003

M. Boulakia, S. Cazeau, M. A. Fernández, J. F. Gerbeau, and N. Zemzemi, Mathematical Modeling of Electrocardiograms: A Numerical Study, Annals of Biomedical Engineering, vol.98, issue.1???3, pp.1071-1097, 2010.
DOI : 10.1007/s10439-009-9873-0

URL : https://hal.archives-ouvertes.fr/inria-00400490

P. Chen, A. Quarteroni, and G. Rozza, Stochastic Optimal Robin Boundary Control Problems of Advection-Dominated Elliptic Equations, SIAM Journal on Numerical Analysis, vol.51, issue.5, pp.3163-3185, 2013.
DOI : 10.1137/120884158

O. Doessel, Y. Jiang, and W. H. Schulze, Localization of the origin of premature beats using anintegral method, International Journal of Bioelectromagnetism, vol.13, pp.178-183, 2011.

F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, 1990.

M. Eiermann, O. G. Ernst, and E. Ullmann, Computational aspects of the stochastic finite element method, Computing and Visualization in Science, vol.191, issue.2, pp.3-15, 2007.
DOI : 10.1007/s00791-006-0047-4

T. J. Faes, D. M. Van, D. J. Munck, and R. M. Heethaar, The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies, Physiological Measurement, vol.20, issue.4, pp.1-11, 1999.
DOI : 10.1088/0967-3334/20/4/201

M. A. Fernández and N. Zemzemi, Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation, Mathematical Biosciences, vol.226, issue.1, pp.58-75, 2010.
DOI : 10.1016/j.mbs.2010.04.003

K. R. Foster and H. P. Schwan, Dielectric properties of tissues and biological materials: a critical review, Critical reviews in biomedical engineering, vol.17, issue.1, pp.25-104, 1988.

S. Gabriel, R. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Physics in Medicine and Biology, vol.41, issue.11, pp.4122-51, 1996.
DOI : 10.1088/0031-9155/41/11/002

S. E. Geneser, R. M. Kirby, and R. S. Macleod, Application of Stochastic Finite Element Methods to Study the Sensitivity of ECG Forward Modeling to Organ Conductivity, IEEE Transactions on Biomedical Engineering, vol.55, issue.1, pp.31-40, 2008.
DOI : 10.1109/TBME.2007.900563

R. Ghanem and P. Spanos, Stochastic Finite Elements:a Spectral Approach, 1991.

S. Ghosh and Y. Rudy, Application of L1-Norm Regularization to Epicardial Potential Solution of the Inverse Electrocardiography Problem, Annals of Biomedical Engineering, vol.289, issue.5, pp.902-912, 2009.
DOI : 10.1007/s10439-009-9665-6

P. C. Hansen and D. P. Leary, The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal on Scientific Computing, vol.14, issue.6, pp.1487-1503, 1993.
DOI : 10.1137/0914086

L. Hou, J. Lee, and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs, Journal of Mathematical Analysis and Applications, vol.384, issue.1, pp.87-103, 2011.
DOI : 10.1016/j.jmaa.2010.07.036

O. P. Le-mâ-itre, M. T. Reagan, H. N. Najm, R. G. Ghanem, and O. M. Knio, A Stochastic Projection Method for Fluid Flow, Journal of Computational Physics, vol.173, issue.2, pp.9-44, 2002.
DOI : 10.1006/jcph.2001.6889

V. A. Oosterom and G. J. Huiskamp, The effect of torso inhomogeneities on body surface potentials quantified using ???tailored??? geometry, Journal of Electrocardiology, vol.22, issue.1, pp.53-72, 1989.
DOI : 10.1016/0022-0736(89)90023-X

A. Rouatbi and E. N. Lamsin, Complétion de données via des méthodes de type controle, 2009.

A. J. Shah, H. Lim, S. Yamashita, S. Zellerhoff, B. Berte et al., Denis, and al. Non invasive ecg mapping to guide catheter ablation, JAFIB: Journal of Atrial Fibrillation, vol.7, issue.3, p.2014

F. M. Weber, D. U. Keller, S. Bauer, G. Seemann, C. Lorenz et al., Predicting tissue conductivity influences on body surface potentialsan efficient approach based on principal component analysis, Biomedical Engineering IEEE Transactions, vol.58, issue.2, pp.256-273, 2011.

S. Wiener, The Homogeneous Chaos, American Journal of Mathematics, vol.60, issue.4, pp.897-936, 1998.
DOI : 10.2307/2371268

D. Xiu and G. E. Karniadakis, The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations, SIAM Journal on Scientific Computing, vol.24, issue.2, pp.619-644, 2002.
DOI : 10.1137/S1064827501387826

E. V. Zakharov and A. V. Kalinin, Algorithms and numerical analysis of dc fields in a piecewise-homogeneous medium by the boundary integral equation method, Computational Mathematics and Modeling, vol.21, issue.5, pp.247-257, 2009.
DOI : 10.1007/s10598-009-9034-1