
HAL Id: hal-01289176
https://inria.hal.science/hal-01289176v2

Submitted on 10 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Differential Evolution approach for Cloud
workflow placements under simultaneous optimization of

multiple objectives
Daniel Balouek-Thomert, Arya K. Bhattacharya, Eddy Caron, Karunakar

Gadireddy, Laurent Lefèvre

To cite this version:
Daniel Balouek-Thomert, Arya K. Bhattacharya, Eddy Caron, Karunakar Gadireddy, Laurent
Lefèvre. Parallel Differential Evolution approach for Cloud workflow placements under simultane-
ous optimization of multiple objectives. Congress on Evolutionary Computation (IEEE CEC 2016),
Jul 2016, Vancouver, Canada. �hal-01289176v2�

https://inria.hal.science/hal-01289176v2
https://hal.archives-ouvertes.fr

Parallel Differential Evolution approach
for Cloud workflow placements under
simultaneous optimization of multiple

objectives

Daniel Balouek-Thomert*†, Arya K. Bhattacharya‡#, Eddy Caron†, Karunakar Gadireddy‡,

Laurent Lefevre†

* NewGeneration-SR, Paris, France
† INRIA Avalon team, LIP Laboratory, UMR CNRS – ENS de Lyon – INRIA – UCB Lyon 5668

University of Lyon, France
‡ School of Engineering, Mahindra Ecole Centrale, Hyderabad, India

Senior Member, IEEE

 Abstract— The recent rapid expansion of
Cloud computing facilities triggers an attendant
challenge to facility providers and users for
methods for optimal placement of workflows on
distributed resources, under the often-
contradictory impulses of minimizing makespan,
energy consumption, and other metrics.
Evolutionary Optimization techniques that from
theoretical principles are guaranteed to provide
globally optimum solutions, are among the most
powerful tools to achieve such optimal
placements. Multi-Objective Evolutionary
algorithms by design work upon contradictory
objectives, gradually evolving across generations
towards a converged Pareto front representing
optimal decision variables – in this case the
mapping of tasks to resources on clusters.
However the computation time taken by such
algorithms for convergence makes them
prohibitive for real time placements because of
the adverse impact on makespan. This work
describes parallelization, on the same cluster, of
a Multi-Objective Differential Evolution method
(NSDE-2) for optimization of workflow
placement, and the attendant speedups that
bring the implicit accuracy of the method into
the realm of practical utility. Experimental
validation is performed on a real-life testbed
using diverse Cloud traces. The solutions under
different scheduling policies demonstrate
significant reduction in energy consumption with
some improvement in makespan.

Keywords: Parallel computing; workflow
placement; cloud computing; energy; makespan;
middleware; Differential Evolution; multi-

objective evolutionary algorithm; Pareto front
convergence.

I. INTRODUCTION

Many of the IT and Analytics services that
organizations utilize currently depend on large
computing infrastructures that are hosted either
locally or at remote data centers [1]. A popular
business model for renting out resources of a
data center is provided by Cloud Computing,
which enables customers to allocate computing,
storage and network capacity over the Internet
and pay by the hour of use. In recent years,
concerns about energy consumption are
increasingly becoming common as Clouds often
consume a large amount of electricity to power
and cool computing resources in their
datacentres [2]. This situation is partially caused
by an overprovisioning to ensure service delivery
at peak hours, leading to underutilized resources
at other times [3]. Efficient allocation of tasks to
resources can improve consolidation on a
minimum number of nodes, while transiting
remaining unused nodes to low-power modes or
shutdown [4], [5]. The implementation of the
task-to-resource allocation policy consists in
picking in real time at Cloud provider’s end the
best combination of resources, in order to fit the
customer’s needs at lowest cost, risk and energy
consumption. Server allocation policies usually
involve two actors: the Cloud provider who
defines placement policies according to available
resources while the customer submits sets of
tasks to be executed. Such policies must benefit
both the provider and customer in terms of the
above metrics.

In previous work [6], the present authors
proposed methods for provisioning resources and
distributing requests with the objective of
meeting performance requirements while
reducing energy consumption. GreenPerf, a
hybrid metric, was introduced as a ratio of
performance and power consumption for energy
efficiency. The proposed solution considered
willingness to perform energy savings by
balancing user’s and provider’s preferences
when scheduling the requests over the physical
nodes. However, considering the contradictory
nature of these objectives, GreenPerf could not
fully explore the large domain space of possible
solutions. The search and computation of these
solutions is a NP-Hard problem, which can be
formulated as an optimization problem with
multiple contrary objectives: minimizing both
energy consumption and completion time. In this
work, we have used Non-Dominated Sorting
Differential Evolution to obtain the best Pareto
front with a spectrum of solutions representing
minimum energy at one end of the front and
minimum makespan (completion time) at the
other.

The field of multi-objective optimization,
particularly techniques using evolutionary
algorithms, has advanced significantly since the
first attempt [7] using Genetic Algorithms, and is
widely used today in numerous applications.
Among the most noteworthy developments rank
the SPEA2 algorithm by Zitzler et al [8] and
NSGA-II algorithm by Deb et al [9]. Some aspects
of the latter approach have been incorporated in
the development of the Non-Dominated Sorting
Differential Evolution II technique (NSDE-II),
used in the current paper.

