
HAL Id: hal-01290449
https://hal.inria.fr/hal-01290449

Submitted on 18 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Modelling and Verification of GALS Systems
Using GRL and CADP

Fatma Jebali, Frédéric Lang, Radu Mateescu

To cite this version:
Fatma Jebali, Frédéric Lang, Radu Mateescu. Formal Modelling and Verification of GALS Systems
Using GRL and CADP. Formal Aspects of Computing, Springer Verlag, 2016, 28 (5), pp.767-804.
<10.1007/s00165-016-0373-3>. <hal-01290449>

https://hal.inria.fr/hal-01290449
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

Formal Modelling and Verification of
GALS Systems Using GRL and
CADP
Fatma Jebali, Frédéric Lang, and Radu Mateescu
Inria

Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France

Abstract. A GALS (Globally Asynchronous, Locally Synchronous) system consists of several synchronous
components that evolve concurrently and interact with each other asynchronously. The design of GALS
systems is tedious and error-prone due to the high degree of synchronous and asynchronous concurrency
present in complex architectures. In this paper, we present GRL (GALS Representation Language), a formal
language designed to model GALS systems, for the purpose of formal verification of the asynchronous aspects.
GRL combines the synchronous reactive model underlying dataflow languages and the asynchronous concurrent
model underlying process algebras. We propose a translation from GRL to LNT, a value-passing concurrent
language with classical process algebra flavour. This makes possible the analysis of GRL specifications using
all the state-of-the-art simulation and verification functionalities provided by the CADP toolbox.

Keywords: GALS systems, asynchronous concurrency, formal description techniques, model-based verifica-
tion, GRL, CADP

1. Introduction

A GALS (Globally Asynchronous, Locally Synchronous) system [Cha84] consists of several synchronous
components that run concurrently and communicate altogether asynchronously. Each synchronous component
consists of a deterministic and infinite loop, the iterations of which are cadenced by the component’s own
clock. The component is generally made of subcomponents composed synchronously, so that computations
and data-flow communications within one iteration of the loop are assumed to be instantaneous.

Yet, in the general case, no a priori assumption can be made either on clock synchronization, relative
clock paces, or asynchronous communication delays between components. Each GALS instance induces its

Correspondence and offprint requests to: Fatma Jebali, Inria Grenoble - Rhône-Alpes, Inovallée, 655, avenue de l’Europe,
Montbonnot, F-38334 Saint Ismier Cedex, France. e-mail: fatma.jebali@inria.fr

2 Fatma Jebali, Frédéric Lang, and Radu Mateescu

own assumptions. In particular, although synchronous components have generally deterministic behaviour,
asynchronous communication may introduce nondeterminism, thus complexity. Typical cases are unreliable
communication media along which messages can be delayed, lost, duplicated, and/or reordered. Such inherent
complexity entails a need to integrate formal verification in the design process of GALS systems. This helps
to gain confidence in system correctness.

To formally model and verify GALS systems, synchronous languages and their dedicated verification
frameworks have been intensively used. The reason is that the GALS paradigm takes its roots in industries that
already integrated synchronous languages and corresponding tools in their development process. Consequently,
the focus has been shifted towards pushing the limits of synchronous languages and tools to accommodate
GALS behaviour. However, some aspects related to asynchronous concurrency cannot be addressed in those
frameworks.

Asynchronous languages and their dedicated verification frameworks have genuine benefits. First, they
provide built-in parallel composition and abstraction operators to reason about asynchronous concurrent
systems, abstractly and compositionally. Such operators enjoy useful compositionality properties such as
congruence of bisimulation relations w.r.t these operators. This allows efficient state-space reduction techniques
(e.g., partial order reduction) and compositional verification to be applied, for scaling to large systems.
Compositional verification for asynchronous systems [GLM15] can be used to complement compositional
verification approaches used for synchronous systems, such as assume-guarantee reasoning techniques (e.g.,
[BCMW15, GGTG10]).

Second, asynchronous verification frameworks support logics with sufficient expressiveness to capture
complex properties. Examples are succession of events in time (arbitrarily far from each other), cycles denoting
infinite executions, and general liveness properties. The approach promoted by most model checkers (e.g.,
[HLR93a], [Bou98]) for synchronous languages is verification by observers. Desired properties are expressed in
terms of program invariants, also called synchronous observers [HLR93b]. Observers can be encoded directly
in the synchronous language itself. This reduces the complexity of using full-fledged temporal logics for safety
and liveness properties involving bounded future. However, general properties involving unbounded future
cannot be expressed by means of observers and require more expressive formalisms, such as temporal logics.

However, asynchronous concurrent languages and temporal logics require a substantial learning effort,
which narrows down their practical usability, in the context of GALS systems. We propose to alleviate
the use of verification tools for asynchronous systems in the framework of GALS systems by using a DSL
(Domain Specific Language) [vDKV00], which serves as intermediate form between collections of synchronous
components composed asynchronously, and purely asynchronous concurrent languages. This DSL should
provide a clear distinction between synchronous components, which can possibly be obtained from translation
of existing synchronous languages, and the additional components used to define their asynchronous interaction,
such as communication media. We consider such a distinction as necessary to enable the combined use of
synchronous verification frameworks for synchronous components and asynchronous verification frameworks
for their asynchronous composition. As regards the synchronous components, the language can therefore be
seen as a (minimal) language intended to serve as target of back-end compilers for synchronous languages.
An important factor of practical usability of the DSL is its ability to describe relevant aspects of GALS
behaviours in a concise, natural, and integrated manner, so that it can be easily learnt and mastered by users.

In this paper, we propose GRL (GALS Representation Language) [JLM14a] as such a DSL for GALS
systems. GRL is a rich description language that combines features of synchronous programming (determinism,
atomicity) and process algebra (nondeterministic communication, asynchronous concurrency) in one unified
language, while keeping homogeneous syntax and semantics.

GRL enables modular specification of synchronous programs (named blocks), asynchronous communication
media (named mediums), and environmental constraints (named environments). Each block is a deterministic
code fragment, built by synchronous composition of subblocks and standard algorithmic statements, which
defines an iteration of the synchronous component loop. Each execution of this code fragment is called a step.
GRL abstracts away the notion of component clock, so that blocks can perform their own steps at arbitrary
instants by default. Environments serve to set constraints either on block inputs (e.g., to restrict the range of
inputs that a block can read) or on block activations (permissions acquired by blocks to perform their steps).
GRL is intended to be sufficiently expressive to enable modelling of various activation and communication
policies, so that it can be used to address a large spectrum of GALS systems. In addition, GRL has formal
semantics, which enables rigorous analysis of GRL descriptions.

To analyse GRL specifications, we take advantage of the CADP verification toolbox for concurrent
asynchronous processes [GLMS13]. CADP provides various tools for interactive simulation, test case generation,

Formal Modelling and Verification of GALS Systems Using GRL and CADP 3

verification of temporal logic properties (model checking), equivalence checking, etc. The connection from
GRL to CADP is done by translation from GRL to an input specification language of CADP named LNT
[CCG+14], which combines the best of process algebraic languages and imperative/functional programming
languages. This translation is fully automated by a tool named GRL2LNT1. This paper is an extended
version of [JLM14a]. Our contribution can be summarized as follows:

• We give a detailed description of the GRL language and a subset of the formal semantic rules, which we
illustrate with well-chosen examples, most of which are inspired from an FCS (Flight Control System).
This description is more detailed than in [JLM14a] but due to space limitation, we cannot describe all the
language details. The complete syntax and semantics of GRL can be found in an 82-page technical report
available online [JLM14b].
Compared to the GRL version presented in [JLM14a] and [JLM14b], we have revised and enhanced the
syntax of the language. Enhancements encompass some keyword changes and the addition of a new
construct, named activation signals, whose role is to control block activations.

• We propose a translation scheme between GRL and LNT, also using illustrative examples. In particular,
we show how synchronous components with internal memory can be translated into LNT functions
(which are stateless), and how the components of a GALS system translate into asynchronous concurrent
processes. This contribution is new w.r.t. [JLM14a], which only addresses the GRL language.

• We illustrate some of the verifications that can be done on a GALS system modeled in GRL using
GRL2LNT and CADP. In particular, we focus here on deadlock checking and on the verification of more
involved properties using temporal logic formulas. Here again, verification was not addressed in [JLM14a].

Overview. Section 2 highlights some related work. Section 3 presents a simple FCS as a GALS instance.
Section 4 presents the main features of the GRL language. Section 5 outlines the LNT language and the
CADP toolbox. Section 6 describes the translation from GRL to LNT. Section 7 presents some verification
scenarios for GALS systems, illustrated on the FCS. Finally, Section 8 summarizes the paper and indicates
directions for future work.

2. Related work

In this section, we review the approaches addressing GALS systems in synchronous frameworks, then those
addressing GALS systems in asynchronous frameworks.

GALS in synchronous frameworks. The intent of modelling GALS systems by using synchronous
languages can be traced back to the early eighties, when Milner stated that asynchrony can be expressed in
synchronous formalisms [Mil83]. Accordingly, several approaches emulated asynchrony by means of sporadic
activation of synchronous components and external non-determinism (e.g., additional inputs, to which
arbitrary values are assigned) [HB02, HM06, GG03, LGTLL03].

This gave birth to the multi-clock model (also called polychrony), which has proven adequate to compose
several components whose clocks are loosely coupled [GG10, LGTLL03, GG07]. Multiclock Esterel [BS01],
CRP (Communicating Reactive Processes) [BRS93] and CRSM (Communicating Reactive State Machines)
[Ram98] (a visual language built upon CRP) are extensions of the Esterel language with CSP-like primitives
to accommodate the multi-clock model. The Signal language [LGTLL03] allows the description of components,
whose clocks are a priori unrelated while computations and communications are assumed to be bounded.

Further works have investigated how to synthesize semantic-preserving GALS systems from synchronous
programs, foreseeing their distribution [BCLG99, PBCB06, PBDSST09, BBS12]. This approach (called desyn-
chronization) favored correct-by-construction deployment of synchronous programs over GALS architectures.
Several theoretical results on this concern are already supported by the Signal compiler. Our approach is
different in the sense that GRL addresses directly the desynchronized system, so it can be used as back-end
of the generated code.

All the aforementioned approaches address deterministic GALS instances in which communication media

1 The GRL2LNT translator has been developed in the framework of an industrial project, named Bluesky, of the Minalogic French
competitivity pole (www.minalogic.com). The Bluesky project addresses the verification of networks of PLCs (Programmable
Logic Controllers).

4 Fatma Jebali, Frédéric Lang, and Radu Mateescu

are reliable: all messages are delivered in the order in which they have been received. However, a wide range of
modern applications support unreliable communication media, such as recent LTTA (Loosely Time-Triggered
Architectures) [BBC10, Sme13], which tolerate bounded loss of messages. In addition, modelling GALS
systems in synchronous languages requires real-time guarantees on both the relative paces of synchronous
components and communication delays. Such guarantees may be unknown in the general case, or at least
difficult to synthesize in some distributed applications. Examples of this kind are the networks of PLCs,
which evolve at arbitrary paces, the communication protocol (e.g., Modbus) being responsible of correct
message transmission. Last but not least, verification tools specific to synchronous languages do not support
logics with sufficient expressiveness to capture general liveness and fairness properties.

To address more general GALS systems, whose synchronous components evolve at different paces and
communicate along unreliable media with no real-time guarantees, asynchronous verification frameworks are
then required.

GALS in asynchronous frameworks. Several works have considered the modelling of GALS systems in
asynchronous concurrent languages. A first approach consists in translating a GALS-specific language into a
process language.

In [RSD+04], CRSM is translated into Promela, the input language of the SPIN model checker [Hol97].
Then, verification is achieved by means of distributed observers, to circumvent the complexity of using
temporal logics. The reliance of CRSM on Esterel entails a lack of data-driven support in the language.

SystemJ [MSRG10] extends Java with Esterel-like synchronous model and CSP-like asynchronous model.
Then, unlike CRSM, it inherits the rich data-computation capabilities of Java. Components (called clock-
domains) of SystemJ are deterministic and their asynchronous composition introduces nondeterminism.
However, nondeterminism is still difficult to verify. Efficient code can be automatically generated from SystemJ
programs. The language is still unsuitable for systems with limited resources due to its reliance on Java
virtual machines as target. Recently in [PMS15], a translation has been defined from a subset of SystemJ to
LTL (Linear Time Logic) formulas, from which networks of Mealy automata are synthesized and translated
into Promela, thus making possible the verification using Spin.

Both CRSM and SystemJ are design-oriented languages which are built upon the Esterel synchronous
semantics. Contrarily, GRL has a minimal set of synchronous operators, which are enough to be used as (1)
back-end of synchronous languages and (2) front-end of verification tools for asynchronous systems. Another
key difference distinguishing GRL is its support of explicit nondeterministic statements, permitted only inside
asynchronous components (environments and mediums). This enhances the expressiveness of GRL to handle
a wide range of GALS instances. Moreover, nondeterminism induced by the asynchronous composition of
synchronous components (blocks) can be controlled thanks to activation signals and verified by using CADP.

Another approach consists in combining synchronous languages and asynchronous process languages.
Locally synchronous components are encapsulated in asynchronous processes (called wrappers) to interface
with other components. Globally asynchronous behaviour is described by introducing additional components
(in the asynchronous language) to implement communication media.

This approach has been first implemented in [DMK+06], where Signal modules are compiled into C
programs, which are encapsulated into Promela wrappers. Wrappers describe an infinite loop of atomic steps,
by using the atomic construct of Promela. In each iteration, all possible values of inputs are generated;
then, the C program is invoked together with constraints on the component activation; finally, outputs are
computed. The asynchronous composition of wrappers is ensured via specific hardware communication buses,
based on an early version of an LTTA protocol. Buses are abstracted as Promela finite FIFO channels, which
are proven equivalent to one-place channels. Verification is performed by using LTL formulas.

There are several differences between the Promela approach and ours. We use a single language to describe
both synchronous and asynchronous components. Blocks in GRL are atomic by construction. Constraints on
block inputs can be set by using environments, which lead to reduced state spaces. No equivalent to GRL
environments has been mentioned in [DMK+06]. Our approach is more modular in the sense that several
GRL environments can be composed with GRL blocks, either to control their activation or to constrain their
inputs. GRL does not fix any communication protocol and is expressive enough to model general GALS
systems, involving nondeterminism and arbitrary asynchrony between synchronous components. Finally, our
verification is based on branching time temporal logic, adequate with bisimulation relations and compositional
verification.

In the same vein as the Signal-Promela approach [DMK+06] is [GT09], in which SAM automata (extended
Mealy machines) are translated into LNT functions, encapsulated into LNT wrapper processes. The execution

Formal Modelling and Verification of GALS Systems Using GRL and CADP 5

Fig. 1. Architecture of the FCS

of those processes is not atomic, contrarily to GRL blocks. Thus, inputs and outputs of different LNT wrappers
can interleave arbitrarily. The asynchronous composition between processes is completely arbitrary, since
no constraints are made on their execution paces. As such, the maximal degree of asynchrony is considered.
Abstractions and compositional verification, available in CADP, are used to cope with state space explosion.
Verification by model checking and performance evaluation are applied by using CADP.

The SAM-LNT approach addresses a specific GALS instance (a ground-plane communication protocol).
Contrarily, GRL is intended to address more general GALS instances. To this aim, it provides activation
constraints to fine tune the degree of asynchrony between concurrent blocks.

3. Running Example

Throughout this paper, we consider as example a part of an FCS, depicted in Figure 1, whose role is to
control aircraft turning. The FCS is modeled at a high level of abstraction as a composition of:

– The controller of an aileron (a flap attached to the end of a wing), named Aileron, allowing to adjust the
aircraft’s flight turning.

