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 Abstract— The  recent  rapid  expansion  of 
Cloud computing facilities triggers an attendant 
challenge  to  facility  providers  and  users  for 
methods for optimal placement of workflows on 
distributed  resources,  under  the  often-
contradictory impulses of minimizing makespan, 
energy  consumption,  and  other  metrics. 
Evolutionary  Optimization  techniques  that  from 
theoretical principles are guaranteed to provide 
globally optimum solutions, are among the most 
powerful  tools  to  achieve  such  optimal 
placements.  Multi-Objective  Evolutionary 
algorithms  by  design  work  upon  contradictory 
objectives, gradually evolving across generations 
towards  a  converged  Pareto  front  representing 
optimal  decision  variables  –  in  this  case  the 
mapping  of  tasks  to  resources  on  clusters. 
However  the  computation  time  taken  by  such 
algorithms  for  convergence  makes  them 
prohibitive for real  time placements because of 
the  adverse  impact  on  makespan.  This  work 
describes parallelization, on the same cluster, of 
a  Multi-Objective  Differential  Evolution  method 
(NSDE-2)  for  optimization  of  workflow 
placement,  and  the  attendant  speedups  that 
bring  the  implicit  accuracy  of  the  method  into 
the  realm  of  practical  utility.  Experimental 
validation  is  performed  on  a  real-life  testbed 
using diverse Cloud traces. The solutions under 
different  scheduling  policies  demonstrate 
significant reduction in energy consumption with 
some improvement in makespan.

Keywords:  Parallel  computing;  workflow 
placement; cloud computing; energy; makespan;  
middleware;  Differential  Evolution;  multi-

objective  evolutionary  algorithm;  Pareto  front  
convergence.

I. INTRODUCTION

Many  of  the  IT  and  Analytics  services  that 
organizations  utilize  currently  depend  on  large 
computing infrastructures that are hosted either 
locally or at remote data centers [1]. A popular 
business  model  for  renting  out  resources  of  a 
data  center  is  provided  by  Cloud  Computing, 
which enables customers to allocate computing, 
storage and network capacity over the Internet 
and  pay  by  the  hour  of  use.  In  recent  years, 
concerns  about  energy  consumption  are 
increasingly becoming common as Clouds often 
consume a large amount of electricity to power 
and  cool  computing  resources  in  their 
datacentres [2]. This situation is partially caused 
by an overprovisioning to ensure service delivery 
at peak hours, leading to underutilized resources 
at other times [3]. Efficient allocation of tasks to 
resources  can  improve  consolidation  on  a 
minimum  number  of  nodes,  while  transiting 
remaining unused nodes to low-power modes or 
shutdown  [4],  [5].  The  implementation  of  the 
task-to-resource  allocation  policy  consists  in 
picking in real time at Cloud provider’s end the 
best combination of resources, in order to fit the 
customer’s needs at lowest cost, risk and energy 
consumption.  Server  allocation  policies  usually 
involve  two  actors:  the  Cloud  provider who 
defines placement policies according to available 
resources  while  the  customer submits  sets  of 
tasks to be executed. Such policies must benefit 
both the provider and customer in terms of the 
above metrics.   



In  previous  work  [6],  the  present  authors 
proposed methods for provisioning resources and 
distributing  requests  with  the  objective  of 
meeting  performance  requirements  while 
reducing  energy  consumption.  GreenPerf,  a 
hybrid  metric,  was  introduced  as  a  ratio  of 
performance and power consumption for energy 
efficiency.  The  proposed  solution  considered 
willingness  to  perform  energy  savings  by 
balancing  user’s  and  provider’s  preferences 
when scheduling the requests over the physical 
nodes.  However,  considering  the  contradictory 
nature of these objectives,  GreenPerf could not 
fully explore the large domain space of possible 
solutions.  The search and computation of these 
solutions  is  a  NP-Hard  problem,  which  can  be 
formulated  as  an  optimization  problem  with 
multiple  contrary  objectives:  minimizing  both 
energy consumption and completion time. In this 
work,  we  have  used  Non-Dominated  Sorting 
Differential  Evolution to  obtain the best  Pareto 
front with a spectrum of solutions representing 
minimum  energy  at  one  end  of  the  front  and 
minimum  makespan  (completion  time)  at  the 
other.

The  field  of  multi-objective  optimization, 
particularly  techniques  using  evolutionary 
algorithms, has advanced significantly since the 
first attempt [7] using Genetic Algorithms, and is 
widely  used  today  in  numerous  applications. 
Among the most noteworthy developments rank 
the  SPEA2  algorithm  by  Zitzler  et  al  [8]  and 
NSGA-II algorithm by Deb et al [9]. Some aspects 
of the latter approach have been incorporated in 
the development of  the Non-Dominated Sorting 
Differential  Evolution  II  technique  (NSDE-II), 
used in the current paper.