Evolutionary Algorithms that work
concurrently on a population of candidate
solutions are naturally amenable to
parallelization and consequent speedup, because
a significant percent of the computations operate
on individual candidates independent of the
others. There are two broad paradigms for
parallelization, the “master-slave” model [10] and
the “island” model [11]. Talbi et al [12] provides
a comparative analysis of various approaches
towards implementation of parallelism for Multi-
Objective Evolutionary Optimization.

This work focuses on workflow applications
that consist of multiple components (tasks)
related by precedence constraints that usually
follow the data flow between them. Although this
is the most common situation, precedence
constraints may exist for other reasons, and be
arbitrarily defined by the user. We intend to
integrate NSDE-2 as a Multi-Objective
Optimization engine within a large scale
infrastructure. NSDE-2 would be accessible as a
remote service that accepts a workflow as an
input and computes a set of placement solutions

that minimizes energy consumption and
makespan as an output. This output is to be
placed and executed on the infrastructure using
the DIET Middleware. In this framework the time
spent on NSDE-2 optimization contributes to the
makespan, hence this work addresses speedup of
NSDE-2 through parallelization. The current
version uses only energy and makespan as the
objectives for concurrent minimization, the
intention is to gradually integrate more
independent objectives into the optimization
process.

This paper introduces several contributions:
(i) an evolutionary approach to workflow
placement (ii) a choice of solutions to the user
based on his priorities, ranging from best-energy
to best-makespan, and intermediates, (iii) an
experimental protocol using a real life testbed
and (iv) parallel launching of evolutionary
optimization process on the same Cloud
infrastructure targeted for workflow placement.

The remainder of this paper is structured as
follows. Section II presents Differential
Evolution, the DIET toolkit and a short summary
of related works from the literature. In Section
III, we introduce the Non-Dominated Sorting
Differential Evolution II algorithm. In Section IV
we present the problem formulation. In Section V,
we propose a generic and customizable
infrastructure for workload placement on a large
scale infrastructure. In Section VI we evaluate
the quality of workflow placement using our
approach. Finally we draw Conclusions and
discuss further lines of development.

II. BACKGROUND AND RELATED WORK

In this section we provide an overview of
evolutionary optimization. We then introduce the
DIET middleware and the features used in this
paper. Finally, we present a short summary of
related work on workload placement using multi-
objective evolutionary optimization.

A. Differential Evolution
The developments in Multi-Objective

Evolutionary Algorithms referred in Section I
have been along the track of Genetic Algorithm
(GA) [13], the baseline Evolutionary optimization
approach, applied to the direct multi-objective
paradigm. At the basic algorithm level,
Differential Evolution (DE) was formulated as an
alternate approach to GA by Storn and Price [14].
The present authors have applied both GA and
DE in a few complex industrial processes [15-17];
the latter work also provides a comparison in
computational efficiency for that industrial
process between GA and DE demonstrating that
DE comes out favourably. Due to these
developments the authors decided to use their
version of DE as the baseline algorithm for the
current multi-objective problem.

Evolutionary Algorithms have also been
successfully parallelized on Cloud frameworks.
Lee et al [18] implemented a parallel GA-PSO
method for inferring gene networks in a Cloud
computing environment using the Hadoop
MapReduce programming model. Tang et al [19]
parallelized the DE algorithm using a resilient
distributed datasets model, and compared
consequent performance improvements relative
to MapReduce on a wide range of benchmark
problems. The above examples represent
parallelization of single-objective evolutionary
algorithms on Cloud clusters to solve specific
optimization problems, and not scheduling of
actual workflows based on multiple objectives.

B. The DIET Middleware

DIET [20] is an open-source middleware that
enables a scalable execution of applications.
Tasks are scheduled on distributed resources
using a hierarchy of agents, as shown in Figure
1. DIET comprises several elements, including:

• Client application that uses the DIET
infrastructure for remote problem solving.

• Server Daemon (SeD), which acts as a
service provider exposing functionality
through a standardized computational
service interface. A single SeD can offer any
number of computational services.

• Agents, deployed alone or in a hierarchy,
facilitate service location and invocation
interactions between clients and SEDs.
Collectively, a hierarchy of agents provides
high-level and scalable services such as
scheduling and data management. The head
of a hierarchy is termed as Master Agent
(MA) whereas the others are Local Agents
(LA).

Fig. 1. An example of DIET Hierarchy

Applications are given a degree of control over
the scheduling subsystem using plug-in
schedulers (available in each agent) that use
information gathered from resources via
estimation functions (filled by each SeD). When a
SeD receives a user request, by default it uses a
pre-defined function to populate an estimation
vector with system related information. A
developer can create his own performance
estimation function and include it into a SeD so
that when the SeD receives a user request, the
custom function is called to populate an
estimation vector. These estimation vectors are
used by agents to locate and invoke services
required to execute a user application. Typically,
a client request is made to a MA, which in turn
broadcasts it to its agent hierarchy.

Another feature used in this work is DIET
workload management capabilities. The DIET
engine can handle workflow by assigning tasks to
SeDs using one DIET service call. This
assignment is made internally and dynamically
by the MA, which receives requests from clients
containing the description of a workflow. In this
context, the MA determines how to schedule the
workflow according to:

• Precedence constraints between tasks

• Scheduling policies/current plug-in
schedulers

• Service performance properties

• Available resources on the infrastructure.