– Two Fly-By-Wire computers, named Prim (for primary) and Sec (for secondary), commanding the
movement of the aileron. They are implemented as redundant components, Sec being used as a backup of
Prim, which provides the system with a level of fault tolerance.

– A Flight Control Data Concentrator, named Backup, scheduling the execution of Prim and Sec.

– A movement controller, named Control, ensuring a smooth movement of Aileron.

The behaviour of the system can be summarized as follows. Prim receives an order from the pilot cockpit;
it determines whether the aileron should move up, move down, or not move; then it sends the decision to
the aileron over the network. On the other side, Aileron receives the required movement from the network
and a safety condition (determining whether it can perform the movement) from Control ; it computes a new
position, which depends on both the current position of the aileron and the required movement; then, it sends
the position to Control and an acknowledgement to the network. Once a failure is detected in the behaviour
of Prim, it is considered out of order and the control of Aileron is given to Sec.

Note that FCS components have been deeply studied in several works (see e.g., [MWO+05, BÖM14]). We
do not intend here to achieve yet another case study on FCS, but rather use this example to illustrate the
main principles of the GRL approach.

6 Fatma Jebali, Frédéric Lang, and Radu Mateescu

4. GRL (GALS Representation Language)

In this section, we present GRL, whose syntax and semantics are fully described in the technical report
[JLM14b]. Syntax is given in EBNF (Extended Backus-Naur Form), i.e., as a set of rules called productions.
Each production has the form “χ ::= ξ”, where χ is a non-terminal symbol defined by the meta-expression
ξ. ξ consists of non-terminal symbols and terminal symbols composed using the following meta-operators:
concatenation (denoted by juxtaposition), alternative “|”, bracketing “()”, option “[]”, and repetition “. . . ”.

Non-terminal symbols and generic terminal symbols are written in italics. Their occurrences can be
distinguished using subscripts. Terminal symbols are either keywords written in bold font or key symbols
written in teletype font. Note therefore that “[]”, “()”, and “|” denote terminal symbols distinct from
meta-operators “[]”, “()”, and “|”.

GRL syntax is fully presented in Figures 3 (page 8) to 6 (page 16). Generic terminal symbols f , T , K ,
F , X , B , N , M , and S denote identifiers for, respectively, record fields, types, literal constants, functions,
variables, blocks, environments, mediums, and systems. Non-terminals E and I denote respectively expressions
and statements.

4.1. Overview

GRL is an imperative programming language with functional flavour. A GRL specification can be structured
in several modules. Modules can import other modules, which allows single monolithic specifications to be
split into reusable pieces of manageable size. Modules contain the following constructs:

1. types, which can be either predefined (such as Booleans and naturals) or defined by the user (such as
arrays and records),

2. named constants of any type,

3. blocks, representing the synchronous components,

4. mediums, representing the asynchronous communication mediums,

5. environments, representing constraints of the external environment on blocks, and

6. systems, representing the composition and interaction of blocks, environments, and mediums.

The lexical scope of these constructs encompasses both the current module and its importing module. In the
sequel, blocks, environments, and mediums are called components.

Synchronous blocks. GRL is not intended to include a full-fledged synchronous language. Rather, it serves
as an intermediate format mapping synchronous languages to verification tools dedicated to asynchronous
systems. However, GRL is sufficiently rich to make possible the translation of synchronous programming
constructs with reasonable effort.

The synchronous part of GRL provides a built-in definition of the notions of deterministic infinite loop and
internal state. Synchronous parallelism and causality have to be resolved beforehand (e.g., by the compilers
of synchronous languages), since synchronous composition in GRL is sequential. Time and clocks are not
explicitly represented and are abstracted out.

An individual block performs a (potentially unbounded) sequence of discrete deterministic steps (also
called reactions), and maintains an internal state (also called memory, represented by state variables). Each
step consists in first reading inputs; then computing outputs and next internal state, both depending on
inputs and the current internal state. These activities are performed simultaneously making the step atomic,
as assumed in synchronous programming [Hal13].

Blocks can be composed synchronously to interact with each other inside higher-level blocks, in a modular
way. This enables a textual description of hierarchical block compositions, as illustrated in Figure 2. Lower-
level blocks are called subblocks and a block that is not a subblock of another block is called a highest-level
block. Composition between subblocks is carried out by connecting inputs of some subblocks to outputs
of preceding subblocks. Interactions between subblocks occur simultaneously, as assumed in synchronous
programming [Hal13]. Accordingly, outputs produced by a subblock are consumed by other subblocks in the
same step as the enclosing block. This way, data is processed along causal dependencies between subblocks,
making the behaviour of blocks deterministic.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 7

B1 B2

B3

IN1

IN2

C1

C2

OUT1

Fig. 2. Pictorial description of subblock composition

Asynchronous composition of blocks. Inside systems, highest-level blocks are composed in asynchronous
concurrency, following the interleaving semantics underpinning process algebras [Mil89]. Atomic deterministic
steps of concurrent blocks interleave arbitrarily, without causal dependency. By default, two consecutive steps
of a block may occur arbitrarily far from each other, unless specified differently by using activation constraints.
This abstraction makes GRL expressive enough to model and reason about general GALS systems.

Blocks can be connected to environments and mediums, but not to each other. Connections are made
by means of channels, which are tuples of variables. Channels are unidirectional, i.e. they are used by a
component either only for reception or only for emission of tuples of values. The underlying interaction model
is message-passing rendezvous. Blocks are active components inside systems, i.e., they initiate interactions
with other components. In this respect, environments and mediums are passive components, i.e., they only
respond to block interactions.

Environments and mediums can be defined by the user, similarly to blocks. In addition, their behaviour
may exhibit nondeterminism, a key feature for asynchronous system modelling and compositional specification.
This provides descriptions with accuracy and high abstraction capability.

Environments enable constraints on block behaviours to be expressed at different levels of abstraction.
They provide inputs to blocks and react to their outputs. Connections between blocks and environments are
carried out using input channels (sets of inputs) and output channels (sets of outputs). An output channel of
a block can be connected to an input channel of an environment, and conversely.

Additionally, environments can adjust the degree of asynchrony in block composition by setting constraints
on block activations. This allows to master the possible interleavings between blocks, e.g., a block cannot
execute indefinitely to the detriment of the others. Activation policies can model, at a suitable level of
abstraction, realistic situations such as constraints on the relative paces between synchronous components
modeled as highest-level blocks.

Mediums enable blocks to communicate asynchronously. They receive messages from or send messages to
blocks whenever requested. Messages can be stored in the internal state of the medium, thus enabling message
buffering. In addition, nondeterminism allows behaviours such as message loss, duplication, or reordering
to be described naturally. Connections between blocks and mediums are carried out similarly to the ones
between blocks and environments, but on dedicated channels called receive and send channels.

Composing a system from blocks, environments, and mediums provides the user with comfort and insight
to fine tune GALS behaviour. With such a composition, we seek smooth and tight tailoring of complex
network topologies, environment requirements and constraints, as well as communication protocols.

8 Fatma Jebali, Frédéric Lang, and Radu Mateescu

block ::= block B {varsc}
(in varsi0 , . . . , in varsin , out varso0 , . . . , out varson)
[receive varsr0 , . . . , receive varsrn , send varss0 , . . . , send varssn] is
alias B0 {args0 } as B ′

0 , . . . ,Bm {argsm} as B ′
m

static var varsp0 , . . . ,static var varspn ,
var varst0 , . . . ,var varstn

I
end block

| block B {varsc}
(in varsi0 , . . . , in varsin , out varso0 , . . . , out varson) is
!c string | !lnt string

end block

vars ::= X0 :T0 [:= E0], . . . ,Xn:Tn [:= En]
arg ::= E | | ?X | ? | any T
args ::= arg0 , . . . ,argn

I ::= null
| X:=E
| X[E0]:=E1

| X.f :=E
| I0 ;I1
| if E0 then I0 elsif E1 then I1 . . . elsif En then In else In+1 end if
| while E loop I0 end loop
| for I0 while E by I1 loop I2 end loop
| case E is K0 -> I0 | . . . | Kn -> In | [any -> In+1] end case
| Bi(args)

/* Statements forbidden in blocks and reserved to environments and mediums */
| enable B
| when <X0 , . . . ,Xn> -> I0
| when ?<X0 , . . . ,Xn> -> I0
| X := any T [where E]
| select I0 [] . . . [] In end select

E ::= K | X | F(E1 , . . . ,En)

Fig. 3. The syntax of GRL blocks

4.2. Types

GRL provides a rich data structure. Predefined types consist of Boolean, naturals and integers which are
represented on either 8 bits (nat, int), 16 bits (nat16, int16), or 32 bits (nat32, int32), and strings. Types
can also be defined by the user. User-defined types consist of array, enumeration, record, and range types.

4.3. Blocks

Blocks are formally defined by the non-terminal block in Figure 3. A block specification consists of formal
parameters, variables, subblock instantiation, and a statement I defining the block behaviour. This statement
must be deterministic, i.e., use only the constructs described in the first 10 lines of the production defining I
in Figure 3. It consists of subblock invocations combined with standard algorithmic control structures such
as assignment, sequential composition, conditionals (“if” and “case”) and loops (“while” and “for”).

Formal parameters are declared with types and possibly default values. They are classified into constant,
input, output, receive, and send parameters. Constant parameters, enclosed into braces, denote configuration
data. Input and output parameters, preceded by keywords in and out, enable synchronous interaction
either with other blocks (for subblocks) or with the environment (for highest-level blocks). Receive and send
parameters, preceded by keywords receive and send, enable asynchronous interaction with other blocks
along mediums. Blocks defined with receive and send parameters are necessarily highest-level blocks, thus
cannot be used as subblocks inside other blocks.

Variables are either temporary or static. Temporary variables are preceded by the keyword var and are
optionally initialized at declaration time. Once a step starts, each temporary variable is first assigned its

Formal Modelling and Verification of GALS Systems Using GRL and CADP 9

initialization value (if any), then used in computations within the step. Its updated value is lost at the end of
the step, i.e, when returning from the block.

Static variables are preceded by the keywords static var. Their initialization at declaration time is
mandatory, contrarily to temporary variables. In the first step of a block, each static variable is assigned
its initialization value. In subsequent steps, the variable takes/keeps the value it had at the end of the
previous step. Then, the values of static variables updated within a step are kept stored to subsequent steps.
Consequently, static variables are adequate to represent the internal state of the block.

Example 4.1. The Aileron component of the FCS system, introduced in Section 3, is modeled in GRL as
follows. Value of variable “pre pos” read in lines 8 and 10 is the one computed in the previous step (line 17).
In the first step of the block, the initialization value (line 3) is used.

1 block Aileron {delta:nat := 1}(in safe:bool, out pos:nat)
2 [receive move:move type, send ok :bool] is
3 static var pre pos:nat := 2 −− static variable
4 var new pos:nat := 2 −− temporary variable
5 −− block behaviour
6 if (safe) then
7 if ((move == up) and (pre pos < 4)) then
8 new pos := pre pos + delta
9 elsif ((move == down) and (pre pos > 0)) then

10 new pos := pre pos − delta
11 end if
12 end if;
13 −− write outputs
14 pos := new pos;
15 ok := safe ;
16 −− update the internal state
17 pre pos := new pos
18 end block

A block can encapsulate subblock instances. Each subblock instance has a separate internal state. Instances
can be aliased, i.e., assigned different names, by using the keyword alias. If a subblock has formal constant
parameters, the corresponding actual parameters of the instance must be set at aliasing time. The underscore
“ ” can be used as actual constant parameter. It indicates that the instance should use the default value of the
corresponding constant parameter in the block definition.

Example 4.2. In the code below, Ail1 is an instance of Aileron (Ex. 4.1) with parameter delta set to 1,
which is the default value associated to the formal parameter in the definition of Aileron. Ail2 is another
instance of Aileron with parameter delta set to 2.

1 alias Aileron { } as Ail1, Aileron {2} as Ail2

Subblocks can be invoked inside the current block with actual input and output parameters. Actual
output parameters are distinguished by a question mark. This means that the parameter will have a value
assigned when returning from the block. Underscores are used to specify unconnected parameters. For each
unconnected input parameter, the default value of the corresponding formal parameter in the block definition
is used in each cycle. For each unconnected output parameter, the value assigned to the corresponding formal
parameter when returning from the block is just ignored.

GRL does not provide any synchronous parallel composition operator. The synchronous composition
of subblocks is therefore sequential. This requires a topological order between subblock invocations to be
defined. If the GRL code was generated from a synchronous language, one would expect a correct order to be
produced from the front-end compiler, automatically. This is reasonable since every synchronous language
should be equiped with a compiler that determines such an order.

Example 4.3. The following GRL code corresponds to the block composition depicted in Figure 2. In
accordance with the dependency between input-output links induced by the structure of B0 , subblocks B1 ,
B3 , and B2 should be invoked in this specific order. Subblocks are connected with each other using variables
c1 and c2 . For example, the value of “?c1 ”, an actual output of B1 , is broadcasted to the subsequent
subblocks B2 and B3 . Actual parameters in1 , in2 , and out1 are declared as formal parameters of the
enclosing block B0 , since they are themselves inputs/outputs of B0 . The other block parameters c1 and c2
are declared as temporary variables since they are input/output links, internal to B0 .

10 Fatma Jebali, Frédéric Lang, and Radu Mateescu

1 block B0 (in in1, in2: nat, out out1: nat) is
2 alias B1 as B1, B as B2, B3
3 var c1, c2: nat −− input/output links
4 B1 (in1, in2, ?c1);
5 B3 (c1, in2, ?c2);
6 B2 (c1, c2, ?out1)
7 end block

Note that block B0 could be defined without aliasing as follows:

1 block B0 (in in1, in2: nat, out out1: nat) is
2 var c1, c2: nat −− input/output links
3 B1 (in1, in2, ?c1);
4 B (c1, in2, ?c2);
5 B (c1, c2, ?out1)
6 end block

Alternatively, the behaviour of a block can be specified in an external language, a feature inspired by
process languages (e.g., LNT and Promela). So far, the supported external languages are C and LNT. External
C and LNT functions can be declared using pragmas “!c” and “!lnt”, respectively.

Example 4.4. The C function Shift below applies a left-shift operation on a natural number. Type GRL NAT
is used in the function interface (line 7). Before using a parameter, it should be converted to the C
domain by using the predefined function GRL NAT TO UNSIGNED CHAR (lines 8-9). Then, before
returning from the function, the result is converted to the GRL domain by using the predefined function
GRL UNSIGNED CHAR TO NAT (line 10).

The function is written in a file with the same prefix as the GRL file and extension “.c”, which is imported
in the current GRL module. So doing, it can be encapsulated inside block C Shift (line 3).

1 −− GRL file importing the C file
2 block C Shift (in numb:nat, in bits:nat, out result:nat) is
3 !c ”Shift”
4 end block
5
6 −− C file
7 void Shift (GRL NAT number, GRL NAT bits, GRL NAT ∗ result){
8 unsigned char arg number = GRL NAT TO UNSIGNED CHAR (number);
9 unsigned char arg bits = GRL NAT TO UNSIGNED CHAR (bits);

10 ∗ result = GRL UNSIGNED CHAR TO NAT (arg number << arg bits);
11 }

Although including external code enhances user convenience, external code should be defined to comply
with GRL semantics. To enable functional verification, external C code should be side-effect-free, i.e., the
same code called in different contexts should return the same result. In particular, blocks defined with external
code have no static variables. External LNT code, however, have formal semantics and can thus be used
safely, provided they do not use themselves external C code with side effects.

