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SUMMARY

Cloud applications consist of a set of interconnected software elements distributed over several virtual
machines, themselves hosted on remote physical servers. Most existing solutions for deploying such
applications require human intervention to configure parts of the system, do not conform to functional
dependencies among elements that must be respected when starting them, and do not handle virtual machine
failures that can occur when deploying an application. This paper presents a self-deployment protocol that
was designed to automatically configure a set of software elements to be deployed on different virtual
machines. This protocol works in a decentralized way, i.e., there is no need for a centralized server. It also
starts the software elements in a certain order, respecting important architectural invariants. This protocol
supports virtual machine and network failures, and always succeeds in deploying an application when faced
with a finite number of failures. Designing such highly parallel management protocols is difficult, therefore
formal modeling techniques and verification tools were used for validation purposes. The protocol was
implemented in Java and was used to deploy industrial applications.

KEY WORDS: Distributed applications, software components, automatic deployment, robustness and
reliability.

1. INTRODUCTION

Cloud computing emerged a few years ago as a new approach based on virtualized hardware

resources and software applications distributed over a network (typically the Internet). One of the

main reasons organizations adopt cloud computing is to reduce IT costs by outsourcing hardware

and software maintenance and support. Cloud computing combines various recent computing

paradigms such as grid computing, virtualization, autonomic computing, peer-to-peer architectures,

utility computing, etc. It allows users to benefit from all these technologies without requiring

extensive expertise in each of them. Autonomic computing is particularly convenient for automating

specific tasks such as on-demand resources provisioning or facing peak-load capacity surge (a.k.a.,

elasticity management). Automation reduces user involvement, which speeds up the process and

minimizes human errors.

In this paper, IaaS-based applications (or cloud application for short) are distributed applications

composed of a set of interconnected execution units called software elements, running on separate

virtual machines. This type of cloud application can benefit from several services provided in

the cloud such as database storage, virtual machine cloning, or memory ballooning. To deploy

their applications, cloud users need first to build virtual images corresponding to the applicative

software stacks (i.e., including operating system, middleware, binaries and data), to provision and
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instantiate them as virtual machines (VMs), and to indicate the software elements to be run on them.

Then, they have to configure these software elements. This involves setting up the configuration

parameters that depend on the runtime environment (e.g., IP address, port number). Finally, cloud

users have to start the software elements. Both configuration and activation tasks are complex and

error-prone if handled manually due to functional interdependencies between software elements.

These dependencies between the software elements of a given application define the order which

must be respected during the configuration and activation process. This order avoids that the

application reaches undesired inconsistent states where, for instance, a started software element is

connected and sends requests to another element that is not started yet. Therefore, there is a need for

management protocols to automate these deployment tasks. A few recent works have focused on this

issue, e.g., [1, 2, 3, 4] (see Section 5 for a detailed presentation of existing results). The contribution

presented in this paper goes one step further than these works, by designing a deployment protocol

capable of supporting VM and network failures.

This paper introduces a novel self-deployment protocol able to automatically deploy an

application on a cloud. Beyond instantiating each VM, the protocol is also responsible for starting

each element in a precise order according to the functional dependencies of the application

architecture, that is, the interconnected components and their distribution over the virtual machines.

This start-up process works in a decentralized manner, without requiring any centralized manager.

Thus, each VM embeds a local configuration agent, named configurator, which interacts with

other remote configurators (i.e., on other applicative VMs) to (i) solve dependencies by exchanging

configuration information and (ii) determine when a software element can be started, i.e., when all

the elements it depends on are started. This protocol is also able to detect VM and network failures

occurring during the configuration and activation process. When such a failure occurs, the protocol

informs the remaining VMs of what has happened to make the system restore a consistent state,

and instantiates a new instance of the failed VM. The proposed protocol supports multiple failures

and always succeeds in finally deploying the application and starting the corresponding components

(assuming that the number of failures is finite).

Our management protocol involves a high degree of parallelism, which makes its design very

complicated. Since correctness of the protocol was of prime importance, it was decided to specify

the protocol using formal concurrent specification languages, namely the LNT value-passing

process algebra [5]. LNT is one of the input languages of the CADP verification toolbox [6], which

was used to verify that the protocol satisfies certain key properties, e.g., “when a VM fails, all

the remaining VMs are notified of that failure” or “each VM failure is followed by the creation

of a new instance of that VM”. At the implementation level, we have proposed an XML-based

formalism to describe the cloud applications to be deployed, and we have developed a Java tool

chain, named Virtual Application Management Platform (VAMP), which includes the reference

implementation of the self-deployment protocol. For evaluation purposes, this implementation has

been used to deploy real-world applications, e.g., multitier Web application architectures or the Clif

load-injection framework [7].

Our main contributions with respect to existing results on this topic are the following:

• We propose and design an innovative, decentralized protocol to automatically deploy cloud

applications consisting of interconnected software elements hosted on several VMs.