This work uses the design of a new DIET plug-
in scheduler to express information about
servers’ performance and power consumption,
which is then taken into account when servers
are provisioned to applications. Estimation
vectors are used to determine the suitability of
different SEDs while considering energy
efficiency for executing the workflow and
performance when executing the optimization
engine service.

C. Related Work

Several approaches using multi-objective
optimization to manage workload placement are
present in the literature [21], [22]. Objectives
refer to load balancing [23], load prediction or
platform reconfiguration [24], among others. A
Pliant logic approach is used in [25] to improve
energy efficiency in simulation based
experiments. The authors conclude with the need
to find trade-offs between energy consumption
and execution time for optimization. Although
most of the above works deal with workflow
scheduling on Clouds using Multi-Objective
Evolutionary algorithms, they have not explored
the parallelism potential of the Cloud

infrastructure in the scheduling process itself.
One of the first developments in that direction is
seen in [26], where a Genetic Algorithm is used
for optimization and Dynamic Voltage Scaling to
minimize energy consumption. A comprehensive
review of the state of the field is presented in
[27]; work on parallelism of Differential Evolution
algorithms in this context is yet to be reported.

Moreover, existing work [28] commonly
assume that nodes from a homogeneous cluster
are identical in power consumption and
performance, which is not always true in
practice. Causes of variation include external
environmental factors, such as temperature and
node location in a rack, aging of components due
to use and leakage power that varies over time
[29]. We conclude that scheduling decisions
based on performance and energy consumption
values of the machines should be evaluated and
dynamically adjusted using live monitoring.

From a resource management perspective,
Grids and Clouds use meta schedulers to
schedule jobs across multiple sites and local
resource managers that control computational
resources at a site level. Users commonly submit
batch jobs to request resources over a period
[30]. Cloud aggregators such as RightScale
provide application-specific Cloud management
and load balancing. At an application level,
distributed OS such as [31] offer programming
models that allow OS services to scale to match
demand. Most of these systems, however, neither
take energy efficiency into account nor offer
means for users to specify how they want to
schedule their applications while exploring trade-
offs between energy efficiency and performance
[32].

III. NON-DOMINATED SORTING
DIFFERENTIAL EVOLUTION II (NSDE-II)

Differential Evolution (DE) belongs to the
broad class of evolutionary optimization
techniques that developed as distinctive variants
of classical Genetic Algorithms (GA). DE was
selected as the evolutionary method of choice on
the basis of the authors’ prior studies on the
relative efficiency and merits of this against GA,
as reported in [17].

This section presents the concept of
differential evolution for a single objective and
the key aspects to adapt it to Multi- Objective
Differential Evolution.

A. Baseline Differential Evolution
Formally, if the dimensionality of the solution

space is denoted as D and the number of
candidate solutions is N, then the elements of the
ith vector of the solution Xi,G at generation G may
be denoted as

, 1, , 2, , 3, , , , ,(, ,,)i G i G i G i G D i GX x x x x=
 for all i N …

(1)
The DE process fundamentally generates new

solutions from the current candidate set by
adding the weighted difference between two
randomly selected candidate solution vectors to a
third to generate a “mutant” vector, and then
creating a crossover between an existing vector
and the mutant, that is called the “trial” vector.
The latter is allowed to replace the existing
vector only if it is found to be more “fit” – the
complexity of this “fitness determination”
exercise depending entirely upon the nature of
the problem under consideration.

If Vi,G represents the mutant vector, then
according to the baseline DE process called
DE/rand/1 [14]

, 1, 2, 3,()i G r G r G r GV X F X X= + × −

… (2)
where r1, r2 and r3 are random integers less than
N, different from each other and from ‘i’, and F
usually lies between 0.5 and 1. There are many
variations of this baseline process where two
instead of one difference terms are sometimes
considered, the best solution in a population is
taken into account, etc.; descriptions of
alternative schemes may be seen in [33], among
others.

Crossover is performed between the ‘mutant’
vector Vi,G and the target vector Xi,G to generate a
‘trial’ vector Zi,G according to

, , j

, ,
, ,

 if rand (0,1)

 otherwise
j i G

j i G
j i G

v Cr
z

x

≤= 


… (3)

where zj,i,G is the element j of the trial vector Zi,G,
randj (0, 1) denotes a random number between 0
& 1 applied to the element j, Cr is the crossover
threshold usually set between 0.4 and 1. At the
final selection step the choice for candidate ‘i’ in
the next generation is made between Zi,G and Xi,G

on the basis of higher fitness by direct one-to-one
comparison.

The present work generates the mutant vector
according to the alternate scheme (proposed in
[14] and also used by current authors in [15-17]
where it is found to work better than other DE
variants)

, 1, , 1, 2, 3,() ()i G r G best G r G r G r GX X R X X F X X= + × − + × −

(4)

where R is set at 0.5 and F varies randomly
between -2 and +2 across generations (and are

same for all ‘i’ within a generation). The
crossover probability Cr in eq. (3) is set at 0.7.

B. Multi-Objective Differential Evolution NSDE-II

Compared to single-objective DE discussed in
Sec. 3A, the mechanisms of selection to a new
generation in multi-objective DE are radically
different. The basis for this difference lies in the
fact that one cannot uniquely order the candidate
solutions based on their “fitness” when the
number of axes for ordering is more than one.
Thus when comparing two candidates Zi,G and
Xi,G, the former may be better for the first
objective and the reverse for the second. This
problem on transiting from single- to multiple-
objectives is equally relevant for any evolutionary
algorithm and not for DE alone.