Evolutionary  Algorithms  that  work 
concurrently  on  a  population  of  candidate 
solutions  are  naturally  amenable  to 
parallelization and consequent speedup, because 
a significant percent of the computations operate 
on  individual  candidates  independent  of  the 
others.  There  are  two  broad  paradigms  for 
parallelization, the “master-slave” model [10] and 
the “island” model [11]. Talbi et al [12] provides 
a  comparative  analysis  of  various  approaches 
towards implementation of parallelism for Multi-
Objective Evolutionary Optimization.

This  work  focuses  on  workflow  applications 
that  consist  of  multiple  components  (tasks) 
related  by  precedence  constraints  that  usually 
follow the data flow between them. Although this 
is  the  most  common  situation,  precedence 
constraints may exist for other reasons, and be 
arbitrarily  defined  by  the  user.  We  intend  to 
integrate  NSDE-2  as  a  Multi-Objective 
Optimization  engine  within  a  large  scale 
infrastructure. NSDE-2 would be accessible as a 
remote  service  that  accepts  a  workflow  as  an 
input and computes a set of placement solutions 

that  minimizes  energy  consumption  and 
makespan  as  an  output.  This  output  is  to  be 
placed and executed on the infrastructure using 
the DIET Middleware. In this framework the time 
spent on NSDE-2 optimization contributes to the 
makespan, hence this work addresses speedup of 
NSDE-2  through  parallelization.  The  current 
version uses only  energy and makespan as the 
objectives  for  concurrent  minimization,  the 
intention  is  to  gradually  integrate  more 
independent  objectives  into  the  optimization 
process. 

This  paper  introduces  several  contributions: 
(i)  an  evolutionary  approach  to  workflow 
placement (ii)  a choice of  solutions to the user 
based on his priorities, ranging from best-energy 
to  best-makespan,  and  intermediates,  (iii)  an 
experimental  protocol  using  a  real  life  testbed 
and  (iv)  parallel  launching  of  evolutionary 
optimization  process  on  the  same  Cloud 
infrastructure targeted for workflow placement.

The remainder of this paper is structured as 
follows.  Section  II  presents  Differential 
Evolution, the DIET toolkit and a short summary 
of related works from the literature. In Section 
III,  we  introduce  the  Non-Dominated  Sorting 
Differential Evolution II algorithm. In Section IV 
we present the problem formulation. In Section V, 
we  propose  a  generic  and  customizable 
infrastructure for workload placement on a large 
scale  infrastructure.  In  Section  VI  we evaluate 
the  quality  of  workflow  placement  using  our 
approach.  Finally  we  draw  Conclusions  and 
discuss further lines of development. 

II. BACKGROUND AND RELATED WORK

In  this  section  we  provide  an  overview  of 
evolutionary optimization. We then introduce the 
DIET middleware and the features used in this 
paper.  Finally,  we  present  a  short  summary  of 
related work on workload placement using multi-
objective evolutionary optimization. 

A. Differential Evolution 
The  developments  in  Multi-Objective 

Evolutionary  Algorithms  referred  in  Section  I 
have been along the track of Genetic Algorithm 
(GA) [13], the baseline Evolutionary optimization 
approach,  applied  to  the  direct  multi-objective 
paradigm.  At  the  basic  algorithm  level, 
Differential Evolution (DE) was formulated as an 
alternate approach to GA by Storn and Price [14]. 
The present authors have applied both GA and 
DE in a few complex industrial processes [15-17]; 
the  latter  work  also  provides  a  comparison  in 
computational  efficiency  for  that  industrial 
process between GA and DE demonstrating that 
DE  comes  out  favourably.  Due  to  these 
developments  the  authors  decided  to  use  their 
version of DE as the baseline algorithm for the 
current multi-objective problem. 



Evolutionary  Algorithms  have  also  been 
successfully  parallelized  on  Cloud  frameworks. 
Lee  et  al  [18]  implemented  a  parallel  GA-PSO 
method for inferring gene networks in  a Cloud 
computing  environment  using  the  Hadoop 
MapReduce programming model. Tang et al [19] 
parallelized  the  DE  algorithm using  a  resilient 
distributed  datasets  model,  and  compared 
consequent  performance  improvements  relative 
to  MapReduce on a wide range of  benchmark 
problems.   The  above  examples  represent 
parallelization  of  single-objective  evolutionary 
algorithms  on  Cloud  clusters  to  solve  specific 
optimization  problems,  and  not  scheduling  of 
actual workflows based on multiple objectives. 

B. The DIET Middleware

DIET [20] is an open-source middleware that 
enables  a  scalable  execution  of  applications. 
Tasks  are  scheduled  on  distributed  resources 
using a hierarchy of agents, as shown in Figure 
1. DIET comprises several elements, including:

• Client application  that  uses  the  DIET 
infrastructure for remote problem solving.