• The deployment process is able to detect and handle VM and network failures, and always

succeeds in configuring the application at hand.

• We verified that the protocol respects some key properties using formal specification

languages and model checking techniques.

• We implemented the protocol in Java and applied it to industrial applications for evaluation

purposes.

The outline of this paper is as follows. Section 2 introduces the reliable self-deployment protocol.

Section 3 presents the formal specification and verification tasks. Section 4 details implementation

and evaluation aspects. In section 5, related works are discussed before concluding in section 6.
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2. SELF-DEPLOYMENT PROTOCOL

This section first introduces the model used to describe the application to be deployed. Then it

presents the protocol participants, the protocol itself, and our solution to handle VM and network

failures.

2.1. Application Model

An application model represents an abstraction of the target application to be deployed. This model

consists of two levels: the runtime environment and the application architecture. At the runtime

environment level, an application is modeled using a set of VMs. Each VM is characterized

by its hardware characteristics (e.g., number of CPUs, size of memory) and a virtual image to

be instantiated (e.g., the associated software stack including an operating system, middleware,

applicative binaries and data). These VMs do not play any role per se, from a functional point of

view, but each of them hosts a set of applicative software elements, where the functional part of the

application resides. The description of the software elements involved in an application is modeled

using the application architecture level, which is based on the Fractal component model [8]. Each

software element is abstracted as a component. A component can either provide or require services.

Services are modeled using ports: an import port (shortened as import) represents a service required

by a component, whereas an export port (shortened as export) represents a service provided by a

component. An import on one component will be connected to an export on another component. This

type of connection is called a binding. A component can import a service exported by a component

hosted on the same VM (local binding) or hosted on another VM (remote binding). An import can

be optional or mandatory. A component has three states: started, stopped, or failed. An import is

satisfied when it is bound to a matching export and the component offering that export is started. A

component can be started when all its mandatory imports are satisfied. Therefore, a component can

be started even if its optional imports are not satisfied. A component moves to the failed state when

its VM fails.

It is worth noting that these models can be manually achieved or generated automatically using

complementary algorithms, such as those existing in the Vulcan planification system [9] or the

BtrPlace manager [10]. In the latter case, SLA requirements or other placement constraints can be

taken into account. The deployment protocol we present in the rest of this paper can be viewed as the

(low-level) mechanics to configure distributed cloud applications, independently of the technique

used for computing the target application model.

From a user perspective, the application model is the main part of our approach, which needs to be

provided by the user in order to deploy an application. Our tool support also requires a wrapper for

each component handled in the application. A wrapper implements the behavior of the component

and exposes a set of interfaces describing the primitives for manipulating the corresponding

applicative software element (e.g., start, stop, export). In other words, a wrapper consists in the

implementation class of a component. Thus, according to the effort to develop reusable code,

wrappers can be specific to one application or can be reused for deploying different applications

requiring similar type of components. In the rest of Section 2, we present the deployment protocol,

which takes as input an application model and automatically deploys the corresponding VMs and

configurators in charge of actually instantiating and connecting the components specified in the

application model.

In the remainder of this paper, we will use as running example a three-tier Web application with a

cluster of application servers. Figure 1 gives the application model, which consists of four (or more)

VMs. The first one (VM1) hosts a front-end HTTP server (Apache). Then we have a cluster of JEE

application servers (two VMs, VM2 and VM3, in Figure 1 for illustration) where each VM hosts a

JEE application server (JOnAS). The fourth VM (VM4) corresponds to the database management

system (MySQL). These components are connected through remote bindings (e.g., Apache bound

to JOnAS) on mandatory (m) and optional (o) imports.



4 X. ETCHEVERS ET AL.

Figure 1. A Three-tier Web Application Model

2.2. Participants

The self-deployment protocol involves two kinds of participants (Fig. 2): a deployment manager and

a set of VM configurators (shortened as configurators). The deployment manager (DM) guides the

application’s configuration by instantiating VMs, as described in the target application model, and

creating a new instance of a VM when a failure occurs. Each VM in the distributed application

is equipped with a configurator. Each configurator takes as input the target application and is

responsible for connecting bindings and starting components once the VM instance has been created

by the deployment manager. The protocol is therefore generic in the sense that the deployment

manager and the configurators do not depend on the application model, and can thus deploy any

application that can be described using the model presented in Section 2.1.

Communication between participants (DM and VM configurators) is asynchronous, involving

FIFO buffers. Each VM is equipped with two buffers, an input buffer and an output buffer. When

a VM configurator needs to post a message, it puts that message in its output buffer. When a

configurator wants to read a message, it takes the oldest one in its input buffer. Messages can be

transferred at any time from an output buffer to its addressee’s input buffer. It is worth noting

that buffers are not explicitly bounded. They are implicitly bounded by the communication system

memory size, but the protocol does not involve looping tasks that would make the system send

infinitely messages to buffers.