This work has adopted the basic multiple-
objective handling techniques of NSGA-II [9]
while replacing the baseline GA operations to
those of the DE variant outlined in (3) and (4) for
generation of a trial vector. Hence this is named
as NSDE-II. It may be noted that in DE “elitism”
and hence selection of the better performing
solutions executes a more integral and critical
role in the evolutionary process compared to
typical GA where elitism is not mandatory.

In a problem with K objectives FFk, k 1…K, a
candidate solution vector Xp is said to dominate
another solution Xq if

{ }() (), 1,...,k p k qFF X FF X k K≥ ∀ ∈
 …

(5)

and for at least one k,

() ()k p k qFF X FF X>
; where

p, q {1, …, N}, N is population size; and in
turn Xq is said to be dominated by Xp.

Now it is apparent that for a population of
candidate solutions and with multiple objectives,
there will be either one of three types of relations
between any pair of candidate solutions – either
one dominates the other according to (5), or one
is dominated by the other, or neither dominates
or is dominated by the other.

The NSDE-II algorithm exploits these three
basic types of relationships to select candidates
from the population pool into the next
generation, by stratifying the pool into fronts
based on descending degree of non-dominance.
At a secondary level it also exploits the degree of
diversity among solutions, giving preference to
candidates with higher diversity, using the
Crowding Distance Algorithm [9].

IV. PROBLEM FORMULATION

The aim of this work is to improve the energy
efficiency of a set of machines while concurrently

reducing completion time of a given set of jobs,
through optimized workload placement. A server
(computing node) is modeled with three
resources: CPU, DISK and NETWORK and runs
processes which consume these resources. Each
process is to be assigned to a single machine,
and cannot be moved from one machine to
another.

A. Decision Parameters
Any optimization problem will have design

parameters whose best possible values from the
viewpoint of the objectives are sought to be
attained in the optimization process. The
optimization task here is to map a given set of
jobs in a certain sequence onto the available
resources.

Suppose there are m number of resources and
n tasks. Then, for any resource j, j [1,..m], all 
possible permutations of subsets of all sizes of
the set of tasks of size n, constitute the total
solution space. If we call the size of this solution
space as Sj , then

0

!
(,) (,)

()!

n

j
k

n
S P n k where P n k

n k=

= =
−∑

 … (6)
Since Sj is independent of j, we may write it

simply as S. It then follows that the size of the
total solution space is mS.

The following information is assumed to be
known for each server s, and task i, at any time:

fs Number of FLoating-point Operations
Per Second (FLOPS) of server s

dws Disk Writing rate
drs Disk Reading rate
nets Available Network bandwidth
cs Average power consumption, and
nfi Number of FLOPS to perform the task i
nbwi Number of bytes to be written on disk
nbri Number of bytes to be read from disk
nneti Number of bytes exchanged over the

network.

The knowledge of these variables enables the
scheduler to extract the energy consumption and
makespan related to the completion of tasks over
the available resources.

B. Objective Functions
We have two objective functions:

1) Minimize Makespan (i.e. time taken for
completion of all tasks in the workflow)

If Tis is the completion time of the task i launched
on server s, then

i i i i
is

s s s s

nf nbw nbr nnet
T

f dw dr net
= + + +

 …
(7a)

If the task i is launched on a server other than s,
then

0isT =
 …

(7b)

The completion time of the workflow is expressed
as

1 1

m n

mn is
s i

T T
= =

= ∑∑
 …

(8a)

Eq. (8a) is the total time taken to execute all
tasks on all servers. However, by definition,
makespan is the time when the last server
completes its task in the workflow. Hence, (8a) is
modified to yield:

(1,..,)
1

Makespan
n

mn iss m
i

T Max T
∈ =

= ∑
 …

(8b)

2) Minimize Energy consumption (i.e. total
energy consumed in a workflow)

If Cis is the energy consumption of the task i per
unit time running on server s, then energy
consumption on server s required for the
workflow may be expressed as

1

n

s is is
i

W C T
=

= ∑
 …

(9)

and the total energy consumed in the workflow is

1 1 1

m m n

mn s is is
s s i

W W C T
= = =

= =∑ ∑∑
 …

(10)

In most cases, faster machines (low Tis) will
have higher energy consumption (high Cis),
implying that objectives Tmn and Wmn are
contradictory – forming the basis for multi-
objective optimization.

V. FRAMEWORK FOR WORKLOAD
PLACEMENT

To cope with real conditions such as the
increasing scale of modern data centers, as well
as the workload dynamics and application
characteristics that are specific to the Cloud
Computing paradigm, DIET allows users to study
large-scale scenarios that involve thousands of

nodes, each executing a specific workload that
evolves during the computation.