• Server  Daemon  (SeD), which  acts  as  a 
service  provider  exposing  functionality 
through  a  standardized  computational 
service interface. A single SeD can offer any 
number of computational services.

• Agents,  deployed  alone  or  in  a  hierarchy, 
facilitate  service  location  and  invocation 
interactions  between  clients  and  SEDs. 
Collectively,  a  hierarchy  of  agents  provides 
high-level  and  scalable  services  such  as 
scheduling and data management. The head 
of  a hierarchy is  termed as  Master Agent 
(MA) whereas the others are Local Agents 
(LA).

Fig. 1. An example of DIET Hierarchy

Applications are given a degree of control over 
the  scheduling  subsystem  using  plug-in 
schedulers  (available  in  each  agent)  that  use 
information  gathered  from  resources  via 
estimation functions (filled by each SeD). When a 
SeD receives a user request, by default it uses a 
pre-defined  function  to  populate  an  estimation 
vector  with  system  related  information.  A 
developer  can  create  his  own  performance 
estimation function and include it into a SeD so 
that when the SeD receives a user request, the 
custom  function  is  called  to  populate  an 
estimation  vector.  These estimation vectors  are 
used  by  agents  to  locate  and  invoke  services 
required to execute a user application. Typically, 
a client request is made to a MA, which in turn 
broadcasts it to its agent hierarchy.

Another  feature  used  in  this  work  is  DIET 
workload  management  capabilities.  The  DIET 
engine can handle workflow by assigning tasks to 
SeDs  using  one  DIET  service  call.  This 
assignment  is  made  internally  and  dynamically 
by the MA, which receives requests from clients 
containing the description of a workflow. In this 
context, the MA determines how to schedule the 
workflow according to:

• Precedence constraints between tasks

• Scheduling  policies/current  plug-in 
schedulers

• Service performance properties

• Available resources on the infrastructure.

This work uses the design of a new DIET plug-
in  scheduler  to  express  information  about 
servers’  performance  and  power  consumption, 
which is  then taken into account when servers 
are  provisioned  to  applications.  Estimation 
vectors are used to determine the suitability of 
different  SEDs  while  considering  energy 
efficiency  for  executing  the  workflow  and 
performance  when  executing  the  optimization 
engine service.

C. Related Work

Several  approaches  using  multi-objective 
optimization to manage workload placement are 
present  in  the  literature  [21],  [22].  Objectives 
refer to load balancing [23],  load prediction or 
platform reconfiguration  [24],  among  others.  A 
Pliant logic approach is used in [25] to improve 
energy  efficiency  in  simulation  based 
experiments. The authors conclude with the need 
to  find  trade-offs  between  energy  consumption 
and  execution  time  for  optimization.  Although 
most  of  the  above  works  deal  with  workflow 
scheduling  on  Clouds  using  Multi-Objective 
Evolutionary algorithms, they have not explored 
the  parallelism  potential  of  the  Cloud 



infrastructure  in  the  scheduling  process  itself. 
One of the first developments in that direction is 
seen in [26], where a Genetic Algorithm is used 
for optimization and Dynamic Voltage Scaling to 
minimize energy consumption. A comprehensive 
review of  the state  of  the field is  presented in 
[27]; work on parallelism of Differential Evolution 
algorithms in this context is yet to be reported. 

Moreover,  existing  work  [28]  commonly 
assume that nodes from a homogeneous cluster 
are  identical  in  power  consumption  and 
performance,  which  is  not  always  true  in 
practice.  Causes  of  variation  include  external 
environmental factors, such as temperature and 
node location in a rack, aging of components due 
to use and leakage power that varies over time 
[29].  We  conclude  that  scheduling  decisions 
based on performance and energy consumption 
values of the machines should be evaluated and 
dynamically adjusted using live monitoring.

From  a  resource  management  perspective, 
Grids  and  Clouds  use  meta  schedulers  to 
schedule  jobs  across  multiple  sites  and  local 
resource  managers  that  control  computational 
resources at a site level. Users commonly submit 
batch  jobs  to  request  resources  over  a  period 
[30].  Cloud  aggregators  such  as  RightScale 
provide  application-specific  Cloud  management 
and  load  balancing.  At  an  application  level, 
distributed OS such as [31] offer  programming 
models that allow OS services to scale to match 
demand. Most of these systems, however, neither 
take  energy  efficiency  into  account  nor  offer 
means  for  users  to  specify  how  they  want  to 
schedule their applications while exploring trade-
offs between energy efficiency and performance 
[32].

III. NON-DOMINATED SORTING 
DIFFERENTIAL EVOLUTION II (NSDE-II)

Differential  Evolution  (DE)  belongs  to  the 
broad  class  of  evolutionary  optimization 
techniques that developed as distinctive variants 
of  classical  Genetic  Algorithms  (GA).  DE  was 
selected as the evolutionary method of choice on 
the  basis  of  the  authors’  prior  studies  on  the 
relative efficiency and merits of this against GA, 
as reported in [17].