Remarks. GRL blocks are synchronous reactive components with imperative-style. GRL blocks are somehow
similar to Statecharts/Stateflow, since both languages define Mealy machines and explicitly represent state
variables. Composition between GRL blocks is sequential. The absence of parallel and explicit delay operators
in the synchronous model of GRL deserves a few comments.

• Our aim is to keep a minimal number of core constructs, but enough to use GRL as target language for
synchronous programming. On the one hand, GRL can be used as back-end of synchronous language
compilers, then it can benefit from optimized sequential code they generate. On the other hand, GRL
can be smoothly integrated as back-end of various synchronous compilers, without interfering with the
specific nonclassical algorithms they implement, such as causality analysis algorithms (e.g., conditional
dependence graph in Signal, and computation of fixpoints in Esterel).

• Delay operators can be encoded in GRL by using static variables, with no difficulty.

Example 4.5. The Lustre node Counter, defined on the left below, can be implemented by block Counter,
defined on the right below. Variable preN implements the Lustre “pre (N)” expression, by storing the
value to be used in the next step. The Boolean variable first implements the Lustre operator “→”.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 11

blocks ::= B0 , . . . , Bn

env ::= environment N {varsc}
(in varsi0 , . . . , in varsin , out varso0 , . . . , out varson ,
block blocksb0 , . . . , block blocksbn) is

alias B0 {args0 } as B ′
0 , . . . ,Bn {argsn} as B ′

n
static var varsp0 , . . . , static var varspn ,
var varst0 , . . . , var varstn

I
end environment

Fig. 4. The syntax of GRL environments

1 −− Lustre code
2 node Counter (init , incr : int; reset : bool)
3 returns (N: int);
4 let
5 N = init −> if reset then init
6 else pre(N) + incr
7 tel

1 −− GRL code
2 block Counter (in init:int, incr :int, reset : bool,
3 out N: int) is
4 static var preN:int := init , first :bool := true
5 if (reset or first) then N := init; first := false
6 else N := preN + incr
7 end if;
8 preN := N
9 end block

• GRL does not have to deal with causality problems owing to the absence of the synchronous parallel
operator. GRL semantics ensure that: (1) variables are necessarily assigned values before being read and
(2) static variables are necessarily initialized at declaration time. For instance, GRL semantics forbid the
following program because variable x is used uninitialized by B1.

1 block B is
2 var x, y : t
3 B1 (x, ?y);
4 B2 (?x, y)
5 end block

However, the following three programs are permitted:
1 −− program 1
2 static var pre x:t := e
3 B1 (pre x, ?y);
4 B2 (?x, y);
5 pre x := x

1 −− program 2
2 var x:t
3 x := e;
4 B1 (x, ?y);
5 B2 (?x, y)

1 −− program 3
2 x := 1;
3 x := x + 1;
4 −− cyclic dependency permitted
5 −− (imperative style)

Another difference with standard synchronous languages is the presence of explicit computation loops in
GRL. For and while loops are useful if used as iterators. However, it is on the user’s charge to ensure their
boundedness, since GRL provides no static analysis in this concern. Computation loops can be combined
with subblock invocations, in which case subblock invocations behave as procedure call.

4.4. Environments

Environments provide block inputs and react to block outputs, thus putting constraints on the data that
blocks carry. Additionally, they define constraints on block activation, thus enabling to define execution
policies.

Environments are formally defined by the non-terminal env in Figure 4. An environment specification
consists of formal parameters encompassing constant, input, and output parameters; activation parameters,
prefixed by the keyword block and denoting block identifiers; static and temporary variables; instantiations
of subblocks used as routines; and a statement I defining the environment behaviour. This statement can be
nondeterministic, i.e., use all the constructs of the production defining I in Figure 3. The same deterministic
statements as blocks can be used, extended with nondeterministic assignment (line 14), nondeterministic
choice (line 15), and signals (lines 11-13).

Data constraints. An environment interacts with a block either by reception (input parameters) or by
emission (output parameters) of tuples of values, the parameters used in the same interaction being grouped in
channels. Since environments are passive components, which may interact with several blocks, an environment

12 Fatma Jebali, Frédéric Lang, and Radu Mateescu

can be executed at several moments. Each of those executions is devoted to interaction on a given channel. The
code to be executed by an environment depends on the channel on which the block-environment interaction
occurs. GRL associates to each channel a data signal (introduced by keyword when) to guard the code part
to be executed on interactions on that channel.

Example 4.6. The Control component of the FCS system is modeled in GRL as follows. It checks whether
the current position of Aileron is still within a predefined interval (subblock Interval) and outputs a safety
state. Details of the code will be explained in the sequel.

1 environment Control (in pos:nat, out safe:bool) is
2 alias Interval {5} as Interval
3 static var lastPos:nat := 0
4 select
5 when ?<pos> −> lastPos := pos −− read ‘‘pos’’
6 [] when <safe> −> Interval (lastPos, ?safe) −− write ‘‘safe’’
7 end select
8 end environment
9

10 block Interval {thres:nat} (in pos:nat := 0, out ok :bool) is
11 var sup, inf : bool
12 sup := (thres < pos) and ((pos − thres) < 5);
13 inf := (pos <= thres) and ((thres − pos) < 5);
14 if (sup or inf) then
15 ok := true
16 else
17 ok := false
18 end if
19 end block

The signal associated to input channel “in X0:T0, . . . ,Xn:Tn” has the form “when ?<X0, . . . ,Xn> -> I0”
(Example 4.6, lines 1, 5). The code I0 guarded by the signal is active (meaning that I0 can be executed),
whenever a block connected to the channel produces its own outputs X0, . . . ,Xn . Then, the values of
those variables, received on the channel, can be read only inside statement I0 . In Example 4.6, the signal
“when ?<pos>→” defined at line 5 is active each time the block connected to channel “in pos” outputs a
value. In this case, value of pos is read and assigned to “lastPos”, when returning from the environment.
Signal “when <safe>→” defined at line 6 is not active during the execution.

The signal associated to each output channel “out Y0, . . . ,Ym” has the form “when <Y0, . . . ,Ym> -> I0”
(Example 4.6, lines 1, 6). The code I0 guarded by the signal is active, whenever a block connected to the
channel reads its own inputs Y0, . . . ,Ym . This requires the statement I0 to assign values to those variables,
which are emitted on the channel. In Example 4.6, the signal “when <safe>→” defined at line 6 is active
each time the block connected to channel “out safe” starts a step. In this case, output safe is assigned a
value when returning from the environment. Signal “when ?<pos>→” defined at line 5 is not active during
the execution. Angle brackets are optional if a signal contains a single variable.

Since interactions on a channel occur whenever requested by the connected block, there must be at least
one reachable execution path, containing the signal corresponding to the channel. So doing, environments do
not prevent block executions. In general, the code fragments guarded by the different signals are combined
using nondeterministic choice, as illustrated in Example 4.6 (lines 4-7).

Besides, since exactly one signal is active during each environment execution, GRL semantics prohibit
sequential composition of signals, loop statements containing signals, and nested signals. So doing, at most
one signal is present in each execution path. Note, however, that the code associated to a given signal does
not have to be deterministic, which allows the environment to have a nondeterministic behaviour.

Static variables are particularly useful to keep track of past events, such as exchanged values or the history
of block activations. This is illustrated in Example 4.6. The value emitted to a block on channel safe (line 6)
depends on the last value carried by a block output received on channel pos (line 5). This information is
stored in variable lastPos (line 3).

It is worth noticing that data constraints are similar to, but more general than assertions in synchronous
languages. The latter are Boolean expressions (e.g., invariances and relations on inputs) that are assumed to
always hold inside the synchronous program. In GRL, data constraints can express more complex behaviours,
possibly combining inputs and outputs of several blocks, and depending on their history. In general, such
constraints allow to fine tune the description of the system, and reduce the size of generated state spaces.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 13

Activation constraints. The activation of blocks whose identifiers occur as activation parameters is intended
to be controlled by the environment. Similarly to input and output channels, to each activation parameter
of the form “B” is associated an activation signal of the form “enable B”. That signal implements the
permission for a block (named B) to start a step. A block whose identifier occurs as activation parameter
of the current environment can execute only if there is at least one reachable execution path, containing
its respective signal. Therefore, contrary to data signals, activation signals may be unreachable in certain
execution contexts. In particular, if no signal is associated to a given activation parameter, the corresponding
block is never activated.

Example 4.7. Consider a system composed of highest-level blocks B1, . . . , Bn. The default arbitrary
interleaving between blocks is equivalent to the following activation strategy, where no constraint is put on
block activations.

1 environment default (block B 1, ..., block B n) is
2 select
3 enable B 1 [] ... [] enable B n
4 end select
5 end environment

Example 4.8. Environment quasi synchrony implements the quasi-synchrony hypothesis [CMP01], stating
that the connected blocks evolve at the same pace, although they can slightly drift. This means that between
each two consecutive executions of a block, the other one can execute at most twice. This illustrates how to
express relations between paces of different blocks.

1 environment quasi synchrony (block B1, block B2) is
2 static var ok1, ok2 : bool := true −− B1 and B2 can execute
3 select
4 −− execute B1 once
5 if (ok1) then
6 enable B1; ok1 := not (ok2); ok2 := true
7 end if
8 []
9 −− execute B2 once

10 if (ok2) then
11 enable B2; ok2 := not (ok1); ok1 := true
12 end if
13 end select
14 end environment

Example 4.9. Environment Backup implements the activation policy for the FCS system composed of
redundant blocks Prim and Sec, the latter being the backup of the former. This illustrates how to express
constraints on the start off (initial delay before a block starts its first step) and crash of blocks.

1 environment Backup (block Prim, block Sec) is
2 static var p alive , s alive : bool := true
3 if (p alive) then −− Prim executes
4 p alive := any bool;
5 enable Prim
6 elsif (s alive) then −− Sec executes
7 s alive := any bool;
8 enable Sec
9 end if

10 end environment

In both examples, activation signals are combined using if-then-else statements, to constrain the activation
of connected blocks. The reachability of those signals depends on the internal state of the environment, i.e.,
its static variables, recording part of the history of block activations.

In general, activation constraints are a framework to abstract properties of real-time distributed systems
in an asynchronous discrete model. GRL allows to implement arbitrarily complex activation policies: regular
or sporadic executions, priorities, or arbitrary relations between the paces of synchronous components.

Remark. The previous version of GRL provided no built-in mechanism to control block activations. If
controlling block activation were necessary, the trick was to introduce additional data signals whose variables

14 Fatma Jebali, Frédéric Lang, and Radu Mateescu

med ::= medium M {varsc}
[receive varsr0 , . . . , receive varsrn , send varss0 , . . . , send varssn] is
alias B0 {args0 } as B ′

0 , . . . ,Bn {argsn} as B ′
n

static var varsp0 , . . . , static var varspn ,
var varst0 , . . . , var varstn

I
end medium

Fig. 5. The syntax of GRL mediums

implemented the permission of the block to perform a step. Then, the reachability of the introduced signals
determined whether a block could perform a step. This solution led to potential confusion since the same
construct (data signals) was used to express constraints having different levels of abstraction.

On the contrary, activation signals are syntactically and semantically more elegant. They allow a clear
separation between data- and activation-oriented constraints, which makes the user intention clearer. Data
signals allow to control data carried by block inputs and outputs, and cannot handle block activations. Thus,
a data signal must be reachable whenever required by a connected block, which is now required using static
semantics constraints. Activation signals allow to control the activation of blocks at specific moments in
time, and cannot handle input and output data. Thus, the reachability of activation signals induces the
activation policy of blocks. Moreover, both types of signals can be combined to describe complex situations.
In particular, the description of scenarios, which was cumbersome and error-prone previously, is drastically
simplified in the current version of GRL.

4.5. Mediums

Mediums are intended to model asynchronous communication between highest-level blocks. They are formally
defined by the non-terminal med in Figure 5. Medium specification is described similarly to environments,
except that input and output channels are replaced by receive and send channels, and activation parameters
are not allowed. A medium behaviour is defined by a nondeterministic statement, in which activation signals
are not allowed.

A medium interacts with highest-level blocks either by reception (receive channel) or by emission (send
channel) of tuples of values, called messages in the sequel. To enable an asynchronous message transmission
between a pair of blocks, a medium should interact with both blocks on separate channels. Data signals are
associated to those channels, as explained in Section 4.4. Nondeterministic choice is appropriate for combining
data signals and static variables are useful for message buffering.

Example 4.10. The following code implements a unidirectional one-place buffer of natural numbers. Channel
R M is devoted to receive messages, which are buffered using a static variable, waiting to be emitted on
channel S M. This model is used in Loosely Time-Triggered Architectures [BBC10], in which mediums behave
as shared memories between writers and readers. Communication (called communication by sampling) is non
blocking.

1 medium ComBySampling [receive R M:nat, send S M:nat] is
2 static var Buf M:nat := 0
3 select
4 when ?<R M> −> Buf M := R M −− reception of M
5 [] when <S M> −> S M := Buf M −− emission of M
6 end select
7 end medium

Example 4.11. The following code implements a FIFO queue. The queue is encoded by using a static
variable (line 8) of type queue which is an array of messages (lines 1-3). Initially the queue is empty. When a
message is received on channel rec msg, it is inserted in the queue by using a subblock enqueue which returns
the updated queue. Similarly, when a message has to be emitted on channel snd msg, subblock dequeue
returns the first message inserted and updates the queue.

1 type queue is
2 array [0 .. size queue] of message

Formal Modelling and Verification of GALS Systems Using GRL and CADP 15

3 end type
4
5 medium FIFO [receive rec msg : message , send snd msg : message] is
6 static var queue : queue := queue (none)
7 select
8 when ?<rec msg> −> enqueue (rec msg, queue, ?queue)
9 [] when <snd msg> −> dequeue (queue, ?queue, ?snd msg)

10 end select
11 end medium

4.6. Systems

Systems are formally defined by non-terminal system in Figure 6. A system specification consists of formal
parameters, temporary variables, component instantiations, and a behaviour described as a composition of
components.

The set of highest-level block instances, composed asynchronously in the system, is introduced by keyword
block list. Actual parameters have the same forms as those in subblock invocation inside components.
Additional parameters, called wildcards, of the form “any T” can be used, matching any value of type T .
They are semantically equivalent to actual parameters, declared as temporary variables, and not used for
interactions with other components. Actual parameters are grouped to compose channels. Parameters of
the same channel are enclosed in angle brackets, which are optional if the channel has a single element.
In each channel, parameters should have the same form, i.e., all of them are either variables (of the form
“<X0, . . . ,Xn>” or “?<X0, . . . ,Xn>”), wildcards (of the form “<any T0, . . . ,any Tn>”), or unconnected
(of the form “< , . . . , >” or “?< , . . . , >”).

Example 4.12. The following code implements the whole FCS system.

1 system Main (order1, order2:move type, safe:bool, pos:nat) is
2 alias Computer as Prim, Computer as Sec,
3 Aileron { } as Aileron,
4 Backup as Backup, Control as Control,
5 Buffer as Buffer
6
7 var s move1, s move2, r move: move type,
8 s ok, r ok1, r ok2 : bool
9

10 block list
11 Prim (order1)[r ok1, ?s move1],
12 Sec (order2)[r ok2, ?s move2],
13 Aileron (safe , pos)[r move, ?s ok]
14 environment list
15 Backup (Prim, Sec),
16 Control (pos, ?safe)
17 medium list
18 Buffer [s move1, s move2, ?r move, ?r ok1, ?r ok2, s ok]
19 end system

Environment and medium instances are introduced by keywords environment list and medium list,
respectively. Their channels can be either tuples of variables or unconnected. If a channel is unconnected,
the behaviour defined by the associated signal in the component definition is never executed. Activation
parameters of environments should belong to identifiers of the highest-level blocks composed in the current
system. Those parameters should be pairwise distinct in all environments (Ex.4.12, line 15). This prevents
undesirable interferences that may occur when a block activation is constrained by more than one environment.