The aim of the current framework is twofold:
(i) to relieve researchers of the burden of dealing
with deployment, resource selection and
workload fluctuations when they evaluate new
optimization engines and (ii) to offer the
possibility to compare them. To perform
placement decisions, users encapsulate their
optimisation engine in a program, and express
the workflow along with the precedence between
tasks. The program typically leverages DIET API
that allows end users to create and execute
remote services1. The Master Agent keeps a
description of the physical resources,
dynamically updated by the nodes hosting the
services. Finally, the workload execution is
orchestrated by the DIET workflow engine that
internally relies on a customizable scheduler (cf.
Section II) to assign the resources during the
entire execution. We chose to base our
framework on DIET since (i) the latter’s
relevance in terms of performance and validity
has already been demonstrated [34] and (ii)
because it has been recently extended to
integrate energy-efficient decision capabilities
[6].

The workflow execution is performed in 3
phases: (i) service discovery, (ii) computation of
mapping solutions and (iii) workload placement.
The service discovery phase corresponds to the
search of an optimization engine within the
infrastructure by a given client. As multiple
engines can be instantiated on the platform, the
user can submit its workload to different engines
and compare the cost of generated solutions. The
computation of mapping solutions is performed
by at least one server with a platform
performance description provided by the Master
Agent. This description is either based on
historical data (past computations) or user-
defined benchmarks. Finally, the workload
placement is performed and results are returned
to the client based on the platform available
metrics and monitoring resolution. Mapping
solutions are defined as a collection of JSON
objects. Each solution contains the mapping
between a SeD and a task and an associated cost
in terms of workflow completion time and energy
consumption.

Two kinds of experiments have been
performed to validate this approach. The
objective of the first one is to evaluate the
computation phase of the engine (i.e., the step
where the optimization engine generates a
spectrum of solutions) while the second is a
comparison of algorithms to evaluate the

1 http://graal.ens-lyon.fr/diet/UsersManualDIET2.9/

concrete gain of NSDE-2 compared to an online
placement of workload.

VI. EVALUATION OF WORKFLOW
PLACEMENT

In this section we first briefly describe the
evaluation testbed. Then we look at the approach
and consequences of parallelization of NSDE-2
algorithm. Finally we evaluate the quality of
workflow placement using this multi-objective
evolutionary optimization approach compared to
extant methods.

A. Evaluation Testbed
Experiments used resources from GRID’5000

[35], a testbed designed to support experiment-
driven research in parallel and distributed
systems. Located in France, GRID’5000
comprises 29 heterogeneous clusters, with 1,100
nodes, 7,400 CPU cores with various generations
of technology spanning 10 physical sites
interconnected by a dedicated 10 Gbps backbone
network.

The power measurement in the studied
clusters is performed with an energy-sensing
infrastructure composed of external wattmeters
produced by the SME Omegawatt. This energy-
sensing infrastructure, also used in previous
work [6], [36], collects at every second the power
consumption in averaged watts of each
monitored node [37]. A node’s consumption is
determined by averaging past consumption over
more than 6,000 measurements, whereas its
performance is given by the number of FLOPS
achieved when using a single CPU cores to
execute benchmarks.

We deploy the DIET middleware on 113
physical nodes as follows: 111 dedicated nodes
for SeD’s, 1 dedicated node for the Master Agent
and 1 dedicated node for the Client. The
machines are picked among six different clusters
as presented in Table I. Detailed description of
trace files and their usage in experiments are
provided in a related work [38].

TABLE I. EXPERIMENTAL INFRASTRUCTURE

Cluster
Node

s
CPU Memory Role

Orion 4 2x6 cores @2.30Ghz 32 GB SeD
Sagittair

e
38 2x1 core @2.40Ghz 2 GB SeD

Taurus 10 2x6 cores @2.30Ghz 32 GB SeD
Stremi 38 2x12 cores @1.70Ghz 48 GB SeD

Graphite 4 2x6 cores @2.00Ghz 64 GB SeD
Parasilo 17 2x6 cores @2.40Ghz 128 GB SeD
Parasilo 1 2x6 cores @2.40Ghz 128 GB MA
Parasilo 1 2x6 cores @2.40Ghz 128 GB Client

B. Parallelization Investigations
We first investigate parallelization of the

NSDE-2 algorithm on a handy 8-core Intel laptop
with chipset i7-4710HQ@2.5Ghz. These are
offline simulations using data for a set of 500

tasks to be placed on 85 servers, where task and
server data have been extracted from the
GRID’5000 testbed. A population size of 200 is
considered for all simulations as well as online
optimization executions.

The master-slave approach is followed in
parallelization, using the Open MP Library. In the
NSDE program the functions not amenable to
parallelization include the selection operations
using non-dominated sorting and crowding
distance algorithms that take up about 3.3% of
runtime, and some I/O operations taking
approximately another 1%. It follows from
Amdahl’s law that the Theoretical Maximum
Speedup factor is approximately 22.

Table 2 shows results obtained using the
sequential NSDE-2 program, parallelized NSDE-2
program running on a single core, and on 4
cores. The data shows computation times and the
average values over all candidates for the two
objectives, energy and makespan, for a workflow
of 500 tasks on 85 servers. The relevance of the
average values in these multi-objective
simulations is purely to check if the sequential
and 1-core-parallel solutions match exactly,
which they are observed to do. This, first and
foremost, demonstrates the correctness of
parallelization. Second, it shows that the speedup
factor on 4 cores is 2.36.

An interesting observation from Table 2 is that
the speed of evolution of candidates across
generations varies between the parallel solutions
and the sequential, reflected in different
numerical values of the objectives at the same
generation levels. It may be difficult to pinpoint
the reasons for this; the evolutionary algorithm
being a stochastic process is likely to behave
differently when executed concurrently on
different numbers of nodes, and these differences
are likely to amplify over generations.