This  section  presents  the  concept  of 
differential  evolution for  a  single  objective  and 
the key  aspects  to  adapt  it  to  Multi-  Objective 
Differential Evolution.

A. Baseline Differential Evolution 
Formally, if the dimensionality of the solution 

space  is  denoted  as  D  and  the  number  of 
candidate solutions is N, then the elements of the 
ith vector of the solution  Xi,G at generation G may 
be denoted as

, 1, , 2, , 3, , , , ,( , , ........, )i G i G i G i G D i GX x x x x=
    for all  i  N     …  

(1)
The DE process fundamentally generates new 

solutions  from  the  current  candidate  set  by 
adding  the  weighted  difference  between  two 
randomly selected candidate solution vectors to a 
third  to  generate  a  “mutant”  vector,  and  then 
creating a crossover between an existing vector 
and the mutant, that is called the “trial” vector. 
The  latter  is  allowed  to  replace  the  existing 
vector only if it  is found to be more “fit” – the 
complexity  of  this  “fitness  determination” 
exercise  depending entirely  upon the nature of 
the problem under consideration. 

If   Vi,G represents  the  mutant  vector,  then 
according  to  the  baseline  DE  process  called 
DE/rand/1 [14]

          
, 1, 2, 3,( )i G r G r G r GV X F X X= + × −

 
…   (2)
where r1, r2 and r3 are random integers less than 
N, different from each other and from ‘i’, and F 
usually lies between 0.5 and 1. There are many 
variations  of  this  baseline  process  where  two 
instead  of  one  difference  terms  are  sometimes 
considered,  the best solution in a population is 
taken  into  account,  etc.;  descriptions  of 
alternative schemes may be seen in [33], among 
others.

Crossover is performed between the ‘mutant’ 
vector Vi,G and the target vector Xi,G to generate a 
‘trial’ vector  Zi,G according to 

           

, , j

, ,
, ,

   if rand (0,1)

   otherwise
j i G

j i G
j i G

v Cr
z

x

≤= 


 
…   (3)

where zj,i,G is the element j of the trial vector Zi,G, 
randj  (0, 1) denotes a random number between 0 
& 1 applied to the element j, Cr is the crossover 
threshold usually set between 0.4 and 1. At the 
final selection step the choice for candidate ‘i’ in 
the next generation is made between Zi,G  and Xi,G 

on the basis of higher fitness by direct one-to-one 
comparison.  

The present work generates the mutant vector 
according to the alternate scheme (proposed in 
[14] and also used by current authors in [15-17] 
where it is found to work better than other DE 
variants)

 
, 1, , 1, 2, 3,( ) ( )i G r G best G r G r G r GX X R X X F X X= + × − + × −

 
(4)

where  R  is  set  at  0.5  and  F  varies  randomly 
between -2 and +2 across generations (and are 



same  for  all  ‘i’ within  a  generation).  The 
crossover probability Cr in eq. (3) is set at 0.7. 

B. Multi-Objective Differential Evolution NSDE-II

Compared to single-objective DE discussed in 
Sec. 3A,  the mechanisms of  selection to a new 
generation  in  multi-objective  DE  are  radically 
different. The basis for this difference lies in the 
fact that one cannot uniquely order the candidate 
solutions  based  on  their  “fitness”  when  the 
number of  axes for  ordering is  more than one. 
Thus  when  comparing  two  candidates  Zi,G and 
Xi,G,  the  former  may  be  better  for  the  first 
objective  and  the  reverse  for  the  second.  This 
problem on  transiting  from single-  to  multiple- 
objectives is equally relevant for any evolutionary 
algorithm and not for DE alone.

This  work  has  adopted  the  basic  multiple-
objective  handling  techniques  of  NSGA-II  [9] 
while  replacing  the  baseline  GA  operations  to 
those of the DE variant outlined in (3) and (4) for 
generation of a trial vector. Hence this is named 
as NSDE-II. It may be noted that in DE “elitism” 
and  hence  selection  of  the  better  performing 
solutions  executes  a  more  integral  and  critical 
role  in  the  evolutionary  process  compared  to 
typical GA where elitism is not mandatory. 

In a problem with K objectives FFk, k  1…K, a  
candidate solution vector  Xp is said to dominate 
another solution Xq if

{ }( ) ( ), 1,...,k p k qFF X FF X k K≥ ∀ ∈
          … 

(5)

and for at least one k, 

( ) ( )k p k qFF X FF X>
; where

p, q   {1, …, N}, N is population size; and in  
turn Xq is said to be dominated by Xp. 