Connections between components are necessarily binary, which is expressed by channels occurring in
exactly one pair of components. A block and an environment can be connected using a set of variables
“X0:T0, . . . ,Xn:Tn” by passing “<X0, . . . ,Xn>” as input channel to the block and “?<X0, . . . ,Xn>” as
output channel to the environment, or conversely (Ex.4.12, lines 13 and 16). Connections between mediums
and blocks on receive and send channels are carried out similarly (Ex.4.12, lines 11 and 19).

Alternatively, channels can occur in only one component. If such is the case of an input or receive channel
of blocks, arbitrary values are assigned to its parameters. Such channels are useless in environments and
mediums, since their associated signals will never be executed.

16 Fatma Jebali, Frédéric Lang, and Radu Mateescu

chan ::= <X0 , . . . ,Xn>
| < , . . . , >
| <any T0 , . . . ,any Tn>
| ?<X0 , . . . ,Xn>
| ?< , . . . , >
| B0 , . . . ,Bn

system ::= system S (vars) is
alias B0 {args} as B ′

0 , . . . ,Bm {args} as B ′
m,

N0 {args} as N ′
0 , . . . ,Nn {args} as N ′

n,
M0 {args} as M ′

0 , . . . ,Mk {args} as M ′
k

var vars
block list

B ′
0 (chan, . . . ,chan)[chan, . . . ,chan]

, . . . ,
B ′

m (chan, . . . ,chan)[chan, . . . ,chan]
environment list

N ′
0 (chan, . . . ,chan)

, . . . ,
N ′

n (chan, . . . ,chan)
medium list

M ′
0 [chan, . . . ,chan]

, . . . ,
M ′

k [chan, . . . ,chan]
end system

Fig. 6. The syntax of GRL systems

Channels whose parameters are declared as formal parameters of the system are observable outside the
system (Ex.4.12, line 1). Channels whose parameters are declared as temporary variables are not (Ex.4.12,
lines 7-8). Distinction between observable and non observable channels is a key device for abstraction, inspired
by process algebra [Mil82]. This is essential for verification.

Blocks cannot be directly connected to each other using channels. This ensures arbitrary interleavings
between their executions. Environments and mediums cannot be connected to each other either. They are
passive components that need to be triggered by blocks.

The behaviour of the system is defined as follows. A block can execute only if permitted by the environment
constraining its activation. In this case, the block starts a step by triggering the components connected to its
input and receive channels, to obtain values. After carrying out internal computations, the block finishes the
step by triggering the components connected to its output and send channels, to deliver values. Following
this execution model, a block interacts with a given component in at most two moments (i.e., causal events)
during the same step. Accordingly, the data exchanged with the component at the same moment is grouped
in one single channel.

In Example 4.12, in the beginning of each step of Aileron, environment Control and medium Buffer
execute, providing values to inputs safe and r move. Then, at the end of the step, Control and Buffer
execute once more, consuming values of outputs pos and r move. The combined execution of all components
interacting during a block step is assumed to be instantaneous, thus preserving the zero-delay assumption of
the block step.

Remarks. Deterministic GALS systems (e.g., [PBCB06]) can be described in GRL, despite the nonde-
terministic behaviour of mediums and environments. In asynchronous deterministic systems, messages are
not lost and are delivered in the same order in which they have been received. To this aim, the buffering
mechanisms specified in mediums should comply with the activation policies defined in environments. For
example, in quasi-synchronous systems, two-place FIFOs can be sufficient to ensure the reliability of message
transmission. This issue will be discussed in Section 7.

Several instances of GALS systems consist of three types of components: synchronous components,
asynchronous interconnects, and an interface between the synchronous and asynchronous components. In
GRL, those components correspond respectively to blocks which are pure synchronous components, mediums,
and data signals inside mediums. Indeed, send and receive signals are executed respectively before and after
each step of each connected block.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 17

Example 4.13. Prim, Sec, and Aileron of the FCS example can be composed by using an AFDX2 (Avionics
Full DupleX Switched Ethernet) architecture. For conciseness, we represent only message transmission from
Prim and Sec to Aileron. In addition to synchronous components, an AFDX architecture contains end systems
and AFDX interconnects.

End systems represent communication interfaces between synchronous components and the asynchronous
network. In GRL, they are represented by signals inside mediums.

AFDX interconnects are networks of switches that forward messages to their appropriate destination.
We implement them by a network of mediums: Switch Prim, Switch Sec, and Switch Ail. Those mediums
are connected to each other by using “additional” blocks Switch Prim to Ail and Switch Sec to Ail since
GRL mediums cannot be directly connected to each other. The introduced blocks can be used to implement
transmission message delays, by setting constraints on their activation.

1 block list
2 Prim (order1)[?s move1],
3 Sec (order2)[?s move2],
4 Aileron (safe , ?pos)[r move prim ail, r move sec ail],
5 Switch Prim to Ail [s move prim ail, ?s move prim ail],
6 Switch Sec to Ail [s move sec ail , ?s move sec ail]
7 medium list
8 Switch Prim [s move1, ?s move prim ail],
9 Switch sec [s move2, ?s move sec ail],

10 Switch Ail [s move prim ail, ?r move prim ail, s move sec ail , ?r move sec ail]

4.7. Overview of the formal semantics

Following process algebraic languages (e.g., CCS, CSP, LNT), the formal semantics of GRL are given in
terms of LTS (Labelled Transition System), using Plotkin-style structural operational semantic rules [Plo81].
An LTS is a quadruple (S,L,→, s0) where S is a set of states, s0 ∈ S is the initial state, L is a set of labels,
and → ⊆ S × L× S is the labelled transition relation. The contents of states are not observable. To define
the dynamic semantics of GRL systems, we first introduce the following notions:

1. A store, written ρ, is a partial function from variables to their current values. We write [X1 ← e1, ..., Xn ←
en] for a store ρ mapping each variable Xi to the corresponding value ei, where i belongs to the
interval [1 .. n]. We write dom (ρ) for the domain of store ρ, defined by dom (ρ) = {X1, . . . , Xn}.
For {Y1, . . . , Yp} ⊆ dom (ρ), we write ρ|{Y1, ..., Yp} for the restriction of ρ to {Y1, . . . , Yp} defined by
[Y1 ← ρ(Y1), ..., Yp ← ρ(Yp)].
We write ρ1 ⊕ ρ2 for the update of ρ1 with ρ2, which is a store defined as follows:

(ρ1 ⊕ ρ2)(X) =

{
ρ2(X) if X ∈ dom(ρ2)
ρ1(X) if X /∈ dom(ρ2) and X ∈ dom(ρ1)
undefined otherwise

The notation
⊕

i∈1..n
ρi stands for the sum ρ1 ⊕ . . .⊕ ρn.

2. A stack, written σ is a sequence of component identifiers. Formally, a stack is defined recursively,
either as the empty sequence ε or as a non empty sequence of the form “σ′.id” where σ′ is a stack
and id is the identifier of a component instance. We write σ1.σ2 for the concatenation of stacks σ1
and σ2. We define function prefix determining whether a stack σ1 is a prefix of stack σ2 as follows:
prefix (σ1, σ2) = (∃ σ′) σ1.σ′ = σ2.
During the execution, a unique stack, called instantiation stack, can be associated to each component
instance. This stack consists of the ordered list of all embedded component instances from the highest-
level component (block, medium, or environment) down to the current component, transitively. Such
instantiation stacks are similar to call stacks in ordinary programming languages. In GRL, a finite and
unique instantiation stack can be associated to each component instance since both recursive and shared
components are disallowed.

2 http://www.afdx.com/

18 Fatma Jebali, Frédéric Lang, and Radu Mateescu

Example 4.14. Let “alias B as B ′” be a highest-level block aliasing inside a system S . The stack
associated to instance B ′ is ε.B′. Now, let “alias B as B ′” be a subblock aliasing inside a medium M
and let “alias M as M ′” be the medium aliasing inside system S . The stack associated to instance M ′ is
ε.M ′ and the one associated to B ′ in this context is “ε.M ′.B ′”.

In the sequel, we omit the initial ε in non empty stacks, e.g., we write “M ′.B ′” instead of “ε.M ′.B ′”.

3. A memory, written µ, is a partial function from stacks to stores. Memories implement the internal state
of components. We write [σ1 ← ρ1, ..., σn ← ρn] for a memory mapping a stack σi to a store ρi (i ∈ [0 ..
n]). The notation σi ← ρi means that ρi defines the static variable values of the component whose stack
is σi. We write µ1 ⊕ µ2 for the update of µ1 with µ2, which is a memory defined similarly as store update.
The notation

⊕
i∈1..n

µi stands for the sum µ1 ⊕ . . .⊕ µn.

4. We define a function mem which extracts from a memory µ the submemory corresponding to the
component whose instantiation stack is σ as well as the memories of its subblocks.

mem (µ, σ) =
⊕

σ′ ∈ dom(µ)
∧ prefix (σ, σ′)

[σ′ ← µ(σ′)]

Example 4.15. The internal state of block Aileron (Ex. 4.1, page 9) is composed of the static variable
pre pos. Its initial memory is thus [Aileron← [pre pos← 2]]. Block Interval (Ex. 4.6, page 12) does not have
an internal state. Its memory is thus the empty memory [].

The LTS corresponding to GRL system is defined as follows. The set of states is the union of all component
memories in the system. The initial state is the initial memory, in which each static variable is assigned its
(mandatory) initial value. In a given state µ, the execution of a step of some block B, involving a combined
execution of its connected mediums and environments, leads to a transition of the form:

µ
B (ch1,...,chm)[ch′

1,...,ch
′
n]−−−−−−−−−−−−−−−−−→ µ′

Each chi (i ∈ [1 .. m]) has the form “X1 = e1, . . . , Xp = ep”, where Xi (i ∈ [1 .. p]) are the actual parameters
of input and output channels and ei (i ∈ [1 .. p]) their respective values. Similarly, each ch′i (i ∈ [1 .. n]))
contains parameters and values of receive and send channels.

To formally define this relation, we need the semantics of expressions, statements, blocks, environments,
mediums, and systems, which we describe below.

Semantics of expressions. The semantics of expressions are defined by a relation of the form {E}ρ→ e.
In this relation, E denotes an expression, ρ denotes the store in which E is evaluated, and e is the resulting
value of E in store ρ.

Semantics of statements. The semantics of statements are defined by a relation of the form {I}σ, ρ, µ `−→
ρ′, µ′. In this relation, σ is the stack of the current component (inside which I is executed), ρ is the store
defining parameters and variables of the current component, and µ is the memory defining static variables of
the current component and of its subblocks. It means that the execution of statement I defines a transition,
labelled `, from memory state ρ, µ to ρ′, µ′. Store ρ′ and memory µ′ represent the update of ρ and µ,
respectively. Label ` has one of the following forms:

• ε means that the execution of I has terminated normally without encountering any signal.

• B0 means that the execution of I has terminated and encountered an activation signal on the activation
parameter B0.

• ?〈X0, . . . , Xn〉 means that the execution of I has terminated and encountered a signal on the input or
receive channel X0, . . . , Xn.

• 〈X0, . . . , Xn〉 means that the execution of I has terminated and encountered a signal on the output or
send channel X0, . . . , Xn.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 19

GRL has rules for every kind of statement. For instance, the following rule defines the semantics of
deterministic assignment:

{E} ρ→ e

{X := E} σ, ρ, µ ε−→ ρ⊕ [X ← e], µ

Note that this rule updates the store but not the memory even if X is a static variable. Note also that µ is
not used to evaluate E because the store ρ already contains a copy of the static variables local to the current
component. Construction of this store and memory update are handled at the level of component invocation
(see semantics of blocks below).

The definition of statements is standard (see [JLM14b]). Nondeterministic statements lead to a nondeter-
ministic relation. Hereafter, we give the rules defining signals, which are inspired from communication action
semantics in process algebra (LNT in particular). Signals are defined by the following three rules:

{I0} σ, ρ, µ
ε−→ ρ′, µ′

{when ?<X0, . . . ,Xn> -> I0} σ, ρ, µ
?〈X0,...,Xn〉−−−−−−−−→ ρ′, µ′

input or receive signal

{I0} σ, ρ, µ
ε−→ ρ′, µ′

{when <X0, . . . ,Xn> -> I0} σ, ρ, µ
〈X0,...,Xn〉−−−−−−−→ ρ′, µ′

output or send signal

{enable B0} σ, ρ, µ
B0−−→ ρ, µ

activation signal

Semantics of blocks. We consider a block invocation of the form “B ′ (chan0, . . . ,chanm)[chan ′0, . . . ,chan ′n]”,
where chan0 , . . . , chanm (resp., chan ′0 , . . . , chan ′n) denote input/output (resp., receive/send) actual channels.
We write vars0 , . . . , varsm (resp., vars ′0 , . . . , vars ′n) for the formal channels corresponding to these actual
channels as defined in block definition. We also write varsstat for the list of static variables of the block.

Given a store ρ, an actual channel chan, and the corresponding formal channel vars , we write update (chan,
vars, ρ) for the store which is empty if chan is an unconnected channel, or which assigns to each parameter
in vars the value of the corresponding parameter in chan available in store ρ.

Given the store ρ and memory µ in which this block invocation is executed, we can construct the store
ρinit in which the body I0 of the block is to be executed as follows: Constant and input parameters are
assigned their actual values, default values corresponding to unconnected parameters are fetched in the block
definition, temporary variables are assigned their initial values, if any, and static variables are assigned the
value they had in memory µ.

The following rule defines the semantics of such a block invocation:

{I0} σ.B ′, ρinit, µ
ε−→ ρret, µret

{B ′ (chan0, . . . ,chanm)[chan ′0, . . . ,chan ′n] }σ, ρ, µ
ε−→ ρ′, µ′

where:

ρ′ = ρret ⊕
⊕

i∈0..m
update (chani, varsi, ρret)⊕

⊕
i∈0..n

update (chan′i, vars
′
i, ρret)

µ′ = µret ⊕ [σ.B′ ← ρret|varsstat
]

The execution of I0 terminates by producing an updated store ρret and an updated memory µret. The
execution of B′ terminates by producing store ρ′ and memory µ′. Store ρ′ updates ρret with the actual values
of output and send parameters. Memory µ′ updates µret with the current values of static variables of B′,
which are available in store ρret. Note that µret already takes into account the memory updates done in the
subblocks of B′, if any. The label of the transition is necessarily ε since GRL static semantics prohibit the
use of signals inside blocks.

Semantics of environments and mediums. The following rules define the invocation of environment
(left-hand rule) and mediums (right-hand rule):

20 Fatma Jebali, Frédéric Lang, and Radu Mateescu

{I0} σ.N ′, ρinit, µ
`i−→ ρret, µret i ∈ 0..m

{ N ′ (chan0, . . . ,chanm) } σ, ρ, µ chani−−−→ ρ′, µ′

{I0} σ.M ′, ρinit, µ
`i−→ ρret, µret i ∈ 0..m

{ M ′ [chan0, . . . ,chanm] } σ, ρ, µ chani−−−→ ρ′, µ′

where `i is the formal channel of M’ that corresponds to the actual channel chani, and ρ′ and µ′ are identical
to their definition in the semantics of block invocation.

Contrarily to block execution, labels of the above transition rules are necessarily different from ε as the
execution of environments and mediums is triggered only on signal execution.