Figure 2 shows the parallelization speedup
factor when running selected sets of 100 and
1000 tasks on 85 servers, real time on the
GRID’5000 testbed on a Stremi node (see Table
1). It may be noted that in the NSDE solution
framework, each

TABLE 2. SEQUENTIAL AND PARALLEL SIMULATIONS

Paral
leli-
zatio

n

Time for
3000
gens

(mins)

Average value at
100 generations

(Makespan in
mins, Energy in

kJ)

Average value
at 3000

generations

Makesp
an Energy Makes

pan Energy

Seque
ntial 33:52 39.36 4491.4 37.05 3546.6

1-core 33:49 39.36 4491.4 37.05 3546.6

4-core 14:22 40.46 4874.8 35.85 4061.3

task is effectively a decision (design) variable,
and obtaining optimized solution with 1000
variables is itself a challenging task. In fact, this

number has been extended to 5000 decision
variables on 85 servers launched in parallel on
24 nodes, though comparative sequential runs
could not be obtained due to runtime constraints.
Fig. 2 shows that as the size of the workflow
increases, the parallelization speedup factor
gradually approaches its maximum limit.

B. Quality of NSDE-2 optimized workflow
placements

Figure 3 plots the evolution of NSDE-2
solutions from an initial level of 100 generations
up to 10000 generations, with minimization of
energy consumption and makespan as the
objectives on the two axes. Each dot represents a
candidate solution. At any selected generation, at
one end of the solution front we have the best
energy solution, and at the other end, the best
makespan solution. We can observe that the
quality of solutions improves as the number of
generations increases, and the “cloud” of
solutions gradually transforms into a Pareto
front. The computation time increases linearly
with the number of generations. We choose to
retrieve the solution at 3000 generations, after
which the improvement in solution becomes less
significant.

It may be noted that if jobs are submitted on
the cloud for execution after prior reservation, it
can be valuable to drive the NSDE-2 to its full
potential to obtain the best optimal solution
placement.

Fig. 2. Parallelization speedup factors for different job sizes
and cores.

Fig. 3. Convergence towards a Pareto front across
generations.

TABLE 3. COMPARATIVE IMPROVEMENTS IN
MAKESPAN AND ENERGY USING NSDE-2 (figs. show %
gains against FIRST FIT)

Ca
se
s

No.
of
job
s

NSDE
-2

Comp
uta-
tion
time
(mins

)

Make
span
for

NSDE
-2

Best
Make
span
(%)

Make
span
for

NSDE
-2

Best
Energ

y

Energ
y for

NSDE
-2

Best
Make
span

Energ
y for

NSDE
-2

Best
Energ

y

1 100 3.46 -82 -82 0 0

2 200 6.0 -23 -59 6.1 17.3

3 500 13.63 15 -19 12.5 17.1

4 100
0 26.5 7 -14 17.6 24.3

Next we compare the distribution of tasks
among nodes on GRID’5000 attained under three
different policies, namely NSDE-2 Best Energy,
NSDE-2 Best Performance and FIRST FIT. NSDE-
2 Best Energy and NSDE-2 Best Performance
correspond, respectively, to the candidate
solutions on the same Pareto front with the
smallest energy consumption and the smallest
makespan. These solutions establish the bounds
of the Pareto Front. The FIRST FIT policy selects
the first available server in an ordered list
according to the GreenPerf metric as a non-
weighted average ratio between makespan and
energy consumption for the said type of task.

For any of considered cases there exists a
proper balance between short and long tasks
within the dataset. A server is restricted to the
execution of, at most, one task at a given time.
Considering that the scheduler does not have
specific information on the nodes and does not
make assumptions about the hardware, the
dynamic information is gathered by computing a
sample of each type of task on the servers prior
to initiation of the evolutionary optimization
process.

Figures 4-7 show the results of these studies
on 100, 200, 500 and 1000 jobs launched on 111
servers. The x-axis presents the different policies
used to execute the workflow; the y-left-axis
shows the total energy consumption of the
solution and the y-right-axis shows the makespan
value.

We observe that as the complexity and size of
the optimization space increases (cf. Sec IVa
where the size varies as mn), the multi-objective
evolutionary algorithm provides better solutions
compared to the single-metric based ranking
approach of FIRST FIT. This is also reflected in
Table 3. It may be seen that energy consumption
improves in all NSDE scenarios (best-energy and
best-makespan) up to 25%, while makespan
improves for the best-makespan solution for the
larger cases. Further, NSDE provides a spectrum
of intermediate solutions to the user to select
based on his preferences between energy and
makespan.

When the NSDE-2 solution was run up to
10000 generations, it provided a 30% saving in
energy with a 50% reduction in makespan
without considering the algorithm convergence
time. This can be of value in cases of jobs
submitted by prior reservation, as typical of jobs
involving large computation times.

CONCLUSIONS AND PERSPECTIVES

This work describes the design,
implementation and evaluation of an energy-
efficient resource management system that
builds upon DIET, an open source middleware
and NSDE-

Fig. 4. Energy and Makespan comparison for 100 jobs and
111 servers.

Fig. 5. Energy and Makespan comparison for 200 jobs and
111 servers.