Now it  is  apparent  that  for  a  population  of 
candidate solutions and with multiple objectives, 
there will be either one of three types of relations 
between any pair of candidate solutions – either 
one dominates the other according to (5), or one 
is dominated by the other, or neither dominates 
or is dominated by the other. 

The  NSDE-II  algorithm  exploits  these  three 
basic types of relationships to select candidates 
from  the  population  pool  into  the  next 
generation,  by  stratifying  the  pool  into  fronts 
based on descending degree of non-dominance. 
At a secondary level it also exploits the degree of 
diversity  among  solutions,  giving  preference  to 
candidates  with  higher  diversity,  using  the 
Crowding Distance Algorithm [9].

IV.   PROBLEM FORMULATION

The aim of this work is to improve the energy 
efficiency of a set of machines while concurrently 

reducing completion time of a given set of jobs, 
through optimized workload placement. A server 
(computing  node)  is  modeled  with  three 
resources: CPU, DISK and NETWORK and runs 
processes which consume these resources. Each 
process  is  to  be assigned to  a  single  machine, 
and  cannot  be  moved  from  one  machine  to 
another.

A. Decision Parameters
Any  optimization  problem  will  have  design 

parameters whose best possible values from the 
viewpoint  of  the  objectives  are  sought  to  be 
attained  in  the  optimization  process.  The 
optimization task here is to map a given set of 
jobs  in  a  certain  sequence  onto  the  available 
resources.

Suppose there are m number of resources and 
n tasks. Then, for any resource j, j  [1,..m], all   
possible  permutations of  subsets  of  all  sizes  of 
the  set  of  tasks  of  size  n,  constitute  the  total 
solution space. If we call the size of this solution 
space as Sj , then

    
0

!
( , )       ( , )

( )!

n

j
k

n
S P n k where P n k

n k=

= =
−∑

   …     (6)
Since  Sj is independent of  j, we may write it 

simply as  S. It then follows that the size of the 
total solution space is mS. 

The  following  information  is  assumed  to  be 
known for each server s, and task i, at any time:

fs Number  of  FLoating-point  Operations 
Per Second (FLOPS) of server s

dws Disk Writing rate 
drs Disk Reading rate
nets Available Network bandwidth
cs Average power consumption, and
nfi Number of FLOPS to perform the task i
nbwi Number of bytes to be written on disk 
nbri Number of bytes to be read from disk 
nneti Number  of  bytes  exchanged  over  the 

network.

The knowledge of these variables enables the 
scheduler to extract the energy consumption and 
makespan related to the completion of tasks over 
the available resources. 

B. Objective Functions
We have two objective functions:

1)  Minimize  Makespan  (i.e.  time  taken  for 
completion of all tasks in the workflow)

If Tis is the completion time of the task i launched 
on server s, then



                    

i i i i
is

s s s s

nf nbw nbr nnet
T

f dw dr net
= + + +

          … 
(7a)

If the task i is launched on a server other than s, 
then

       

0isT =
                               … 

(7b)

The completion time of the workflow is expressed 
as

                         
1 1

m n

mn is
s i

T T
= =

= ∑∑
                         … 

(8a)

Eq.  (8a)  is  the  total  time  taken  to  execute  all 
tasks  on  all  servers.  However,  by  definition, 
makespan is  the  time  when  the  last  server 
completes its task in the workflow. Hence, (8a) is 
modified to yield:

      

(1,.., )
1

Makespan 
n

mn iss m
i

T Max T
∈ =

= ∑
              … 

(8b)

2)  Minimize  Energy  consumption  (i.e.  total 
energy consumed in a workflow)

If Cis is the energy consumption of the task i per 
unit  time  running  on  server  s,  then  energy 
consumption  on  server  s required  for  the 
workflow may be expressed as 

                           
1

n

s is is
i

W C T
=

= ∑
                            … 

(9)

and the total energy consumed in the workflow is

                        
1 1 1

m m n

mn s is is
s s i

W W C T
= = =

= =∑ ∑∑
            … 

(10)

In most  cases,  faster  machines  (low  Tis)  will 
have  higher  energy  consumption  (high  Cis), 
implying  that  objectives  Tmn and  Wmn are 
contradictory  –  forming  the  basis  for  multi-
objective optimization. 

V.   FRAMEWORK FOR WORKLOAD 
PLACEMENT

To  cope  with  real  conditions  such  as  the 
increasing scale of modern data centers, as well 
as  the  workload  dynamics  and  application 
characteristics  that  are  specific  to  the  Cloud 
Computing paradigm, DIET allows users to study 
large-scale  scenarios  that  involve  thousands  of 

nodes,  each executing a specific  workload that 
evolves during the computation.