Semantics of systems. We note block, environment, and medium as shorthands of component invocations
inside a system:

block ::= B ′ (chan0, . . . ,chanm)[chan ′0, . . . ,chan ′n]
environment ::= N ′ (chan0, . . . ,chanm)

medium ::= M ′ [chan0, . . . ,chanm]

Each component of the system is associated to a unique index. We write B′i (resp., N ′i , M
′
i) for the identifier

of component instance blocki (resp., environmenti , mediumi). Similarly, in each component invocation, each
channel is also associated to a unique index.

Given a block B′i, we note A the set, which is either singleton or empty, containing the index of the
environment constraining its activation, if any. Similarly, we note I, O, R, and S the sets (possibly empty but
not necessarily singleton if not empty) of component indexes that have a channel connected to respectively
an input, output, receive, and send channel of B′i. Given a block index i, an environment or medium index j,
and a channel type mode belonging to {in, out, receive, send}, we write channel (i, j, mode) the channel
of type mode in the component indexed j that is connected to the block indexed i. Note that GRL static
semantics ensure that there is exactly one such channel.

Given a block invocation, for actual channels that are not connected to any component, a store ρany is
constructed to assign arbitrary values to their corresponding formal channels. Therefore, the construction of
ρany yields nondeterminism.

The following rule defines the combined execution of block B′i and its connected environments and
mediums:

(∀j ∈ A) {environmentj} ε, [], mem (µ, N ′j)
B′

i−−−−−−−−−−−−−−−→ ρ′Aj
, µ′Aj

(∀l ∈ I) {environmentl} ε, [], µIl
channel(i, l, out)−−−−−−−−−−−−−−−→ ρ′Il , µ

′
Il

(∀k ∈ R) {mediumk} ε, [], mem (µ, M ′k)
channel(i, k, send)−−−−−−−−−−−−−−−→ ρ′Rk

, µ′Rk

{blocki} ε, ρi, mem (µ, B′i)
ε−−−−−−−−−−−−−−−→ ρ′i, µ

′
i

(∀m ∈ O) {environmentm} ε, ρ′i, µOm

channel(i, m, in)−−−−−−−−−−−−−−−→ ρ′Om
, µ′Om

(∀n ∈ S) {mediumn} ε, ρ′i, µSn
channel(i, n, receive)−−−−−−−−−−−−−−−→ ρ′Sn , µ

′
Sn

µ
label(blocki , ρ′i)−−−−−−−−−−−→ µ⊕

⊕
j∈A

µ′A ⊕
⊕
l∈I
µ′I ⊕

⊕
k∈R

µ′R ⊕
⊕
m∈O

µ′O ⊕
⊕
n∈S

µ′S

where:

ρi = ρany ⊕
⊕
j∈A

ρ′Aj
⊕

⊕
l∈I
ρ′I ⊕

⊕
k∈R

ρ′R

µIl = mem (µ, N ′l)⊕
⊕
j∈A

mem (µ′Aj
, N ′l)

µOm
= mem (µ, N ′m)⊕

⊕
j∈A

mem (µ′Aj
, N ′m)⊕

⊕
l∈I

mem (µ′Il , N
′
m)

µSn = mem (µ, M ′n)⊕
⊕
k∈R

mem (µ′Rk
, M ′n)

where label(blocki , ρ
′
i) constructs the label of the transition as explained earlier.

First, the environment constraining the activation of the block is executed in the empty store and in its

Formal Modelling and Verification of GALS Systems Using GRL and CADP 21

process ::= process Π [G0 :Γ0, . . . ,Gm:Γm](param0 , . . . ,paramn) is
B

end process
function ::= function F (param0 , . . . ,paramm)[:T] is I end function

param ::= (in | out | in out) X0 :T0 , . . . ,Xn:Tn

channel ::= channel Γ is tuple0 , . . . ,tuplem end channel
tuple ::= (T0 , . . . ,Tm)

arg ::= !E | ?X | !?X
O ::= [!]E | ?X
E ::= X | F(E1 , . . . ,En) | C(P1 , . . . ,Pn)
P ::= X | C(P1 , . . . ,Pn)
I ::= null

| X:=E
| X[E0]:=E1

| X.f :=E
| eval F(arg0 , . . . ,argn)
| I0 ;I1
| if E0 then I0 [[elsif E1 then I1 . . . elsif En then In] else In+1]end if
| while E loop I0 end loop
| for I0 while E by I1 loop I2 end loop
| case E is P0 -> I0 | . . . | Pn -> In | [any -> In+1] end case
| var X0 :T0 , . . . ,Xn:Tn in I end var

/* the following constructs are reserved for the control part */
| X := any T [where E]
| G(O0 , . . . ,On)
| hide G0 :Γ0, . . . ,Gn:Γn in I end hide
| par G0 , . . . ,Gn in I0 || . . . ||Im end par
| select I0 [] . . . []In end select
| Π[G0 , . . . ,Gn](arg0 , . . . ,argn)

Fig. 7. LNT syntax (excerpt)

own memory which is extracted from the current memory µ by using function mem. It produces the empty
store (ρ′Aj

= []) since no output channel is activated, and an updated memory µ′Aj
.

Similarly, all environments (resp., mediums) that are connected to input (resp., receive) channels of B′i
are executed in the empty store and in their own memories. In particular, if the environment constraining
the execution of B′i is also connected to an input channel of B′i, its own memory is the one produced by its
previous execution during the current step of B′i, which is captured by the definition of µIl .

Second, block B′i is executed in the store ρi and its own memory. Store ρi assigns values to all input and
receive parameters of B′i which have been produced by other components. Those parameters are available in
stores ρ′Rk

(k ∈ R) and ρ′Il (l ∈ I). Store ρ′i, produced by the block execution, assigns values to all its output
and send parameters.

Last, all mediums (resp., environments) that are connected to send (resp., output) channels of B′i are
executed in store ρ′i and their own memories.

The execution of the system defines a transition updating the current memory µ with all memories
produced by the executed components. This rule can be instantiated for any block of the system, which leads
to an interleaving of block executions.

5. The LNT Language and the CADP Toolbox

LNT [CCG+14] is a simplified variant of the E-Lotos [ISO01] standard. LNT combines the best features
of imperative programming languages and value-passing process algebras. The translation of GRL to LNT
requires a subset of LNT constructs, whose syntax is given in EBNF in Figure 7.

The generic terminal symbols T, X, F, Γ , G, and Π denote identifiers for, respectively types, variables,
functions, channels, gates, and processes. The non-terminals E , arg , O , P , and I denote respectively
expressions, actual parameters, offers, patterns, and behaviours.

LNT provides a rich constructed data types (e.g., records, sets, and lists), statements built upon standard
algorithmic control structures (lines 1-11 of non-terminal I), and functions (non-terminal function). Functions

22 Fatma Jebali, Frédéric Lang, and Radu Mateescu

are parametrized by data variables. Formal parameters (non-terminal param) can be either of mode in (call
by value), out (call by reference, the function being in charge of producing a value for the parameter),
or “in out” (call by reference, the function being allowed to read and update the parameter value). Their
corresponding actual parameters (non-terminal arg) are preceded by symbols “!”, “?”, and “!?”, respectively.

LNT processes (non-terminal process) are defined similarly to functions, with addition of the following
behaviours (non-terminal I): nondeterministic assignment (line 12), nondeterministic choice (line 16), gate
communication (line 13), gate hiding (line 14), parallel composition (line 15), and process instantiation (line
17). Communication takes place by rendezvous on gates, with bidirectional transmission of multiple values.
Gates can be typed by channels (not to be confused with the GRL notion of channels), defining a set of type
tuples (non-terminal channel). Processes can be parametrized by both data variables and gates. The parallel
composition operator allows multiway rendezvous, which is a rendezvous involving several processes. The
formal operational semantics are defined in terms of LTSs, described in detail in [CCG+14].

LNT specifications can be verified using the toolbox CADP (Construction and Analysis of Concurrent
Processes3) [GLMS13]. The LNT.OPEN tool translates LNT specifications into LTSs suitable for on-the-fly
exploration. CADP provides more than 42 tools for various kinds of analysis such as simulation, model
checking, equivalence checking, compositional verification, test case generation, and performance evaluation.
In particular, the EVALUATOR 4.0 model checker allows one to verify temporal properties written in MCL
(Model Checking Language) [MT08], which extends the alternation-free µ-calculus with generalized regular
expressions, data-based constructs, and fairness operators.

6. Translation from GRL to LNT

This section presents the translation from GRL to LNT. Synchronous components with internal memory
are translated into LNT functions, which are deterministic and stateless. An LNT implementation of the
notion of internal memory is proposed. Such LNT functions are encapsulated in asynchronous processes
(called wrapper processes, following [GT09]) so as to implement asynchronous component composition. In
addition, a locking mechanism is proposed to ensure the atomicity of component steps in wrapper processes.
As regards asynchronous components, environments and mediums are naturally translated into LNT processes.
In particular, the translation of activation signals complies with the locking mechanism by constraining the
execution of wrapper processes. Finally, concurrent processes are composed to interact with each other inside
a higher-level process, called root process.

GRL being a rich language, we cannot present the full translation function formally in this paper4. Instead,
we give here the main principles of the translation, illustrated on well-chosen examples.

6.1. Translation of Variables, Types, Expressions, and Statements

GRL data types are translated with no difficulty into LNT, owing to the ability of LNT to handle complex
data types. Each GRL type T is translated into an LNT type with the same identifier as T 5. Each GRL
variable X is translated into an LNT variable with the same identifier and type as X . Expressions and
statements have a direct, one-to-one, correspondence with their LNT counterparts. The only exception
concerns signals, which are translated into slightly more complex statements involving LNT communication
actions. The imperative style of both GRL and LNT makes rather straightforward such a translation.

6.2. Translation of Blocks

For the sake of clarity and without loss of generality, we organize this section as follows. We first consider
blocks without internal state (i.e., without static variables). We present the translation of subblocks, i.e.,
blocks intended to be used inside components. Then, we present the translation of highest-level blocks, i.e.,

3 See the web page http://cadp.inria.fr for more information.
4 A complete translation from GRL to LNT is defined formally in http://convecs.inria.fr/doc/grl2lnt.pdf.
5 In practice, the translation must ensure that the GRL identifier is not an LNT keyword. This is handled by our translator but
we skip such low-level details in this presentation for brevity.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 23

blocks intended to be composed asynchronously inside systems. Finally, we present the translation of static
variables, which represent the internal states of block instances.

Translation of subblocks without internal state. A GRL block definition is systematically translated
into an LNT function having the same identifier, called definition function. The definition function implements
one block step, i.e., computes outputs from inputs. Such a translation is straightforward if GRL blocks have
no internal state, as illustrated in the following example.

Example 6.1. The following block Interval is translated into the LNT definition function below.

1 −− GRL code
2 block Interval {thres:nat} (in pos: nat := 0, out ok: bool) is
3 var sup, inf : bool
4 sup := (thres < pos) and (pos − thres) < 5);
5 inf := (pos <= thres) and (thres − pos) < 5);
6 if (sup or inf) then
7 ok := true
8 else
9 ok := false

10 end if
11 end block

1 −− LNT code
2 function Interval (in thres :Nat8, in pos:Nat8, out ok:Bool) is
3 var sup:Bool, inf :Bool in
4 sup := (thres < pos) and (pos − thres) < 5 of Nat8);
5 inf := (pos <= thres) and (thres − pos) < 5 of Nat8);
6 if (sup or inf) then
7 ok := true
8 else
9 ok := false

10 end if
11 end var
12 end function

Each GRL constant and input parameter (resp. output parameter) is translated into an LNT input
parameter (resp. output parameter). In Example 6.1, input parameters thres and pos and output parameter
ok in function Interval correspond to, respectively constant, input, and output parameters of block Interval.
GRL temporary variables are translated into LNT local variables as illustrated by sup and inf.

If a block is defined with external C code, it is translated into both an LNT function and into an interface
C function. The LNT function encapsulates the generated C code, by using pragmas “!implementedby”
and “!external”. The interface C function calls the C code defined by the user. This is required by the
front-end compiler of LNT to properly handle the external C code.

Example 6.2. The following block C Shift is translated into LNT as below.

1 −− GRL file importing the C file
2 block C Shift (in numb:nat, in bits:nat, out result:nat) is
3 !c ”Shift”
4 end block
5 −− C file
6 void Shift (GRL NAT number, GRL NAT bits, GRL NAT ∗ result){
7 unsigned char arg number = GRL NAT TO UNSIGNED CHAR (number);
8 unsigned char arg bits = GRL NAT TO UNSIGNED CHAR (bits);
9 ∗ result = GRL UNSIGNED CHAR TO NAT (arg number << arg bits);

10 }

1 −− generated LNT file
2 function GRL C Shift (in GRL numb : Nat8, in GRL bits : Nat8, out GRL result : Nat8) is
3 !implementedby ”Shift%1”
4 !external
5 null
6 end function
7 −− generated interface C file
8 GRL NAT Shift1 (GRL NAT numb, GRL NAT bits){

24 Fatma Jebali, Frédéric Lang, and Radu Mateescu

9 GRL NAT result;
10 Shift (numb, bits, &result);
11 return result;
12 }

Each subblock aliasing “alias B{ . . . } as B ′” is translated into an LNT function, called aliasing function,
which encapsulates a call to the definition function of B with appropriate parameters, corresponding to
the constant parameters of block B . If the block aliasing uses actual constant parameters of the form “ ”,
default values of the corresponding formal parameter are fetched in the block definition and passed to the
LNT function call. Each aliasing function has a unique name6. This prevents naming conflicts, since GRL
subblocks with the same identifier can be aliased in different components.

Example 6.3. Subblock aliasing “alias Interval {5} as Interval” of block Interval inside a component is
translated into the following aliasing function.

1 function Subblock Interval (in pos:Nat8, out ok:Bool) is
2 Interval (5, pos, ?ok)
3 end function

The invocation of a GRL subblock is translated into a call to the corresponding LNT aliasing function.
GRL actual parameters of the form “E” or “?X ” are directly translated into LNT actual parameters of
the same form. Unconnected input parameters (of the form “ ”) are translated similarly to actual constant
parameters. For unconnected output parameters (of the form “? ”), “dummy” variables are declared, then
passed to the LNT function call.

Example 6.4. The invocation “Interval (lastPos, ?ok)” of subblock Interval inside environment Control
(Section 4.4) is translated as follows:

1 eval Interval (lastPos, ?ok)

The invocation “Interval (, ?ok)” having an unconnected input parameter is translated as follows:

1 eval Interval (0, ?ok)

The invocation “Interval (lastPos, ?)” having an unconnected output parameter is translated as follows:

1 var dummy ok:bool in
2 eval Interval (lastPos, ?dummy ok)
3 end var

Behaviour preservation. The synchronous assumptions are granted for free in the translation of GRL subblocks.
Indeed, LNT functions are deterministic and execute atomically, no transition being produced. This coincides
with the assumption that computations and data processing are instantaneous in synchronous components.

Translation of highest-level blocks without internal state. A block used as a highest-level block is
also translated into an LNT definition function as explained previously. The only addition is that GRL receive
and send parameters (if any) are translated into LNT input and output parameters, respectively.

Highest-level blocks are intended to be composed asynchronously and communicate with environments
and mediums. Thus, their aliasing is translated into an LNT wrapper process encapsulating the corresponding
LNT definition function. The wrapper process implements the cyclic behaviour of the block (input reading,
computations, output update) inside an infinite loop.

Example 6.5. Aliasing “alias Interval {5} as Interval” of block Interval inside a system is translated into
the following wrapper process. Details of the translation will be explained in the sequel.