Fig. 6. Energy and Makespan comparison for 500 jobs and

111 servers.
Fig. 7. Energy and Makespan comparison for 1000 jobs and
111 servers.

II, an Evolutionary Multi-Objective Optimization
engine. It investigates the nuances of parallel
launching of the computation-intensive
evolutionary algorithm on the baseline cloud
infrastructure where the workflow is targeted for
optimal placement. The implementation supports
an IaaS Cloud and currently provides placement
of workflows, considering non-divisible tasks with
precedence constraints. Real-life experiment of
this approach on the GRID’5000 testbed
demonstrates its effectiveness in a dynamic
environment. Results shows that our method can
offer providers and decision makers an aid to
make decisions when conflicting objectives are
present, or when in search for realistic trade-offs
for a given problem.

Investigations on parallelization of NSDE-2
show that speedup values approaching the

theoretical maximum limit have been obtained on
a Cloud cluster. It is observed that speed of
evolution of solutions across generations
fluctuates with the number of active cores. At the
next stage, we will investigate multi-core
integration of servers in a cluster, which is
expected to yield significant energy savings.

ACKNOWLEDGMENTS

This research has been supported in part by
CEFIPRA (Indo-French Center for promotion of
Advanced Research) through its Raman-Charpak
Fellowship program. Some experiments
presented in this paper were carried out using
the Grid5000 testbed, supported by a scientific
interest group hosted by Inria and including
CNRS, RENATER and several Universities as well
as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1]I. Foster and C. Kesselman, “Computational grids,” in
Vector and Parallel ProcessingVECPAR 2000. Springer,
2001, pp. 3–37.

[2]J. Dongarra et al., “The International Exascale Software
Project roadmap,” The International Journal of High
Performance Computing Applications, vol. 25, no. 1, pp.
3–60, Feb. 2011.

[3]A.C. Orgerie, M. D. d. Assuncao, and L. Lef`evre, “A
survey on techniques for improving the energy efficiency
of large-scale distributed systems,” ACM Computing
Surveys (CSUR), vol. 46, no. 4, p. 47, 2014.

[4]A. Beloglazov and R. Buyya, “Managing overloaded hosts
for dynamic onsolidation of virtual machines in cloud
data centers under quality of service constraints,” IEEE
Trans. Parallel Distrib. Syst, vol. 24, no. 7, pp. 1366–
1379, 2013.

[5]A.-C. Orgerie and L. Lef`evre, “When Clouds become
Green: the Green Open Cloud Architecture,” Parallel
Computing, vol. 19, pp. 228– 237, 2010. Online Available:
http://hal.inria.fr/ensl-00484321

[6]D. Balouek-Thomert, E. Caron, and L. Lefevre, “Energy-
aware server provisioning by introducing middleware-
level dynamic green scheduling,” in Workshop HPPAC’15.
High-Performance, Power-Aware Computing, Hyderabad;
IPDPS 2015, May 2015.

[7]J. D. Schaffer, “Multiple objective optimization with
vector evaluated genetic algorithms.” in Proc. First
International Conference on Genetic Algorithms,
Pittsburgh, PA, USA, July 1985, pp. 93–100.

[8]E. Zitzler, M. Laumanns, and L. Thiele, “SPEA-2:
Improved performance of the Strength Pareto
Evolutionary Algorithm,” Technical Report 103,
Computer Engineering and Communication Networks
Lac (TIK), Swiss Federal institute of Technology (ETH)
Zurich, 2001.

[9]K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist Multiobjective Genetic Algorithm: NSGA-II,”
IEEE Trans. on Evolutionary Computation, vol. 6, no. 2,
2002, pp. 182–197.

[10] J. Lampinen, “Differential evolution: New naturally
parallel approach for engineering design optimization,”
in Developments in Computational Mechanics with High
Performance Computing, B. H. V. Topping, Ed.
Edinburgh, U.K.: Civil-Comp Press, 1999, pp. 217–228.

[11] D.K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M.
N. Vrahatis, “Parallel differential evolution,” in Proc.
Congr. Evol. Comput., 2004, pp. 2023–2029.

[12] E.G. Talbi et al, “Parallel Approaches for Multi-
Objective Optimi-zation”, LNCS 5252, Eds. J. Branke et
al, Springer 2008, pp. 349-372.

[13] J. H. Holland, “Adaptation in natural and artificial
systems: An introductory analysis with applications to
biology, control, and artificial intelligence”, Univ. of
Michigan Press, 1975.

[14] R. Storn and K. Price, “Differential evolution: a simple
and efficient heuristic for global optimization over
continuous spaces,” Journal of global optimization, vol.
11, no. 4, 1997, pp. 341–359.

[15] A.K. Bhattacharya, S. Debjani, A. RoyChoudhury and J.
Das, “Optimization of Continuous Casting Mould
Oscillation Parameters in Steel Manufacturing Process
using Genetic Algorithms”, Proc. IEEE Congress on Evol.
Com., CEC2007, pp. 3998-4004, Sep 25-28, 2007.

[16] A. K. Bhattacharya, D. Aditya, and D. Sambasivam,
“Estimation of operating Blast Furnace reactor invisible
interior surface using Differential Evolution,” Applied
Soft Computing, vol. 13, no. 5, 2013, pp. 2767–2789.