The aim of the current framework is twofold: 
(i) to relieve researchers of the burden of dealing 
with  deployment,  resource  selection  and 
workload  fluctuations  when  they  evaluate  new 
optimization  engines  and  (ii)  to  offer  the 
possibility  to  compare  them.  To  perform 
placement  decisions,  users  encapsulate  their 
optimisation  engine  in  a  program,  and  express 
the workflow along with the precedence between 
tasks. The program typically leverages DIET API 
that  allows  end  users  to  create  and  execute 
remote  services1.  The  Master  Agent  keeps  a 
description  of  the  physical  resources, 
dynamically  updated  by  the  nodes  hosting  the 
services.  Finally,  the  workload  execution  is 
orchestrated by the DIET workflow engine that 
internally relies on a customizable scheduler (cf. 
Section  II)  to  assign  the  resources  during  the 
entire  execution.  We  chose  to  base  our 
framework  on  DIET  since  (i)  the  latter’s 
relevance in  terms of  performance and validity 
has  already  been  demonstrated  [34]  and  (ii) 
because  it  has  been  recently  extended  to 
integrate  energy-efficient  decision  capabilities 
[6].

The  workflow  execution  is  performed  in  3 
phases: (i) service discovery, (ii) computation of 
mapping solutions and (iii) workload placement. 
The service discovery phase corresponds to the 
search  of  an  optimization  engine  within  the 
infrastructure  by  a  given  client.  As  multiple 
engines can be instantiated on the platform, the 
user can submit its workload to different engines 
and compare the cost of generated solutions. The 
computation of  mapping solutions is  performed 
by  at  least  one  server  with  a  platform 
performance description provided by the Master 
Agent.  This  description  is  either  based  on 
historical  data  (past  computations)  or  user-
defined  benchmarks.  Finally,  the  workload 
placement is performed and results are returned 
to  the  client  based  on  the  platform  available 
metrics  and  monitoring  resolution.  Mapping 
solutions  are  defined  as  a  collection  of  JSON 
objects.  Each  solution  contains  the  mapping 
between a SeD and a task and an associated cost 
in terms of workflow completion time and energy 
consumption.

Two  kinds  of  experiments  have  been 
performed  to  validate  this  approach.  The 
objective  of  the  first  one  is  to  evaluate  the 
computation phase of  the engine (i.e.,  the step 
where  the  optimization  engine  generates  a 
spectrum  of  solutions)  while  the  second  is  a 
comparison  of  algorithms  to  evaluate  the 

1 http://graal.ens-lyon.fr/diet/UsersManualDIET2.9/



concrete gain of NSDE-2 compared to an online 
placement of workload.

VI.   EVALUATION OF WORKFLOW 
PLACEMENT

In  this  section  we  first  briefly  describe  the 
evaluation testbed. Then we look at the approach 
and  consequences  of  parallelization  of  NSDE-2 
algorithm.  Finally  we  evaluate  the  quality  of 
workflow  placement  using  this  multi-objective 
evolutionary optimization approach compared to 
extant methods.

A. Evaluation Testbed
Experiments used resources from GRID’5000 

[35], a testbed designed to support experiment-
driven  research  in  parallel  and  distributed 
systems.  Located  in  France,  GRID’5000 
comprises 29 heterogeneous clusters, with 1,100 
nodes, 7,400 CPU cores with various generations 
of  technology  spanning  10  physical  sites 
interconnected by a dedicated 10 Gbps backbone 
network. 

The  power  measurement  in  the  studied 
clusters  is  performed  with  an  energy-sensing 
infrastructure composed of external  wattmeters 
produced by the SME Omegawatt. This energy-
sensing  infrastructure,  also  used  in  previous 
work [6], [36], collects at every second the power 
consumption  in  averaged  watts  of  each 
monitored  node  [37].  A  node’s  consumption  is 
determined by averaging past consumption over 
more  than  6,000  measurements,  whereas  its 
performance is  given by the number of  FLOPS 
achieved  when  using  a  single  CPU  cores  to 
execute benchmarks.

We  deploy  the  DIET  middleware  on  113 
physical  nodes as follows:  111 dedicated nodes 
for SeD’s, 1 dedicated node for the Master Agent 
and  1  dedicated  node  for  the  Client.  The 
machines are picked among six different clusters 
as presented in Table I.  Detailed description of 
trace  files  and  their  usage  in  experiments  are 
provided in a related work [38].

TABLE I. EXPERIMENTAL INFRASTRUCTURE

Cluster
Node

s
CPU Memory Role

Orion 4 2x6 cores @2.30Ghz 32 GB SeD
Sagittair

e
38 2x1 core @2.40Ghz 2 GB SeD

Taurus 10 2x6 cores @2.30Ghz 32 GB SeD
Stremi 38 2x12 cores @1.70Ghz 48 GB SeD

Graphite 4 2x6 cores @2.00Ghz 64 GB SeD
Parasilo 17 2x6 cores @2.40Ghz 128 GB SeD
Parasilo 1 2x6 cores @2.40Ghz 128 GB MA
Parasilo 1 2x6 cores @2.40Ghz 128 GB Client

B. Parallelization Investigations
We  first  investigate  parallelization  of  the 

NSDE-2 algorithm on a handy 8-core Intel laptop 
with  chipset  i7-4710HQ@2.5Ghz.  These  are 
offline  simulations  using  data  for  a  set  of  500 

tasks to be placed on 85 servers, where task and 
server  data  have  been  extracted  from  the 
GRID’5000 testbed.  A population size of 200 is 
considered for all  simulations as well  as online 
optimization executions. 