1 process Wrapper Interval [Pos:Nat, Ok:Bool,
2 Start:Block, Finish:None] is
3 var pos:Nat, ok:Bool in
4 loop
5 Start (Interval);

6 For simplicity of the present article, we consider that LNT functions and processes corresponding to GRL component instances
have the same identifiers as their GRL components.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 25

6 Pos (?pos); −− reading input parameter
7 eval Interval (pos, ?ok); −− calling definition function
8 Pos (pos); −− writing output parameter
9 Finish

10 end loop
11 end var
12 end process

Example 6.6. Aliasing “alias Aileron { } as Aileron” of block Aileron inside a system is translated into
the following wrapper process. Details of the translation will be explained in the sequel.

1 process Wrapper Aileron [Safe:Bool, R Move:Move Type,
2 S Ok:Bool, Start:Block, Finish:None] is
3 var safe :Bool, move:move type, ok:Bool, ... in
4 ...
5 loop
6 Start (Aileron);
7 Safe (?safe); −− reading input parameter
8 R Move (?move); −− reading receive parameter
9 eval Aileron (safe , move, ?pos, ?ok, ...) ; −− calling definition function

10 Pos (pos); −− writing output parameter
11 S Ok (ok); −− writing send parameter
12 Finish
13 end loop
14 end var
15 end process
16
17 channel Bool is
18 (Bool)
19 end channel

Asynchronous communication between processes is performed by exchanging data on gates. An LNT gate
is generated for each GRL channel (i.e., tuple of parameters) of a block. Parameters composing the GRL
channel are translated into LNT local variables, to be exchanged on the corresponding gate. Those variables
are passed as actual parameters to the LNT function encapsulated inside the process. In Example 6.6, variable
safe (line 3), corresponding to a GRL input channel, is received on gate Safe (line 7) and passed as actual
input parameter to the definition function (line 9).

LNT gates are typed by LNT channels. An LNT channel is generated for each LNT gate defining its
communication profile, i.e., number and types of exchanged data. Our translation ensures that generated
gates are pairwise distinct. For example, gate Safe (Ex.6.6, line 1) is typed by channel Bool (Ex.6.6, lines
17-19).

The intrinsic infinite sequence of steps of GRL highest-level blocks is implemented in LNT by an infinite
loop. Its body consists of a sequential composition of:

1. Reception of data from other components using LNT gates, which we call reception gates. Reception
gates correspond to GRL receive and input channels, on which data is received from environments and
mediums. For example, in lines 7-8 of Example 6.6, gates Safe and R move are used to receive the input
parameter safe and receive parameter move.

2. Call to the LNT definition function of the GRL block, received data being passed as actual in parameters.
The function returns (through actual out parameters) the data to be emitted to other components (Ex.
For example, in line 9 of Example 6.6, input actual parameters safe and move passed to function Aileron
correspond to data received on gates Safe and R move. Output actual parameters pos and ok are returned
by the function.

3. Communication with environments and mediums using LNT gates, which we call emission gates. Emission
gates correspond to GRL output and send channels, on which data is sent to other environments and
mediums. For example, in lines 10-11 of Example 6.6, gates Pos and S Ok are used to emit the output
parameter pos and send parameter ok.

Note that since there is no dependency relation between reception gates nor between emission gates (i.e.,
their sets of variables are disjoint in GRL semantics), the order in which receptions (resp., emissions) are
performed is irrelevant.

26 Fatma Jebali, Frédéric Lang, and Radu Mateescu

The invocation of a highest-level block inside a system is translated into a call to its LNT wrapper process.
An illustration is given in Example 6.7.

Example 6.7. The invocation “Aileron (safe, ?pos)[r move, ?s ok]” of the highest-level block Aileron is
translated into LNT as follows:

1 Wrapper Aileron [Safe, R move, Pos, S ok, Start, Finish]

GRL actual channels that are either unconnected (“< , . . . , >”) or wildcard (“<any T0, . . . ,any Tn>”)
are unused in communications. Therefore, no corresponding gate is generated. This helps reducing the size of
the state space corresponding to the block.

Atomicity. Each LNT gate communication generates a transition in the LTS. Following the translation of
wrapper processes, each GRL transition (i.e., one atomic block step) maps to a sequence of LNT transitions.
Such a transition sequence should be atomic, i.e., interleaving of individual transitions in LNT transition
sequences corresponding to different blocks should be prevented. To this aim, a locking mechanism is
implemented by using two additional gates Start and Finish and a Mutex process. Gate Start starts the
transition sequence by acquiring the lock (Ex. 6.6, line 6). Gate Finish finishes the transition sequence by
releasing the lock (Ex. 6.6, line 12). Gates Start and Finish are common to process Mutex and all wrapper
processes of blocks. Each wrapper process must synchronize individually with Mutex, defined as follows:

1 process Mutex [Start:Block, Finish:None] is
2 var block:block in
3 loop
4 Start (?block);
5 −− Only the process of the GRL block named ‘‘block’’
6 −− can execute
7 Finish
8 end loop
9 end var

10 end process
11
12 channel None is () end channel
13
14 channel Block is (Block) end channel

Type Block is an enumerated type generated systematically by the translation. Its values consist of the
identifiers of all highest-level blocks.

Example 6.8. For the FCS example comprising blocks Prim, Sec, and Aileron, the following type Block is
generated.

1 type Block is
2 Prim, Sec, Aileron with ”==”
3 end type

Accordingly, the LTS of process Mutex is the following.

0 1

START !PRIM

START !AILERON

START !SEC

FINISH

Such a locking mechanism introduces no deadlock. A transition Start is necessarily followed by a transition
Finish in both the Mutex and wrapper processes. Specifically, gates occurring between Start and Finish in the
wrapper processes correspond to data exchange with mediums and environments. Mediums and environments
are not atomic and always accept data exchange with different blocks according to GRL static semantics.
Therefore, once a sequence of LNT transitions has started, it is guaranteed to finish.

Formal Modelling and Verification of GALS Systems Using GRL and CADP 27

Example 6.9. A transition in GRL semantics corresponding to one step of block Aileron can be:

S0
AILERON (SAFE=TRUE , POS=2)[MOVE=UP, OK=TRUE]−−→ S1

The corresponding LNT transition sequence obtained by our translation is:

S0
START !AILERON−−−−−−−−−−−−−→ S1

SAFE !TRUE−−−−−−−−−→ S2
MOVE !UP−−−−−−−−→ S3

POS !2−−−−−→ S4
OK !TRUE−−−−−−−−→ S5

FINISH−−−−−→ S6

Behaviour preservation. In general, a GRL transition of the form: S0
B (ch1 ,...,chm)[ch′

1 ,...,ch
′
n]−−−−−−−−−−−−−−−−−→ S1 corresponds

to the following sequence of LNT transitions:

S0
START !B−−−−−−−→ S1

gate1−−−−→ S2 → ...→ Sm
gatem−−−−→ Sm+1

gate′1−−−−→ Sm+2 → ...→ Sm+n
gate′n−−−−→ Sm+n+1

FINISH−−−−−→ Sm+n+2

The LNT transitions are constructed as follows. To each GRL channel chi (i ∈ [1..m]) corresponds an LNT
gate gatei and to each GRL channel ch′i (i ∈ [1..m]) corresponds an LNT gate gate′i. For a GRL channel of
the form “X1 = e1, . . . , Xp = ep”, the corresponding LNT gate has the form “gate (X1, . . . ,Xp)! e1! ...! ep”,
where gate is a function returning a gate identifier built upon the identifiers X1, ..., Xp.

Note that the expansion caused by the transformation is linear in the number of transitions, since the
transitions composing an LNT transition sequence cannot interleave, owing to the locking mechanism. Such
transformation is bijective, i.e., there is one-to-one correspondence between a GRL transition and an LNT
transition sequence. Accordingly, the label of the GRL transition can be reconstructed from the labels of the
LNT transition sequence, by merging them together and renaming the resulting transition. Strong equivalence
between the LTS of GRL and the one generated by our translation is still preserved modulo the compression
of the resulting LTS.

Translation of blocks with internal state. The internal state of a block is built upon the static variables
of the block itself and those of its subblocks, transitively. Each block instance has its own copy of the block
internal state and can read and update only the variables of that copy. For example, the internal state of
block Aileron, defined in Example 4.1 (page 9), consists of its static variable pre pos.

The translation of static variables is a main difficulty of the translation, since LNT functions enable
only local variables, the values of which are lost between subsequent invocations. Therefore, we implement
static variables of each block using LNT local variables declared in the wrapper process, and initialized
once and for all just before the infinite loop. This is illustrated by variable Aileron pre pos (lines 3-4, LNT
code) in Example 6.10 below, which implements the internal state of block Aileron. Variables implementing
the internal state are then propagated through “in out” parameters to functions corresponding to blocks,
transitively (Ex.6.10, line 17, LNT code). Therefore, variables implementing the internal state of a block are
synthesized in a bottom-up manner in the LNT functions corresponding to its subblocks. This is possible
because all block instances can be statically determined. It is worth noticing that the support of “in out”
parameters by LNT enables an elegant and controllable implementation of the state notion while keeping a
functional flavour.

Example 6.10. The definition function of block Aileron is defined at lines 13-20 of the LNT code below.
The “in out” variable pre pos implements the internal state of the block. The wrapper process corresponding
to block Aileron is defined at lines 1-11. Variable Aileron pre pos implements the internal state of the block
instance.

1 −− GRL code
2 block Aileron ... is
3 static var pre pos:nat := 2 −− static variable
4 ...
5 pre pos := new pos
6 end block

1 −− LNT code
2 process Wrapper Aileron [...] is
3 var Aileron pre pos: Nat8 in −− internal state declaration
4 Aileron pre pos := 2 of Nat8; −− internal state initialization
5 loop
6 ...
7 eval Aileron (..., !?Aileron pre pos); −− internal state can be updated inside Aileron
8 ...

28 Fatma Jebali, Frédéric Lang, and Radu Mateescu

9 end loop
10 end var
11 end process
12
13 function Aileron (in safe:Bool, ..., out ok:Bool,
14 in out pre pos:Nat8) is −− internal state of block Aileron
15 var new pos:Nat8 in
16 ...
17 ok := safe and (pre pos != new pos);
18 pre pos := new pos −− changing the internal state
19 end var
20 end function

6.3. Translation of Environments and Mediums

GRL environments have nondeterministic behaviour and support signals, which are used for asynchronous
communication. Thus, a GRL environment is translated into an LNT process, called definition process. In the
sequel, we present first the translation of environments with only data constraints, then that of environments
with only activation constraints. Constraints on data and on activation are orthogonal, i.e., there is no
additional complexity to translate environments containing both data and activation constraints.

Environments with data signals. The definition process is specified using gate declarations corresponding
to GRL input and output channels, “in out” parameters corresponding to the environment internal state,
and a statement translating the environment behaviour.

Data signals are translated into LNT communication actions to describe interactions with blocks. The
gates introduced in block wrapper processes are used. In statement “when ?<X0, . . . ,Xn> -> I0”, values
of variables X0 , . . . ,Xn can be read in I0 . Such a signal is translated into a sequential composition of the
form “G (?X0, . . . ,?Xn); I0”, where G denotes the gate corresponding to the GRL signal and I0 denotes
the behaviour translating the GRL statement I0 .

In statement “when <X0, . . . ,Xn> -> I0”, statement I0 should assign values to variables X0 , . . . ,Xn .
Such a signal is translated into a sequential composition of the form “I0; G (X0, . . . ,Xn)”, where I0 denotes
the behaviour translating the GRL statement I0 and G denotes the gate corresponding to the GRL signal.

Example 6.11. The following GRL environment Control is translated into the LNT process below. Lines 6-
7 of the LNT code correspond to the translation of the GRL signal “when ?<pos> → lastPos := pos”
(line 6, GRL code). Lines 10-12 correspond to the translation of the GRL signal “when <safe> →
interval (lastPos, ?ok); safe := ok” (line 7, GRL code).

1 −− GRL code
2 environment Control (in pos:nat, out safe:bool) is
3 alias Interval {5} as Interval
4 static var lastPos:nat := 0
5 select
6 when ?<pos> −> lastPos := pos
7 [] when <safe> −> Interval (lastPos, ?safe)
8 end select
9 end environment

1 −− LNT code
2 process Control [Pos:Nat, Safe:Bool] (in out lastPos:Nat8) is
3 var pos:Nat8, safe :Bool, ok:Bool in
4 select
5 −− signal ‘‘on pos’’
6 Pos (?pos);
7 lastPos := pos
8 []
9 −− signal ‘‘on ?safe’’

10 eval Interval (lastPos, ?ok);
11 safe := ok;
12 Safe (!safe)
13 end select

Formal Modelling and Verification of GALS Systems Using GRL and CADP 29

14 end var
15 end process

Similarly to highest-level blocks, environment aliasing is translated into an LNT wrapper process. This
process encapsulates the definition process of the environment inside an infinite loop.

Example 6.12. Environment aliasing “alias Control as Control” is translated into the following wrapper
process:

1 process Wrapper Control [Pos:Nat, Safe:Bool] is
2 var Control lastPos:Nat8 in
3 Control lastPos := 0 of Nat8
4 loop
5 Control [Pos, Safe] (!?Control lastPos)
6 end loop
7 end var
8 end process

Environments with block activation signals. In the LNT definition process of environments with block
activation signals, each activation parameter is translated into an LNT input parameter. Those parameters
have type Block (See section 6.2, page 26). The process definition is parametrized by gate Start, introduced
by the locking mechanism.

Each environment definition process synchronizes on gate Start with both the Mutex and the wrapper
processes of the blocks it constrains. As such, synchronizations on gate Start are multiway involving three
processes. Therefore, a block B, whose activation is constrained by an environment N, can acquire the Mutex
only if (1) it is not acquired by any other block and (2) environment N authorizes its activation by enabling
the action Start (B), corresponding to the activation signal. The GRL statement “enable B0”, enabling the
execution of block B0 , is translated into gate communication “Start (B0)”.

Example 6.13. The following GRL environment Backup is translated into the LNT definition process
below. Lines 7 and 10 of the LNT code is the translation of GRL signals “enable Prim” and “enable Sec”,
respectively.

1 −− GRL code
2 environment Backup (block Prim, block Sec) is
3 static var p alive , s alive : bool := true
4 if (p alive) then −− Prim executes
5 p alive := any bool;
6 enable Prim
7 elsif (s alive) then −− Sec executes
8 s alive := any bool;
9 enable Sec

10 end if
11 end environment

1 −− LNT code
2 process Backup [Start:Block]
3 (in Prim, Sec:Block, −− activation parameters
4 in out s alive :Bool, in out p alive:Bool) is
5 if (p alive) then
6 p alive := any Bool;
7 Start (Prim) −− signal ‘‘on Prim’’
8 elsif (s alive) then
9 s alive := any Bool;

10 Start (Sec) −− signal ‘‘on Sec’’
11 end if
12 end process

Behaviour preservation. Note that deadlocks in GRL should occur only if all block activations are prevented
by environments, i.e., all activation signals are unreachable. If an activation signal is reachable in GRL, its
respective gate Start is necessarily reachable, since GRL statements have one-to-one direct correspondence
with their LNT counterpart. Consequently, a deadlock in GRL leads to a deadlock in the translated LNT

30 Fatma Jebali, Frédéric Lang, and Radu Mateescu

code because all actions Start in the different process definitions of environments are unreachable. Then,
none of the wrapper processes of different blocks can execute. Conversely, the translation of activation signals
introduces no additional deadlocks because wrapper processes of blocks and the Mutex can always synchronize
on gate Start.