We assume that the asynchronous communication model we rely on is reliable in the sense that

no messages are lost, even in the presence of a finite number of transitory failures. Moreover, the

message ordering is preserved, i.e., messages are received in the same order by a target configurator,

as they were sent by a source configurator. Last, there is no guarantee of the time at which the

messages will be handled by the target configurator. We will see in Section 4 how these properties

are guaranteed in practice.

Figure 2. Participants: Deployment Manager and VM Configurators

2.3. Deployment

Protocol execution is driven by the configurators embedded on each VM. All configurators evolve in

parallel, and each of them is aware of the application to be deployed. Each manager executes various

tasks according to a precise workflow, as summarized in Figure 3. In this figure, boxes identified

using natural numbers (¶, ·, etc.) correspond to specific actions (VM creation, component creation,
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etc.). Diamonds stand for choices, and each arrow outgoing from a choice either enters another box

or is annotated with a list of box identifiers that can be reached from this point.

The start-up process begins when the DM instantiates the VMs (Figure 3). For each VM, the DM

creates an image of this VM (¶) and then initiates the VM execution. Each VM is equipped with

a configurator, which starts when the VM initiates its execution. A configurator is responsible for

binding ports as described in the application model and for starting components in a specific order:

a component can be started only if all its mandatory imports are satisfied. The configurator does not

depend on any application model and is able to deploy any concrete application.

VM and component start-up. We now explain how a newly instantiated VM binds its ports and

starts the components to be deployed on this VM. At instantiation time, the VM is aware of the

binding information (for both local and remote bindings). Therefore, each configurator has explicit

knowledge of how its components are supposed to be bound to local or remote components. First,

local components are created (·). Local bindings are handled by the configurator and do not require

any interaction with other VMs (¸). As for remote bindings, the configurator performs two tasks.

When an export of one of its components is involved in a binding, the configurator sends a message

with its export connection information (e.g., IP address, port number) to the VM hosting the client

component (¹). When an import of one of its components is involved in a binding, the VM in charge

of that component will receive the connection details from the server VM (¼) at some point and,

upon reception of that message, the configurator makes the binding effective (½).

In terms of component start-up, a configurator can immediately start a component without imports

or with only optional imports (º). If a component involves mandatory imports, that component can

only be started when all its mandatory imports are satisfied, i.e., when all its imports are bound

to started components. When a component is started and that component is used by a remote

component, the configurator of the first component must inform the configurator of the second

component that the component has been started. To do this, the first VM sends a start message to

the second VM (»). Upon reception of this message (¼), the configurator updates an internal data

structure storing the partner component states (export side) for each component. Every time a start

message is received, the configurator checks if the corresponding component can be started, i.e.,

if all its mandatory imports are satisfied (º). Note that the start-up process involves propagation

of start messages along bindings across several VMs. Local bindings are handled directly by the

configurator, and there is no need to exchange messages with other VMs either for binding or start-

up purposes. The start-up process always terminates successfully if there is no cycles of bindings

over mandatory imports. A cycle of bindings is possible if at least one optional import is involved

in those bindings. Failure handling (¾ in Figure 3) will be detailed in the next subsection.

Figure 3. VM Configurator Lifecycle

Example. Figure 4 shows a Message Sequence Chart (MSC) illustrating a specific scenario for

the start-up of the Web application introduced in Figure 1. First, all four VMs are instantiated by

the DM. The corresponding configurators are launched and are aware of the whole application

to be deployed (Figure 1). Then, each configurator creates its own components (not illustrated in

Figure 4) and sends binding messages as required in the application model. For example, the VM4



6 X. ETCHEVERS ET AL.

configurator knows that VM3 needs to connect its JOnAS component to the MySQL component,

therefore the VM3 configurator posts a binding message with the information needed to connect

to the database (e.g., IP address, port number, login and password) to VM3. Upon reception of

this binding message, the configurator binds both components. Note that the VM4 configurator can

start the MySQL component quite early in this scenario because this component does not require any

service from other components (no imports). The VM4 configurator indicates to VM2 and VM3 that

its MySQL component has started. Upon reception of this start message, the VM3 configurator for

instance starts its JOnAS component, and sends a similar message to VM1. The VM1 configurator

starts the Apache component when it has received a start message for the JOnAS component from

VM2, because VM1 is connected to that component on a mandatory import, whereas the import is

optional for the connection to the JOnAS component of VM3. The application is fully operational.