[17] A. K. Bhattacharya and D. Sambasivam, “Optimization
of oscillation parameters in continuous casting process of
steel manufacturing: Genetic Algorithms versus
Differential Evolution,” in Evolutionary Computation,
InTech, DOI: 10.5772/9616, 2009, pp 77-102.

[18] W. Lee, Y. Hsiao and W. Hwang, “Designing a parallel
evolutionary algorithm for inferring gene networks on
the Cloud computing environ-ment”, BMC Systems
Biology, DOI: 10.1186/1752-0509-8-5 2014.

[19] C. Deng, X. Tan, X. Dong and Y. Tan, “A parallel version
of Differential Evolution based on Resilient Distributed
Datasets model”, Comms. in Computer and Info. Science,
562, Springer 2015, pp. 84-93.

[20] E. Caron and F. Desprez, “DIET: A scalable toolbox to
build network enabled servers on the grid,” International
Journal of High Performance Computing Applications,
vol. 20, no. 3, 2006, pp. 335–352.

[21] A. Talukder, M. Kirley, and R. Buyya, “Multiobjective
differential evolution for scheduling workflow
applications on global grids,” Concurrency and
Computation, vol. 21, no. 13, 2009, pp. 1742–1756.

[22] J.-T. Tsai, J.-C. Fang, and J.-H. Chou, “Optimized task
scheduling and resource allocation on cloud computing
environment using improved differential evolution
algorithm,” Computers & Operations Research, vol. 40,
no. 12, 2013, pp. 3045–3055.

[23] A. Abdulmohson, S. Pelluri, and R. Sirandas, “Energy
efficient load balancing of virtual machines in cloud
environments,” 2015.

[24] F. Legillon, N. Melab, D. Renard, and E.-G. Talbi, “A
multi-objective evolutionary algorithm for cloud platform
reconfiguration,” Parll. and Distrib. Processing Symp.
WS, IEEE, 2015, pp. 286–291.

[25] A. Benyi, J. D. Dombi, and A. Kertesz, “Energy-aware
VM scheduling in IaaS clouds using pliant logic,” in Proc.
4th Int. Conf. on Cloud Computing and Services Science
(CLOSER14), Barcelona, Spain, 2014.

[26] M. Mezmaz et al, “A parallel bi-objective hybrid
metaheuristic for energy-aware scheduling for cloud
computing systems”, Parallel and Distrib. Comp., Vol. 71,
2011, pp. 1497-1508.

[27] C. Tsai and J.J. Rodrigues, “Metaheuristic Scheduling
for Cloud: A Survey”, IEEE Systems Journal, Vol. 8, No. 1,
2014, pp. 279-291.

[28] K. H. Kim, R. Buyya, and J. Kim, “Power aware
scheduling of bag-oftasks applications with deadline

https://www.grid5000.fr/

constraints on DVS-enabled clusters,” in CCGRID, IEEE
Computer Society, 2007, pp. 541–548.

[29] M. E. M. Diouri et al., “Your cluster is not power
homogeneous: Take care when designing green
schedulers!” in IGCC-4th IEEE International Green
Computing Conference, 2013.

[30] N. Capit and al., “A batch scheduler with high level
components,” in Cluster computing and Grid 2005
(CCGrid05), 2005.

[31] D. Wentzlaff et al., “An operating system for multicore
and clouds: Mechanisms and implementation,” in Proc.
1st ACM Symposium on Cloud Computing, SoCC ’10.
New York, ACM, 2010, pp. 3–14.

[32] C.-Y. Tu, W.-C. Kuo, W.-H. Teng, Y.-T. Wang, and S.
Shiau, “A power-aware cloud architecture with smart
metering,” in Proc. 2nd Int. Workshop on Green
Computing, IEEE, Sep. 2010, pp. 497–503.

[33] E. Caron, B. Depardon, and F. Desprez, “Deployment
of a hierarchical middleware,” in Euro-Par 2010, LNCS.
6271 Part I. Ischia - Naples, Aug-Sep 2010, pp. 343–354.

[34] S. Das and P. N. Suganthan, “Differential Evolution: a
survey of the state-of-the-art,” IEEE Trans. on Evol.
Comp., vol. 15, 2011, pp. 4–31.

[35] F. Cappello et al, “Grid’5000: a large scale,
reconfigurable, controllable and monitorable Grid
platform,” in Proc. 6th IEEE/ACM Int. Workshop on Grid
Computing, Grid’2005, Seattle, Nov. 2005, pp. 99–106.

[36] M. D. Assuncao, A.C. Orgerie, and L. Lefevre, “An
analysis of power consumption logs from a monitored
grid site,” in Green Computing and Communications,
2010 IEEE/ACM Int’l Conference on Cyber, Physical and
Social Computing (CPSCom), IEEE, pp. 61–68.

[37] M. D. Assuncao, J.P. Gelas, L. Lef`evre, and A.C.
Orgerie, “The green grid’5000: Instrumenting and using
a grid with energy sensors,” Remote Instr. for eScience
and Related Aspects, Springer, 2012, pp. 25-42.

[38] D. Balouek, A.K. Bhattacharya, E. Caron, K. Gadireddy
and L. Lefevre, “Minimizing Energy and Makespan
concurrently in Cloud Computing workloads using Multi-
Objective Differential Evolution”, unpublished, submitted
ICDCS 2016.