The LNT wrapper process corresponding to environment aliasing with activation signals is parametrized
by gate Start. It encapsulates the definition process in the same way as explained previously.

Example 6.14. The aliasing “Backup as Backup” of environment Backup inside a system is translated into
the following LNT process, where actual parameters Prim and Sec are highest-level block identifiers of the
system.

1 process Wrapper Backup [Start : BLOCK] is
2 −− Static variable declarations
3 var Backup s alive : Bool, Backup p alive : Bool in
4 −− Static variable initializations
5 Backup s alive := true;
6 Backup p alive := true;
7 −− Main loop
8 loop
9 Backup [Start] (Prim, Sec,

10 !?Backup s alive, !?Backup p alive)
11 end loop
12 end var
13 end process

Mediums. Similarly to environments, a medium definition is translated into an LNT definition process.
GRL receive and send channels together with their respective signals are translated in the same way as input
and output channels and data signals in environments. A medium aliasing is translated into an LNT wrapper
encapsulating the LNT definition process inside an infinite loop.

6.4. Translation of Systems

A GRL system is translated into an LNT process, called root process, having the same identifier as the GRL
system.

Example 6.15. The following GRL system Main is translated into the root process below. Details of the
translation will be explained in the sequel.

1 −− GRL code
2 system Main (order1, order2:move type, safe:bool, pos:nat) is
3 alias Computer as Prim, Computer as Sec,
4 Aileron { } as Aileron,
5 Backup as Backup, Control as Control,
6 Buffer as Buffer
7
8 var s move1, s move2, r move: move type,
9 s ok, r ok1, r ok2 : bool

10
11 block list
12 Prim (order1)[r ok1, ?s move1],
13 Sec (order2)[r ok2, ?s move2],
14 Aileron (safe , pos)[r move, ?s ok]
15 environment list
16 Backup (Prim, Sec),
17 Control (pos, ?safe)
18 medium list
19 Buffer [s move1, s move2, ?r move, ?r ok1, ?r ok2, s ok]
20 end system

1 −− LNT code
2 process Main [Start:Block, Order1, Order2:Move type, Safe:Bool, Pos:Nat8] is
3 hide Finish:None, R move:Move type, S ok:Bool, ... in
4 par Start, Safe, Pos, R move, S ok, ... in
5 par Start, Finish in

Formal Modelling and Verification of GALS Systems Using GRL and CADP 31

6 Mutex [Start, Finish]
7 | |
8 −− Block wrappers
9 par

10 Wrapper Aileron [Safe, Pos, R move, S ok, Start, Finish]
11 | | Wrapper Sec [..., Start, Finish]
12 | | Wrapper Prim [..., Start, Finish]
13 end par
14 end par
15 | |
16 −− Environment and medium wrappers
17 par
18 Wrapper Buffer [..., R move, S ok]
19 | | Wrapper Control [Pos, Safe]
20 | | Wrapper Data [Order1, Order2]
21 | | Wrapper Backup [Start]
22 | | Activation [Start]
23 end par
24 end par
25 end hide
26 end process
27
28 process Activation [Start:Block] is
29 var Block:Block in
30 loop
31 Start (?Block) where (Block == Aileron)
32 end loop
33 end var
34 end process

The root process is parametrized by gates corresponding to the GRL channels whose variables are declared
as formal parameters of the GRL system (line 2, LNT code). Those gates are therefore visible in the LTS.
Gates corresponding to the GRL channels whose variables are declared as temporary variables of the GRL
system are declared inside the root process using the hide construct (line 3, LNT code). Those gates are not
visible in the LTS. The gate Finish is by default hidden since it is used only to release the Mutex and does
not contain useful information about block execution.

Inside the root process, wrapper processes corresponding to GRL components are composed using parallel
composition (par). The set of gates (called synchronization set) on which processes should synchronize has
to be explicitly specified.

Wrapper processes of highest-level blocks are composed in pure interleaving, i.e., inside a parallel
composition without synchronization set (lines 9-13, LNT code). This reflects the fact that blocks cannot
interact directly with each other. In particular, they do not synchronize with each other on their common gates
Start and Finish. This parallel composition is itself encapsulated inside a higher-level parallel composition to
synchronize with process Mutex on gates Start and Finish (lines 5-14, LNT code).

Similarly to blocks, wrapper processes of mediums and environments are composed in pure interleaving
(lines 17-23, LNT code). Then, all components are composed in parallel with synchronizations on gates
corresponding to GRL common channels (lines 4-24). In particular, gates corresponding to unconnected
channels of environments and mediums belong to the synchronization set. This way, no synchronization can
happen on those gates, since they are not used in other components. To enable the activation of blocks
that are not constrained by environments, we introduce an additional process Activation which proposes
synchronizations on gate Start for those blocks. In our example, only Aileron is considered in process
Activation (lines 28-34) since Prim and Sec are constrained by environment Backup.

Although both GRL and LNT have formal semantics, we have not yet proven formally the correctness of
the translation. This would be a useful but long task due to the size of the language, which is far from a toy
language. For this reason, we leave this for future work. However, we gave a number of arguments in this
section about the intuition why the translation is correct. This intuition has been complemented by tests
using the tools that will be presented in the next section.

32 Fatma Jebali, Frédéric Lang, and Radu Mateescu

6.5. Tool Support

A tool named GRL2LNT has been developed by using the Syntax/Traian Lotos NT technology for compiler
construction [GLM02]. It consists of about 30,000 lines of code and translates GRL specifications into LNT.
Additionally, a second tool named GRL.OPEN has been developed, which encapsulates GRL2LNT and calls
the LNT.OPEN tool, to connect GRL to all the on-the-fly verification tools of CADP.

GRL2LNT and GRL.OPEN have been tested on a benchmark of about 120 GRL specification files
totalizing about 7,000 lines of code. Some specifications include external C and LNT code, as supported by
GRL. The generated files consist of about 18,000 lines of LNT code, each LNT file being on average 2.5 times
larger (in lines of code) than the GRL file. This linear expansion is mainly caused by the translation of GRL
constructs into more than one LNT construct. This illustrates the fact that the level of abstraction at which
GRL is specified is closer to the user’s view as opposed to writing it straight in LNT.

During the development of the GRL2LNT translator, an extensive amount of GRL examples were written
to perform “unit testing” of the language construct. At least two examples were written for each GRL
syntactic and static semantic rule. The first example violates the rule in order to check that GRL2LNT
captures the error. The second example, which is a corrected version of the first one, aims to check that
no error is raised by GRL2LNT. More elaborated examples were written to cover very different aspects of
the language. First, the generated LNT programs are analysed manually to check their conformance with
the defined translation scheme. Then, the LTSs generated by using CADP, are checked either by visual
checking (for small LTSs) or by interactive simulation and model checking (for large LTSs). Besides, our
industrial partners also tested the GRL2LNT translator by generating GRL models automatically from their
synchronous programming software and checking properties on the resulting LTSs, which is another form of
validation of the whole toolchain. Moreover, for each GRL specification, a set of “correct-by-construction”
properties can be verified using model checking. Examples are the atomicity of block execution and the
occurrence of inputs before outputs in each execution.

7. Functional Verification by Model Checking

In this section, we illustrate briefly how GRL programs can be analysed by model checking, using the CADP
verification toolbox. We use the GRL.OPEN and the GENERATOR tool of CADP to build state spaces of
GRL programs. To illustrate different verification scenarios, we take advantage of SVL (Script Verification
Language)[GL02], a high-level interface to all CADP tools, enabling an easy description and automatic
execution of complex verification scenarios. We identify some correctness properties and specify them in the
MCL language.

MCL enables a concise formulation of temporal properties, especially when these properties are parame-
terized by data values, such as the data carried by block channels. MCL is built from three kinds of formula.
First, an action formula A characterizes actions (transition labels) of the LTS, which contain a gate name G
followed by a list of values v1, ..., vn exchanged during the rendezvous on G. An action formula is built from
action patterns and the usual boolean connectors. An action pattern of the form “{G ?x:T !e where b(x)}”
matches every action of the form “G v1 v2” where v1 is a value of type T that is assigned to variable x,
v2 is the value obtained by evaluating the expression e, and the boolean expression b(v1) evaluates to true.
Arbitrary combinations of value matchings (“!e”) and value extractions (“?x:T”) are allowed for matching
actions containing several values. All variables assigned by value extraction are exported to the enclosing
formula. Gate names G can also be extracted and manipulated as ordinary values of type String.

Second, a regular formula R characterizes sequences of transitions in the LTS. A regular formula is built
from action formulas and (extended) regular expression operators such as concatenation (“R1.R2”), choice
(“R1|R2”), and unbounded iterations (“R∗” and “R+”).

Third, a state formula F characterizes states of the LTS by specifying (finite or infinite) tree-like patterns
going out from these states. A state formula is built from boolean connectors, possibility (“[R]F”) and
necessity (“< R > F”) modalities containing regular formulas, minimal (“mu X.F”) and maximal (“nu
X.F”) fixed point operators, and the infinite looping operator (“< R > @”).

Deadlock analysis. The absence of deadlock ensures that the system continues to progress, i.e., its various
components continue to execute. A deadlock can be either global or local :

Formal Modelling and Verification of GALS Systems Using GRL and CADP 33

• A global deadlock involves all blocks and is defined by a state from which no block is able to execute
anymore. In terms of LTSs, this is a sink state, i.e., a state without any successor.

• A local deadlock involves one block B and is defined by a state from which the block cannot execute
anymore. In terms of LTSs, this is a state from which no action labeled Start !B is possible.

Example 7.1. The following SVL script describes a verification scenario for deadlock analysis in the FCS
model. Since we focus on the activation of blocks rather than the data handled by block channels, one can
reason only on actions Start. We first generate the LTS of the system (line 1), which contains 439 states and
555 transitions. Then, we hide all actions, except actions Start (line 2). We reduce the LTS modulo branching
bisimulation [vGW96] to remove hidden actions while preserving the branching structure of the LTS (line
4). Finally, we rename all transitions of the obtained LTS by removing the prefix “Start !” to simplify the
presentation (line 5). The final LTS, depicted in Figure 8, corresponds to the activation policy of our system.

Property Global Deadlock (lines 7-13) checks for the absence of global deadlock in the behaviour of the
FCS. The text of the property construct is a statement calling the EVALUATOR4.0 model checker. It states
that the model given in “FCS.bcg” should satisfy the MCL property “[true∗] < true > true”, which verifies
that each state in the LTS has a successor (line 11). The verification result is expected to be true (line 12). If
the property is not satisfied, a counterexample is given in file “Global Deadlock.bcg” (line 10). In the FCS
model, the property evaluates to true, meaning that the system does not contain sink states.

Property Prim Deadlock (lines 15-21) checks for the absence of local deadlock in block Prim, ensuring
that from each state, there exists a sequence of actions leading to a Prim action. The property is not satisfied
and a counterexample is given in file “Prim Deadlock.bcg” (line 18), illustrating a local deadlock in block
Prim.

1 % grl.open FCS.grl generator FCS.bcg
2 ...
3 ‘‘ FCS.bcg’’ = partial hide all but ‘‘ .∗Start.∗ ’ ’ in ‘‘ FCS.bcg’’;
4 ‘‘ FCS.bcg’’ = branching reduction of ‘‘FCS.bcg’’;
5 ‘‘ FCS.bcg’’ = total rename ‘‘Start !\(.∗\)’ ’ −> ‘‘\1’’ in ‘‘ FCS.bcg’’;
6
7 property Global Deadlock
8 ‘‘ Check global deadlock freedom in the FCS behaviour’’
9 is

10 ‘‘ Global Deadlock.bcg’’ =
11 ‘‘ FCS.bcg’’ |= [true∗] <true> true ;
12 expected TRUE
13 end property
14
15 property Prim Deadlock
16 ‘‘ Check deadlock freedom in Prim behaviour’’
17 is
18 ‘‘ Prim Deadlock.bcg’’ =
19 ‘‘ FCS.bcg’’ |= [true∗] <true∗.Prim> true ;
20 expected FALSE
21 end property
22
23 property Control
24 ‘‘ Check Aileron is always under control of Prim or Sec’’
25 is
26 ‘‘ Prim Deadlock.bcg’’ =
27 ‘‘ FCS.bcg’’ |= not <(not (Prim or Sec))∗.Aileron> @ ;
28 expected FALSE
29 end property

More properties on the activation policy can be expressed. For example, property Control (Ex. 7.1, lines
23-29) checks the absence of “unfair” sequences in which Aileron executes indefinitely with the control of
neither Prim nor Sec. Abstracting out data in the system and reasoning about block activations is useful
when debugging large specifications. This helps to keep the state space small, making easy the comprehension
of the system behaviour and helps bug detection in early stage of the verification process.

Inactivity. Although the system has no deadlocks (global or local), it is possible that one or more blocks
execute indefinitely without doing anything useful. We call block inactivity (also called livelock) a state from

34 Fatma Jebali, Frédéric Lang, and Radu Mateescu

0

1

2

AILERON

PRIM

SEC

AILERON

AILERON

PRIM

SEC

Fig. 8. Activation policy of the FCS

which all input/output and receive/send channels of the block continue to carry the same values, indefinitely.
If all blocks are inactive, the whole system becomes inactive.

Example 7.2. The following SVL script describes a strategy to check the activity of block Aileron in the
FCS system. Since we focus only on the behaviour of Aileron, we hide all actions relative to other blocks
(lines 1-3). Then, we reduce the LTS modulo branching bisimulation (line 4). The reduced LTS contains 207
states and 270 transitions.

Property Inactivity (lines 6-29) checks that from each state, there exists a sequence of actions in which at
least one channel of block Aileron continues to carry different values. The property is not satisfied in the
FCS, and a counterexample, depicted in Figure 9, is given in file “Inactivity.bcg” (line 9). The cyclic sequence
10→ 9→ 16→ 14 illustrates an inactivity in the behaviour of Aileron.

1 ‘‘ FCS.bcg’’ = partial hide all but
2 ‘‘ .∗SAFE.∗’’, ‘‘ .∗POS.∗’’, ‘‘ .∗R MOVE.∗’’, ‘‘.∗S OK.∗’’
3 in ‘‘ FCS.bcg’’;
4 ‘‘ FCS.bcg’’ = branching reduction of ‘‘FCS.bcg’’;
5
6 property Inactivity
7 ‘‘ Check inactivity in block Aileron’ ’
8 is
9 ‘‘ Inactivity.bcg ’ ’ =

10 ‘‘ FCS.bcg’’ |=
11 [true∗]
12 (<true∗.{Safe ?safe1:bool}.
13 true∗.{Safe ?safe2:bool where safe1 <> safe2}
14 > true
15 or
16 <true∗.{Pos ?pos1:nat}.
17 true∗.{Pos ?pos2:nat where pos2 <> pos1}
18 > true
19 or
20 <true∗.{R Move ?move1:string}.
21 true∗.{R Move ?move2:string where move2 <> move1}
22 > true
23 or
24 <true∗.{S Ok ?ok1:bool}.
25 true∗.{S Ok ?ok2:bool where ok1 <> ok2}
26 > true
27) ;
28 expected TRUE
29 end property
30
31 ‘‘ Inactivity.bcg ’ ’ = total branching reduction of ‘‘Inactivity.bcg’’;

Formal Modelling and Verification of GALS Systems Using GRL and CADP 35

170 18

1

19

2

3

4 5

6789 10

11 12

13

14

15

16

SAFE !TRUESAFE !TRUE SAFE !TRUE

R_MOVE !DOWN

S_OK !TRUE

POS !1

S_OK !TRUE

POS !0 POS !2

SAFE !FALSER_MOVE !UPS_OK !FALSE

R_MOVE !FAIL

SAFE !TRUE

R_MOVE !DOWN R_MOVE !DOWN

S_OK !TRUE

S_OK !TRUE

POS !2

POS !2

Fig. 9. Inactivity of block Aileron

Correct Message Transmission. To ensure the correctness of message transmission, one should check
that each message emission over a send channel of a block is followed by the reception of the message over a
receive channel of another block.