Figure 4. Web Application Start-up Scenario

2.4. Failures

The protocol presented in this paper is generic in the sense that it addresses failures that are not

specific to the application to be deployed. Such failures are therefore external to the application

and can affect both the execution environment (i.e., the virtual and physical infrastructure) and the

management system itself. Contrary to internal failures, which are specific to a given application,

external failures can be detected and corrected without any knowledge of the application. This paper

focuses on three kinds of failures that concern the execution environment:

• crash-stop failure of an applicative VM: this interrupts the normal execution of the virtual

machine, which becomes unusable without any possible recovery;

• crash-stop failure of a configurator running on a VM: this type of failure alters the

configurator’s behavior, disrupting all exchanges to and from the configurator;

• byzantine network failure: this kind of failure interrupts part of the network services for a finite

period. These failures can result in message loss or connection closing, but are transitory (not

definitive).
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Self-repairing the rest of the bootstrapping participants involved in the deployment system (e.g.,

the deployment manager) is beyond the scope of this paper: it could be addressed thanks to well-

known replication techniques, see Section 5 for more details. Each case of failure introduced above

always involves a VM, thus we will use failure or VM failure indifferently in this paper.

Failure detection. This detection relies on a synchronous heartbeat mechanism. As soon as a

configurator embedded on an applicative VM is activated, it launches a thread which periodically

and synchronously sends a signal or beat to the deployment manager. The continuous reception of

these beats by the deployment manager indicates that the execution of the VM and network are

correct. The heartbeat mechanism is unidirectional (no ack messages). The deployment manager is

configured to accept a maximum delay between two beats from a given configurator. Each time it

receives a heartbeat, the manager resets the watchdog timer associated with that configurator and

waits for the next beat. If it does not receive the next beat before the timer expires, it considers that

the configurator/VM or network has failed and initiates a repair phase†. We use sampling techniques

and simulation for choosing timer values. A limit of this solution is that some failure may be detected

due to an additional network delay whereas there is no real failure, but this case does not show up

often in practice. However, the repair mechanism can deal with such false positive cases (see below).

Failure repair. When a failure occurs and is detected, the DM tries to recover by replacing the

VM whose heartbeat was interrupted. Due to the lack of accuracy for determining the type of failure,

the DM needs to deal with false positive cases that result from potential byzantine network failures.

To do so, it first tries to delete the VM suspected to be faulty. Then it creates a new instance of the

failed VM, and indicates the identity of the failed VM and the identity of the newly created VM

to the other VMs. When a new instance of a VM is created as a result of a VM failure, the new

VM must receive acknowledgement messages from all the other VMs indicating that they have been

informed of its creation. This part of the protocol is crucial to avoid erroneous behavior, e.g., the

reception of messages by a VM from an unknown emitter.

We will now focus on the other VMs, that is, those that were instantiated before the VM failed

and that are still being deployed (Figure 5, where 7 stands for ¼ in Figure 3). Upon reception

of a message indicating that a VM has failed and another instance of that VM has been created,

the configurator first updates the list of known VM identifiers (¶). Then, it purges its buffers (·),

removing all messages coming from or destined for the failed VM, and updates its current state

(¸), moving started components to a stopped state if they are connected to failed components

and removing all bindings to failed components. When these updates have been completed, the

configurator sends an acknowledgement message to the new VM indicating that it is aware of its

presence in the application (¹). Finally, it re-sends the binding (º) and start-up (») information

details for all remote components (import side) connected to some of its components, and hosted on

a re-instantiated VM.

Figure 5. VM Configurator Lifecycle Handling VM Failures

†The principle of this mechanism is to detect failures, not to determine their type.
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It is worth noting that several VM failures may occur, this can be due to failures of different

instances of a single VM or failures of different VMs. A failure can also take place when a VM

is already handling a failure involving another VM (cascading failures). If the number of VMs is

finite and if there is no cycle of bindings through mandatory imports, the self-deployment protocol

eventually terminates successfully: all VMs are instantiated and components will be started.

Example. In Figure 6, we show an example of VM failure (VM2), occurring when all the VMs

have been instantiated and all the components started. When the DM detects VM2’s failure, it first

creates a new instance of VM2 (VM2’) and alerts the other VMs. Upon reception of these messages,

all remaining VMs (VM1, VM3, and VM4) behave as shown in Figure 5. Thus, the configurator for

VM1 changes VM2’s identifier, purges its two buffers, stops its Apache component, and unbinds

Apache from JOnAS. The VM1 configurator also sends an acknowledgement message to VM2’

indicating that it knows it and can receive messages from it. Nothing else is required of VM1, and

the VM1 configurator returns to its normal behavior, i.e., ¼ (message reception), as illustrated in

Figure 3. In the case of VM3 and VM4, each configurator changes VM2’s identifier, purges its two

buffers, and sends an acknowledgement message to VM2’. The VM4 configurator also needs to

re-send binding information to VM2 and another message indicating that the MySQL component

is started. Last but not least, after instantiation, when VM2’ has received ack messages from all the

other VMs, it behaves normally, as presented in Figure 3. As a result, its JOnAS component can be

started and, as a side effect, the VM1 configurator can also start the Apache component.