The  master-slave  approach  is  followed  in 
parallelization, using the Open MP Library. In the 
NSDE  program  the  functions  not  amenable  to 
parallelization  include  the  selection  operations 
using  non-dominated  sorting  and  crowding 
distance algorithms that take up about 3.3% of 
runtime,  and  some  I/O  operations  taking 
approximately  another  1%.  It  follows  from 
Amdahl’s  law  that  the  Theoretical  Maximum 
Speedup factor is approximately 22. 

Table  2  shows  results  obtained  using  the 
sequential NSDE-2 program, parallelized NSDE-2 
program  running  on  a  single  core,  and  on  4 
cores. The data shows computation times and the 
average  values  over  all  candidates  for  the  two 
objectives, energy and makespan, for a workflow 
of 500 tasks on 85 servers. The relevance of the 
average  values  in  these  multi-objective 
simulations is  purely  to check if  the sequential 
and  1-core-parallel  solutions  match  exactly, 
which  they  are  observed  to  do.  This,  first  and 
foremost,  demonstrates  the  correctness  of 
parallelization. Second, it shows that the speedup 
factor on 4 cores is 2.36. 

An interesting observation from Table 2 is that 
the  speed  of  evolution  of  candidates  across 
generations varies between the parallel solutions 
and  the  sequential,  reflected  in  different 
numerical  values of  the objectives at  the same 
generation levels. It may be difficult to pinpoint 
the reasons for this; the evolutionary algorithm 
being  a  stochastic  process  is  likely  to  behave 
differently  when  executed  concurrently  on 
different numbers of nodes, and these differences 
are likely to amplify over generations.

Figure  2  shows  the  parallelization  speedup 
factor  when  running  selected  sets  of  100  and 
1000  tasks  on  85  servers,  real  time  on  the 
GRID’5000 testbed on a Stremi node (see Table 
1).  It  may be noted  that  in  the  NSDE solution 
framework, each 

TABLE 2. SEQUENTIAL AND PARALLEL SIMULATIONS

Paral
leli- 
zatio

n

Time for 
3000 
gens 

(mins)

Average value at 
100 generations 

(Makespan in 
mins, Energy in 

kJ)

Average value 
at 3000 

generations

Makesp
an Energy Makes

pan Energy

Seque
ntial 33:52 39.36 4491.4 37.05 3546.6

1-core 33:49 39.36 4491.4 37.05 3546.6

4-core 14:22 40.46 4874.8 35.85 4061.3

task  is  effectively  a  decision  (design)  variable, 
and  obtaining  optimized  solution  with  1000 
variables is itself a challenging task. In fact, this 



number  has  been  extended  to  5000  decision 
variables on 85 servers launched in parallel  on 
24  nodes,  though  comparative  sequential  runs 
could not be obtained due to runtime constraints. 
Fig.  2  shows  that  as  the  size  of  the  workflow 
increases,  the  parallelization  speedup  factor 
gradually approaches its maximum limit. 

B.  Quality  of  NSDE-2  optimized  workflow 
placements

Figure  3  plots  the  evolution  of  NSDE-2 
solutions from an initial level of 100 generations 
up  to  10000  generations,  with  minimization  of 
energy  consumption  and  makespan  as  the 
objectives on the two axes. Each dot represents a 
candidate solution. At any selected generation, at 
one end of the solution front we have the best 
energy solution, and at the other end, the best 
makespan  solution.  We  can  observe  that  the 
quality  of  solutions improves as the number of 
generations  increases,  and  the  “cloud”  of 
solutions  gradually  transforms  into  a  Pareto 
front.  The  computation  time  increases  linearly 
with  the  number  of  generations.  We choose  to 
retrieve the solution at  3000 generations, after 
which the improvement in solution becomes less 
significant.

It may be noted that if jobs are submitted on 
the cloud for execution after prior reservation, it 
can be valuable to drive the NSDE-2 to its full 
potential  to  obtain  the  best  optimal  solution 
placement.

Fig. 2. Parallelization speedup factors for different job sizes 
and cores.

Fig.  3.  Convergence  towards  a  Pareto  front  across 
generations. 