Example 7.3. Property Correct Transmission ensures that all messages sent by Prim on channel s move1
are transmitted to Aileron on channel r move1. The property is not satisfied and a counterexample is provided.
It shows that block Prim can perform an arbitrary number of steps (at least two) sending value Up, before
Aileron executes to receive the value.

1 property Correct Transmission
2 ‘‘ Correct Transmission Message’’
3 is
4 ‘‘ Correct Transmission.bcg’’ =
5 ‘‘ FCS.bcg’’ |=
6 [true∗ . {S MOVE1 ?msg:string}]
7 mu X . (<true> true and [not ({R MOVE1 !msg})] X) ;
8 expected TRUE
9 end property

The main reason due to which the property is not satisfied is that blocks Aileron and Prim execute
arbitrarily, i.e., no constraints have been put on their relative activation paces. This has induced discrepancies
between the rates of message submission by Prim and message delivery to Aileron inside medium Buf1
(Example 4.12, page 15), which has caused a loss of messages. A way to palliate such discrepancy, if divergence
between submission and delivery rates (i.e., between block paces) is proved bounded, would be a buffering
mechanism with well-chosen dimensions. In the simple case of quasi-synchrony (Example 4.9, page 13), at
most two message submissions may occur between two message deliveries in each transmission, and conversely.
A double-place FIFO is then sufficient to ensure message transmission without loss. More generally, FIFOs
are very often used in interfacing synchronous components to obtain GALS systems, making the behaviour of
the system deterministic.

However, the rates of message submission and delivery cannot always be deduced from the activation
policy of the system. In such cases, a robust communication protocol should be implemented. GRL is
sufficiently expressive to model various nondeterministic behaviours (e.g., unreliable mediums) and complex
communication protocols. On the other hand, MCL is sufficiently expressive to capture complex properties of
GALS systems, involving the succession of events in time (arbitrarily far from each other), the branching of
execution, and the cycles denoting infinite executions.

8. Conclusion

We proposed an approach to the formal modelling and verification of GALS systems, intended to enhance
industrial design process with asynchronous verification frameworks. Our approach is based on a DSL which

36 Fatma Jebali, Frédéric Lang, and Radu Mateescu

serves as an intermediate formal model from synchronous languages to asynchronous process calculi. We
address a lack of approaches in industry dealing with asynchronous concurrency of GALS systems. This lack is
at least twofold: (1) asynchronous concurrency is intrinsically more complex than synchronous concurrency and
(2) asynchronous verification frameworks are expensive to integrate [Gar08]. We aim at keeping design flows
as they are and enhancing them with both automatic connections to asynchronous verification frameworks
and user-friendly analysis interfaces.

Our approach is based on GRL, a new textual language intended to model GALS systems with a focus
on the asynchronous concurrency they involve. GRL combines synchronous features of dataflow imperative
languages and asynchronous features of process algebras, and makes possible a modular description of
synchronous components, environment constraints, and asynchronous communications. This makes the
language sufficiently expressive and general-purpose to model a wide range of GALS architectures, possibly
nondeterministic. The semantics of GRL are action-based, defined in terms of LTSs, in which transitions are
labeled by events (interactions with the physical environment and the network). Such a representation is
appropriate to specify possible interleavings between synchronous component executions.

We proposed a translation algorithm from GRL to LNT, one of the input languages of the CADP toolbox.
The translation has been automated in the GRL2LNT tool, which has been tested on a large number of
examples. This makes possible the analysis of GRL descriptions using the rich functionalities of CADP (e.g.,
simulation, verification, performance evaluation), focusing on the asynchronous behaviour of GALS systems.
In particular, hardware/software co-simulation is possible by using the EXEC/CAESAR framework [GVZ01]
of CADP, which enables the C code generated from a GRL description to be integrated with a physical
platform. For various reasons (e.g., debugging, efficiency, abstraction), it would be difficult to automatically
generate reliable and concise specifications in full-fledged process algebra, such as LNT.

The GRL approach has begun to be used in industry in the framework of the Bluesky project7. The
project addresses the validation of networks of PLCs (Programmable Logic Controllers). Our industrial
partner provides a software for the design of PLCs. The software is built upon a synchronous dataflow
language with graphical syntax based on function block diagrams. Basically, after performing static analysis,
encompassing causality analysis, the compiler generates executable code to be embedded on the PLC. The
compiler has been enhanced to also generate GRL models of blocks. Such connection is quite straightforward,
once causality analysis has already been done. Additionally, GRL environments for data constraints are
automatically generated. Still, GRL mediums together with activation constraints should be encoded by
hand by the engineers, at the time of writing. The reason is that the software does not yet support the
design of multi-diagrams, enabling GALS design. The aim is to develop a catalogue of generic environments
and mediums, that can be automatically generated from the software. The engineers of our industrial
partner provided us with positive feedback concerning the use-friendliness of both the synchronous and
asynchronous parts of GRL. Indeed, the GRL synchronous model is smoothly extended with asynchronous
features fine-tuned for GALS, making asynchronous concurrency easy to learn and control.

Regarding ongoing work, we have defined a property specification language for GALS systems. The
language builds upon a set of temporal logic patterns. The proposed patterns capture frequently encountered
behaviours in the scope of GALS systems. This reduces the complexity of using full-fledged temporal logics,
such as the MCL language of the CADP toolbox. Branching-time semantics in an action-based setting are
considered. As interpretation model, the LTSs corresponding to GRL programs are considered. In addition,
we are working to apply the GRL approach to real-life applications from the avionics industry based on
GALS architectures.

Regarding future work, an interesting direction is the use of GRL as the target from other synchronous
environments used in industry, such as Scade. GRL can also be used as an intermediate target language
for GALS systems modeled in AADL-like architectural languages. Another direction is to investigate the
connection of GRL as front-end of verification frameworks based on the synchronous paradigm so as to
enable the analysis of GRL synchronous blocks. Moreover, we plan to prove formally the correctness of the
translation from GRL to LNT.

Acknowledgements. We are grateful to Éric Léo for implementing the GRL2LNT translator and for
valuable discussions. We are also grateful to our industrial partners in the Bluesky project for useful feedback

7 www.minalogic.com

Formal Modelling and Verification of GALS Systems Using GRL and CADP 37

on the usage of GRL for describing GALS systems. Acknowledgements are due to the anonymous reviewers
for their relevant comments which were helpful in improving the present article.

References

[BBC10] A. Benveniste, A. Bouillard, and P. Caspi. A Unifying View of Loosely Time-triggered Architectures. In Proceedings
of the Tenth ACM International Conference on Embedded Software, EMSOFT ’10, pages 189–198, New York, NY,
USA, 2010. ACM.

[BBS12] Y. Bai, J. Brandt, and K. Schneider. Preservation of LTL properties in desynchronized systems. In MEMOCODE,
pages 53–64. IEEE, July 2012.

[BCLG99] A. Benveniste, B. Caillaud, and P. Le Guernic. From Synchrony to Asynchrony. In JosC. M. Baeten and Sjouke
Mauw, editors, CONCUR’99, volume 1664 of LNCS, pages 162–177. Springer, 1999.

[BCMW15] J. Backes, D. D. Cofer, S. P. Miller, and M. Whalen. Requirements Analysis of a Quad-Redundant Flight Control
System. CoRR, abs/1502.03343, 2015.

[BÖM14] K. Bae, P.C. Ölveczky, and J. Meseguer. Definition, Semantics, and Analysis of Multirate Synchronous AADL. In
C. Jones, P. Pihlajasaari, and J. Sun, editors, FM 2014, volume 8442 of LNCS, pages 94–109, 2014.

[Bou98] A. Bouali. Xeve, an Esterel verification environment. In AlanJ. Hu and MosheY. Vardi, editors, CAV, volume 1427
of LNCS, pages 500–504. Springer Berlin Heidelberg, 1998.

[BRS93] G. Berry, S. Ramesh, and R.K. Shyamasundar. Communicating Reactive Processes. In Proc. of POPL, pages 85–98.
ACM Press, 1993.

[BS01] G. Berry and E. Sentovich. Multiclock Esterel. In Proc. of CHARME, volume 2144 of LNCS, pages 110–125.
Springer, 2001.

[CCG+14] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang, W. Serwe, and G. Smeding. Reference
Manual of the LNT to LOTOS Translator (Version 6.1). INRIA/VASY and INRIA/CONVECS, 131 pages, August
2014.

[Cha84] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. Technical report, DTIC Document, October
1984.

[CMP01] P. Caspi, C. Mazuet, and N. Paligot. About the Design of Distributed Control Systems: The Quasi-Synchronous
Approach. In Udo Voges, editor, Computer Safety, Reliability and Security, volume 2187 of LNCS, pages 215–226.
Springer Berlin Heidelberg, 2001.

[DMK+06] F. Doucet, M. Menarini, I.H. Krüger, R. Gupta, and J.-P. Talpin. A verification approach for GALS integration of
synchronous components. ENTCS, 146(2):105–131, 2006.

[Gar08] H. Garavel. Reflections on the future of concurrency theory in general and process calculi in particular. ENTCS,
209:149–164, 2008.

[GG03] A. Gamatié and T. Gautier. The signal approach to the design of system architectures. In 10th IEEE International
Conference on Engineering of Computer-Based Systems, ECBS 2003, Huntsville, AL, USA, pages 80–88. IEEE,
2003.

[GG07] M. K. Ganai and A. Gupta. Efficient BMC for multi-clock systems with clocked specifications. In Design Automation
Conference, pages 310–315. IEEE, 2007.

[GG10] A. Gamatié and T. Gautier. The signal synchronous multiclock approach to the design of distributed embedded
systems. IEEE Transactions on Parallel and Distributed Systems, 21(5):641–657, 2010.

[GGTG10] Y. Glouche, P. Le Guernic, J.-P. Talpin, and T. Gautier. A Boolean Algebra of Contracts for Assume-guarantee
Reasoning. Electronic Notes in Theoretical Computer Science, 263:111 – 127, 2010. Proceedings of the 6th
International Workshop on Formal Aspects of Component Software (FACS 2009).

[GL02] H. Garavel and F. Lang. SVL: a scripting language for compositional verification. In Formal Techniques for
Networked and Distributed Systems, IFIP Conference Proceedings, pages 377–392. Springer, 2002.

[GLM02] H. Garavel, F. Lang, and R. Mateescu. Compiler Construction using LOTOS NT. In Nigel Horspool, editor,
Proceedings of the 11th International Conference on Compiler Construction (CC’02), Grenoble, France, volume
2304 of LNCS, pages 9–13, April 2002.

[GLM15] H. Garavel, F. Lang, and R. Mateescu. Compositional Verification of Asynchronous Concurrent Systems Using
CADP. Acta Informatica, 52(4):337–392, April 2015.

[GLMS13] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox for the construction and analysis of
distributed processes. STTT, 15(2):89–107, 2013.

[GT09] H. Garavel and D. Thivolle. Verification of GALS Systems by Combining Synchronous Languages and Process
Calculi. In Corina Pasareanu, editor, Model Checking Software, Proceedings of the 16th International SPIN
Workshop on Model Checking of Software SPIN’2009 (Grenoble, France), volume 5578 of LNCS, pages 241–260,
June 2009.

[GVZ01] H. Garavel, C. Viho, and M. Zendri. System design of a CC-NUMA multiprocessor architecture using formal
specification, model-checking, co-simulation, and test generation. STTT, 3(3):314–331, 2001.

[Hal13] N. Halbwachs. Synchronous programming of reactive systems, volume 215. Springer Science & Business Media,
2013.

[HB02] N. Halbwachs and S. Baghdadi. Synchronous modeling of asynchronous systems. In EMSOFT’02, volume 2491 of
LNCS, pages 240–251, Grenoble, October 2002. Springer.

[HLR93a] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous Observers and the Verification of Reactive Systems. In
AMAST’93, Twente, pages 83–96. Springer, June 1993.

38 Fatma Jebali, Frédéric Lang, and Radu Mateescu

[HLR93b] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of reactive systems. In
M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, AMAST’93, Twente, June 1993. Workshops in Computing,
Springer Verlag.

[HM06] N. Halbwachs and L. Mandel. Simulation and verification of asynchronous systems by means of a synchronous
model. In Proc. of ACSD, pages 3–14. IEEE, June 2006.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5), 1997.
[ISO01] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, International Organization

for Standardization — Information Technology, Genève, September 2001.
[JLM14a] F. Jebali, F. Lang, and R. Mateescu. GRL: A Specification Language for Globally Asynchronous Locally Synchronous

Systems. Proc. of ICFEM, 8829:219–234, 2014.
[JLM14b] F. Jebali, F. Lang, and R. Mateescu. GRL: A specification language for Globally Asynchronous Locally Synchronous

systems (syntax and formal semantics). Research report RR-8527, INRIA, 2014.
[LGTLL03] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. Journal of Circuits, Systems, and

Computers, 12(03):261–303, 2003.
[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.
[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical computer science, 25(3):267–310, 1983.
[Mil89] R. Milner. Communication and concurrency, volume 84. Prentice hall New York etc., 1989.
[MSRG10] A. Malik, Z. Salcic, P.S. Roop, and A. Girault. SystemJ: A GALS language for system level design. Comput. Lang.

Syst. Struct., 36(4):317–344, December 2010.
[MT08] R. Mateescu and D. Thivolle. A model checking language for concurrent value-passing systems. In Proc. of FM,

LNCS, pages 148–164. Springer, 2008.
[MWO+05] S.P. Miller, M.W. Whalen, D. O’Brien, M.P. Heimdahl, and A. Joshi. A methodology for the design and verification

of globally asynchronous/locally synchronous architectures. National Aeronautics and Space Administration,
Langley Research Center, 2005.

[PBCB06] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous systems. FMSD, 28(2):111–130,
2006.

[PBDSST09]D. Potop-Butucaru, R. De Simone, Y. Sorel, and J.-P. Talpin. From concurrent multi-clock programs to deterministic
asynchronous implementations. In ACSD ’09, pages 42–51. IEEE, July 2009.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19, University of
Aarhus, 1981.

[PMS15] Heejong P., Avinash M., and Zoran S. Compiling and Verifying SC-SystemJ Programs for Safety-critical Reactive
Systems. Comput. Lang. Syst. Struct., 44(PC):251–282, December 2015.

[Ram98] S. Ramesh. Communicating reactive state machines: Design, model and implementation. In IFAC Workshop on
Distributed Computer Control Systems, 1998.

[RSD+04] S. Ramesh, Sampada Sonalkar, Vijay Dsilva, Naveen Chandra R., and B. Vijayalakshmi. A Toolset for Modelling
and Verification of GALS Systems. In R. Alur and D. A. Peled, editors, Proc. of CAV, volume 3114 of LNCS, pages
506–509. Springer, 2004.

[Sme13] G. Smeding. Verification of Weakly-Hard Requirements on Quasi-Synchronous Systems. Theses, Université de
Grenoble, December 2013.

[vDKV00] A. van Deursen, P. Klint, and J. Visser. Domain-specific Languages: An Annotated Bibliography. SIGPLAN Not.,
35(6):26–36, June 2000.

[vGW96] R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisimulation Semantics. J. ACM,
43(3):555–600, May 1996.