Figure 6. Web Application Failure Scenario

3. SPECIFICATION AND VERIFICATION

In this section, we present the formal specification and verification of the protocol.
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3.1. Specification

For validation purposes, we specified the self-deployment protocol with the LNT value-passing

process algebra [5]. We chose LNT because it is expressive enough to describe data types, functions,

and concurrent behaviors. In addition, LNT is one of the input languages of the CADP toolbox [6],

which provides a large variety of verification techniques and tools to automatically analyze LNT

specifications.

The LNT specification for the self-deployment protocol consists of at least 2,500 lines of code.

A part of the specification depends on the input application model, and is therefore automatically

generated from a Python script we implemented. For instance, an application model with 6 VMs

results in a 3,500-line LNT specification. Data types are used to describe the application model

(VMs, components, ports, bindings), messages, buffers, etc. Functions apply to data expressions and

are necessary for three kinds of computation: (i) extracting information from the application model,

(ii) describing buffers and basic operations on them, (iii) keeping track of the started components to

know when another component can be started (when all mandatory imports are satisfied). Processes

are used to specify VMs (configurator, input and output buffer), failure injection, and the whole

system consisting of interacting VMs possibly failing at some unpredictable point.

For illustration purposes, we show below an excerpt of the LNT specification corresponding to

the deployment manager process, generated for an application model involving four VMs (VM1,

VM2, VM3, and VM4). The deployer process defines first the list of actions used in its behavior

(CREATEVM, FINISH, FAILURE, etc.). Actions can be typed (with the types of their parameters),

but this is optional and we use the keyword any in that case. After the declaration of a few variables,

we associate using function assign id vm an identifier to each VM image (e.g., identifier 1 for

VM1) and stores in the counter variable the next identifier to be used in case of failure. Then, we

use the LNT parallel composition par (pure interleaving here) for instantiating the four VMs. Then,

the process engages an active looping which either stops when the whole deployment terminates

(FINISH) or when a failure occurs (FAILURE). In the latter case, a new identifier is associated to

the failed VM (newid), a new instance of that VM is created (CREATEVM), and the partner VMs

alerted (ALERTFAILUREi) along with the identifier of the newly created instance of the failed VM.

process deployer [CREATEVM:any, FINISH:any, FAILURE:any,
ALERTFAILUREVM1:any, ALERTFAILUREVM2:any, ... ] (lid: STID) is

var counter:Nat, vmidlist: TVMIDSet, newid: Nat in
vmidlist:=assign id vm(lid,1); counter:=len stid(lid)+1;

par
CREATEVM (!VM1, !get id vm(VM1,vmidlist), !true, !vmidlist)

||
CREATEVM (!VM2, !get id vm(VM2,vmidlist), !true, !vmidlist)

||
CREATEVM (!VM3, !get id vm(VM3,vmidlist), !true, !vmidlist)

||
CREATEVM (!VM4, !get id vm(VM4,vmidlist), !true, !vmidlist)

end par;
loop theloop in

select
FAILURE (!VM1 of TID);

vmidlist:=update id vm(VM1,vmidlist,counter);

newid:=counter; counter:=counter+1;

CREATEVM (!VM1, !get id vm(VM1,vmidlist), !false, !vmidlist);

ALERTFAILUREVM2 (!VM1, !newid); ALERTFAILUREVM3 (!VM1, !newid);

ALERTFAILUREVM4 (!VM1, !newid)

[] ... (* similar code for VM2 *)

[] ... (* similar code for VM3 *)

[] ... (* similar code for VM4 *)

[] FINISH; break theloop

end select
end loop

end var
end process
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3.2. Properties

We identified 15 key properties that must be respected by the protocol. These properties help to

verify that architectural invariants are satisfied during the protocol execution (prop. 1, 3 below), final

objectives are fulfilled (prop. 2, 5, 7 below) or ordering constraints respected (prop. 4, 6 below). Let

us give a few examples of such properties, with a particular focus on VM failure occurrences (prop.

3, 4, 5, 6, 7). For some of these properties, we also give their formulation in the MCL language [11],

the temporal logic used in CADP. MCL is an extension of alternation-free µ-calculus with regular

expressions, data-based constructs, and fairness operators.

1. There is no cycle of bindings in the component assembly through mandatory imports.

2. All components are eventually started.

3. No component can be started before the components it depends on through mandatory

imports.

[
(¬’{FAILURE !.*}’)* .

{STARTCOMPO ?vm:String !"JOnAS-a"} .

(¬’{FAILURE !.*}’)* .

{STARTCOMPO ?vm2:String !"MySQL"}

] false

In the running example, the JOnAS (a) component is connected to the MySQL component

through a mandatory import, therefore we will never find a sequence where JOnAS is started

before MySQL except in case of failure. This property is automatically generated from the

application model because it depends on the component names and bindings in the model.