TABLE  3.  COMPARATIVE  IMPROVEMENTS  IN 
MAKESPAN  AND  ENERGY  USING  NSDE-2  (figs.  show  % 
gains against FIRST FIT)

Ca
se
s

No. 
of 
job
s

NSDE
-2 

Comp
uta-
tion 
time 
(mins

)

Make
span 
for 

NSDE
-2 

Best 
Make
span 
(%) 

Make
span 
for 

NSDE
-2 

Best 
Energ

y 

Energ
y for 

NSDE
-2 

Best 
Make
span 

Energ
y for 

NSDE
-2 

Best 
Energ

y

1 100 3.46 -82 -82 0 0

2 200 6.0 -23 -59 6.1 17.3

3 500 13.63 15 -19 12.5 17.1

4 100
0 26.5 7 -14 17.6 24.3

Next  we  compare  the  distribution  of  tasks 
among nodes on GRID’5000 attained under three 
different  policies,  namely  NSDE-2 Best Energy, 
NSDE-2 Best Performance and FIRST FIT. NSDE-
2  Best  Energy  and  NSDE-2  Best  Performance 
correspond,  respectively,  to  the  candidate 
solutions  on  the  same  Pareto  front  with  the 
smallest  energy  consumption  and  the  smallest 
makespan. These solutions establish the bounds 
of the Pareto Front. The FIRST FIT policy selects 
the  first  available  server  in  an  ordered  list 
according  to  the  GreenPerf metric  as  a  non-
weighted average ratio  between makespan and 
energy consumption for the said type of task.

For  any  of  considered  cases  there  exists  a 
proper  balance  between  short  and  long  tasks 
within the dataset. A server is restricted to the 
execution of, at most, one task at a given time. 
Considering  that  the  scheduler  does  not  have 
specific information on the nodes and does not 
make  assumptions  about  the  hardware,  the 
dynamic information is gathered by computing a 
sample of each type of task on the servers prior 
to  initiation  of  the  evolutionary  optimization 
process. 



Figures 4-7 show the results of these studies 
on 100, 200, 500 and 1000 jobs launched on 111 
servers. The x-axis presents the different policies 
used  to  execute  the  workflow;  the  y-left-axis 
shows  the  total  energy  consumption  of  the 
solution and the y-right-axis shows the makespan 
value.

We observe that as the complexity and size of 
the  optimization  space  increases  (cf.  Sec  IVa 
where the size varies as mn), the multi-objective 
evolutionary algorithm provides better solutions 
compared  to  the  single-metric  based  ranking 
approach of FIRST FIT. This is also reflected in 
Table 3. It may be seen that energy consumption 
improves in all NSDE scenarios (best-energy and 
best-makespan)  up  to  25%,  while  makespan 
improves for the best-makespan solution for the 
larger cases. Further, NSDE provides a spectrum 
of  intermediate  solutions  to  the  user  to  select 
based  on  his  preferences  between  energy  and 
makespan.  

When  the  NSDE-2  solution  was  run  up  to 
10000 generations, it provided a 30% saving in 
energy  with  a  50%  reduction  in  makespan 
without  considering  the  algorithm  convergence 
time.  This  can  be  of  value  in  cases  of  jobs 
submitted by prior reservation, as typical of jobs 
involving large computation times. 

CONCLUSIONS AND PERSPECTIVES

This  work  describes  the  design, 
implementation  and  evaluation  of  an  energy-
efficient  resource  management  system  that 
builds  upon  DIET,  an  open  source  middleware 
and NSDE- 

Fig. 4. Energy and Makespan comparison for 100 jobs and 
111 servers. 

Fig. 5. Energy and Makespan comparison for 200 jobs and 
111 servers. 

Fig. 6. Energy and Makespan comparison for 500 jobs and 

111 servers. 
Fig. 7. Energy and Makespan comparison for 1000 jobs and 
111 servers. 

II,  an Evolutionary Multi-Objective Optimization 
engine.  It  investigates  the  nuances  of  parallel 
launching  of  the  computation-intensive 
evolutionary  algorithm  on  the  baseline  cloud 
infrastructure where the workflow is targeted for 
optimal placement.  The implementation supports 
an IaaS Cloud and currently provides placement 
of workflows, considering non-divisible tasks with 
precedence  constraints.  Real-life  experiment  of 
this  approach  on  the  GRID’5000  testbed 
demonstrates  its  effectiveness  in  a  dynamic 
environment. Results shows that our method can 
offer  providers  and  decision  makers  an  aid  to 
make decisions  when  conflicting  objectives  are 
present, or when in search for realistic trade-offs 
for a given problem.

Investigations  on  parallelization  of  NSDE-2 
show  that  speedup  values  approaching  the 



theoretical maximum limit have been obtained on 
a  Cloud  cluster.  It  is  observed  that  speed  of 
evolution  of  solutions  across  generations 
fluctuates with the number of active cores. At the 
next  stage,  we  will  investigate  multi-core 
integration  of  servers  in  a  cluster,  which  is 
expected to yield significant energy savings. 
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