4. After a VM fails, all other VMs are informed of that failure.

5. Each VM failure is followed by re-creation of that VM.

library actl.mcl end library

[ true* . ’{FAILURE ?vm:String}’ ]
AU A A(true, not ’{FAILURE !vm}’,

’{CREATEVM !vm !.*}’, true)

This property is formalized making use of action CTL patterns [12].

6. Two failures of a same VM are always separated by a VM creation.

7. A sequence exists resulting in protocol termination with no failure.

< true* . (¬’{FAILURE ?vm:String}’)* . ’FINISH’ > true

Termination is made explicit in the specification using the special FINISH action.

3.3. Experiments

To verify this specification, we used a database of 210 application models. For each input model,

we used CADP exploration tools to generate the Labeled Transition System (LTS) corresponding

to all possible executions of the protocol for this input. Then, we used the CADP model checker

(Evaluator) to verify that this LTS satisfies the 15 properties of interest.

Table I summarizes the results obtained for three versions of our running example (with 1, 2, and

3 JOnAS servers, resp.), with an increasing number of possible failures (|F|). We give the size of the

LTS generated (before and after strong reduction [13]) using CADP by enumerating all the possible

executions of the system, as well as the time to obtain this LTS (generation and reduction) and verify

all 15 properties. Experiments were carried out on an Intel Xeon X5560 (2.80GHz, 148GB RAM)

running Linux.

It is worth observing that increasing the number of failures induces a gradual growth in the

LTS size and computation time. Since we use enumeration techniques, when there are, e.g., four

failures during the deployment process, it means that all possible configurations are attempted

(e.g., cascading failures of different VMs, successive failures of the same VM, etc.) and all these

executions appear in the corresponding LTS. The other parameter increasing these numbers is the

number of VMs, which generates more parallelism in the system, and the number of remote bindings
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in the application model, which augments the number of messages exchanged between VMs. We

were able to analyze applications with up to 6 VMs and 10 remote bindings. Large applications

are not necessary to detect issues in the protocol, most problems were found on small examples

exposing corner cases.

Id
Application model

|F|
LTS (states/transitions) Time (m:s)

|VM| |Comp| |Bd| raw minimized Gen. Verif.

1 3 3 2

0 233 / 565 233 / 565 0:5 0:10

1 6,196 / 16,272 3,125 / 8,205 0:13 0:21

2 61,548 / 175,796 21,980 / 62,042 0:14 0:31

3 349,364 / 1,045,883 100,008 / 293,555 0:48 7:19

4 1,489,515 / 4,601,552 366,269 / 1,097,990 3:34 26:29

5 5,381,794 / 17,035,375 1,206,934 / 3,654,952 40:13 >3h

2 4 4 4

0 5,308 / 18,750 5,287 / 18,723 0:13 1:44

1 1,101,598 / 4,818,992 355,016 / 1,326,368 12:58 104:38

2 30,828,377 / 139,116,259 6,160,018 / 23,786,583 >3h >3h

3 5 5 6
0 149,721 / 676,715 148,105 / 672,259 14:28 71:22

1 1,707,075 / 7,223,859 956,467 / 5,166,328 121:11 >3h

Table I. Experimental Results

3.4. Issues detected

The formal verification of the protocol using model checking techniques helped to refine certain

parts of the protocol and to detect subtle bugs. We particularly present two of them in the rest of this

section.

First, there was a problem in the way local components are started during the protocol execution.

After reading a message from the input buffer, the configurator must check all its local components,

and start those with mandatory imports bound to started components. However, one traversal

of the local components is not enough. Indeed, launching a local component can make other

local components startable. Consequently, starting local components must be done in successive

iterations, and the algorithm stops only when no other components can be started. If this is

not implemented as a fix point, the protocol does not ensure that all components involved in

the architectue are eventually started. This bug was detected with property 2 checking that “all

components are eventually started”.

Second, one important architectural invariant states that a started component cannot be connected

to a stopped component. However, we encountered cases where optional imports violated this

invariant, resulting in started components connected to and therefore submitting requests to stopped

components. This problem was detected thanks to an extension of property 3 stating that “a

component cannot be started and connected to another component, if that component has not been

started beforehand”. This invariant can only be preserved in the absence of failures: we cannot

prevent a started component from being connected to a failed component.

4. IMPLEMENTATION AND EVALUATION

This section describes the principles and the assessment of the Java implementation of the protocol.

4.1. VAMP Principles

We developed a reference implementation of the reliable self-deployment protocol using the Virtual

Applications Management Platform (VAMP) system [3]. VAMP is a generic solution dedicated to

the self-deployment of arbitrary distributed applications in the cloud. In its first version, VAMP

relied on an unreliable deployment process. The current version of VAMP implements the reliable
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deployment protocol presented in Section 2. This implementation enables VAMP to deploy an

application in finite time, even if a finite number of VM or network failures occurs during the

deployment phase. VAMP takes as input a model of the application (see Section 2.1) and assumes

that each component of the application is equipped with a wrapper, which is an interface exhibiting

the primitives for manipulating the component. This wrapper either exists or must be provided by

the developer.

When receiving a deployment request from a user, VAMP creates a new VM in which a

deployment manager (DM) is instantiated. The DM is in charge of deploying the application.

Therefore, it bootstraps the deployment by generating virtual images participating in the application

and instantiating them as VMs in one or several IaaS platforms. The configurators are included

in the virtual images at the generation stage. Once an applicative VM has completely booted,

the corresponding configurator starts applying the self-deployment protocol by instantiating,

configuring, and activating the local applicative software components. It also interacts with the

other configurators to exchange information of interest with respect to the deployment status of the

other VMs.

All the management entities participating in the deployment of a given application (i.e., the

dedicated DM and the configurators) communicate through an asynchronous distributed message

oriented middleware (MOM), the AAA bus [14]. This bus is reliable in the sense that no messages

are lost. This middleware interconnects agents (configurators and deployment manager here). An

agent is a plain old Java object (POJO) that runs in a Java Virtual Machine. Each agent can send

messages to other agents. When receiving a message, an agent behaves according to an event-action

model. In the VAMP system, each management entity is an agent of the AAA middleware. AAA

provides some noticeable properties. First, it is distributed within the agents, thus avoiding any

centralized mechanism that might suffer from the bottleneck effect. Second, the reaction of an agent

to an event is atomic, i.e., the reaction is entirely executed or not at all. This mechanism relies on

the agent’s state persisting before and after each reaction. Third, due to the combination of message

persistence and the asynchronous programming model provided by AAA, any agent is assured of the

delivery of the messages it sends, even when a finite number of transitory failures occurs. However,

there is no guarantee of the time at which the messages will be dealt with by the target agent. Finally,

AAA preserves message ordering (reliable communication), i.e., messages are received in the same

order by a given target agent, as they were sent by a given source agent.

4.2. Assessment

The evaluation process aims at measuring the impact on the time to deploy a three-tier Web

application (Fig. 1) while randomly injecting a number of failures. Although the protocol adopts

a decentralized design, its capacity to deal with large scale architectures was previously discussed

in [15] and will not be tackled in these experiments, which focus on the reliability of the deployment.

We will not compare the centralized version of the protocol with its current distributed version,

which is more efficient in terms of message exchange and overall performance, see [16] for details.

In the rest of this section, we present two kinds of experiments. In the first case, we measure the

benefit, in terms of time to deploy, introduced by the reliable self-deployment protocol compared

to its previous non-reliable version. In a second case, we measure the time to deploy an application

with multiple replicas of the applicative tier using the reliable self-deployment protocol.

For both experiments, each measure results from the average value of 10 iterations of the

same experiment. The application deployment was considered completed when all the software

components were configured and then, simultaneously started. We simulated the failure of an

applicative VM by shutting it down through the infrastructure (i.e., IaaS) API.

The underlying platform used to carry out these tests is an OpenStack Havana IaaS solution

running on Linux Ubuntu 12.04 LTS 64 bits. It is deployed on a cluster of IBM HS22 blades (2

Intel Xeon E5504 3GHz quad-core, 32GB memory, 292 GB HDD) interconnected with a Gigabit

ethernet network. Each computing node runs a KVM hypervisor to instantiate the virtual machines.

Time efficiency of the reliable self-deployment protocol compared to its non-reliable version. In

this first experiment, the Web application consists of three instances, i.e., one for each tier (Apache
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HTTP server, JOnAS JEE server, MySQL DBMS). Each instance of each tier runs on a dedicated

VM. We randomly inject failures on any of the applicative VMs while proceeding to the initial

deployment of the application. The number of injected failures varies from 0 to 39.

Figure 7. Time to Deploy a Three-tier Web Application with VAMP while Injecting Failures

Figure 7 shows that the time to deploy the Web application increases linearly in accordance with

the number of failures encountered. f(x) = ax+ b is the trend line associated with the mean time

measured to deploy an application in the presence of x failures, where a = 35,245 and b = 84,106‡.

In comparison, the use of the previous non-reliable version of the protocol that requires to redeploy

the entire application when a failure occurs in an applicative VM, follows the trend function

g(x) = (b+ 1)x where x stands again for the number of failures encountered and b = 84,106.

Therefore, both equations highlight the gain in deployment time introduced by the reliable self-

deployment protocol compared to its unreliable version. This gain linearly depends on the number

of failures and can be estimated as G(x) = 1− f(x)
g(x) . Its value tends to lim

x→+∞
G(x) = 1− a

b
= 58%.

In other words, the replacement of a faulty VM by the protocol only induces about 35 seconds’ delay

compared to the 84 seconds required to re-deploy a full instance of the Web application.

Time to deploy an application with several replicas of the applicative tier. In the second

experiment, the Web application is built up with:

• one instance of the presentation tier (Apache HTTP server);

• one instance of the database tier (MySQL DBMS);

• a farm of 5 instances of the business tier (JOnAS JEE server).

Each instance of each tier runs on a dedicated VM. We measure the benefits of the replication,

while randomly injecting failures on a subset of the farm of VMs member of the business tier

(JOnAS servers). The number of injected failures varies from 0 to 10 whereas the rate of affected

VMs in the farm varies from 20% to 100% of the farm (i.e., from 1 to all 5 VMs).

It is worth noting that Figure 8 exhibits several noticeable behaviors. First, similarly to the

first experiment, the deployment duration linearly depends on the number x of injected failures.

However, the presence of steps whose size varies according to the number of potentially affected

VMs in the farm, demonstrates that the deployment duration also depends linearly, in a non

continuous way, on the number v of potentially affected VMs in the farm. Such relationships

highlights the parallelism capacity for the reliable self-deployment protocol to manage many failures

occurring on different applicative VMs. The equation that models the deployment duration in such

case is the following: f ′(x, v) = a′⌊x+v−1
v

⌋+ b′, where a′ and b′ are two constants. Experimentally,

‡The linear correlation ratio of this trend is 0.9933.
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Figure 8. Time to Deploy a Three-tier Web Application (Farm of Servers) with VAMP while Injecting
Failures

we obtained the following rounded values: a′ = 239 and b′ = 444 with a mean correlation factor of

0,992.

The previous equation models two trends that can be observed in Figure 8:

1. for a given number x of injected failures, all application instances whose number of potentially

affected VMs are greater or equal to x presents an equivalent deployment duration (e.g., the

behavior of the 80% and of the 100% affected VMs farms are equivalent from 0 to 4 injected

failures);

2. for a given application architecture, the average duration to deploy an applicative instance is

inversely proportional to the number of potentially affected VMs part of the instance, e.g.,

the deployment duration in presence of 3 failures in the 20% affected VMs case is equivalent

to the value obtained for 9 failures with 60% affected VMs. In other words, the wider the

occuring failures can be spread over a large set of VMs that can be affected –hence can be

recovered by the protocol simultaneouly, in parallel, independently one from each other–, the

less time it takes to deploy the application.

Finally it is noticeable that both functions f(x) and f ′(x) obtained through these evaluations

highly differ according to the values of their coefficients (i.e., (a, b) and (a′, b′), respectively). This

is due to:

• the variation of the application architecture used. In the first experiment, the application

includes one instance of each applicative tier (i.e., 3 applicative VMs) whereas in the second

it consists of one instance of the presentation tier, one instance of the database tier, and five

instances of the business tier (i.e., 7 applicative VMs).

• the underlying cloud infrastructure whose behavior can vary according to the application

architecture to deploy. In our case, it depends among other things on the size of the cluster

of physical machines used to instantiate simultaneously the applicative VMs (3 physical

machines), on the computation capabilities of each of these physical machines, and on the

policy to balance the VMs on these physical machines (round robin algorithm).

5. RELATED WORK

We first focus on existing approaches relying on ADL-based approaches for deploying software

applications. [1, 2] propose languages and configuration protocols for distributed applications in the

cloud. SmartFrog [1] is a framework for creating configuration-driven systems. It has been designed

with the purpose of making the design, deployment and management of distributed component-

based systems simpler and more robust. [2] adopts a model driven approach with extensions of

the Essential Meta-Object Facility (EMOF) abstract syntax to describe a distributed application,
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its requirements towards the underlying execution platforms, and its architectural constraints (e.g.,

concerning placement and collocation). Regarding the configuration protocol, particularly the

distributed bindings configuration and the activation order of components, contrary to us, [2] does

not work in a decentralized fashion, and this harms the scalability of applications that can be

deployed.

[17] presents the design and implementation of an autonomic management system, TUNe. The

main principle is to wrap legacy software pieces into components in order to administrate a software

infrastructure as a component architecture. The authors also introduce high-level formalisms for the

specification of deployment and management policies. This management interface is mainly based

on UML profiles for the description of deployment schemas and the description of reconfiguration

state diagrams. A tool for the description of wrapper is also introduced to hide the details of the

underlying component model. ProActive [18] is a Java-based middleware (programming model

and environment) for object and component oriented parallel, mobile and distributed computing.

ProActive provides mechanisms in order to further help in the deployment and runtime phases on

all possible kind of infrastructures, notably secure grid systems. ProActive is intended to be used for

large scale grid applications. However, it does not handle fault occurrence and repair mechanisms.

[19] introduces Eucalyptus, an academic open source software framework for cloud computing

that implements a IaaS solution, giving users the ability to run and control VM instances

deployed across a variety of physical resources. Eucalyptus is a convenient solution for automated

provisioning of virtualized hardware resources and for executing legacy applications. On the

other hand, this platform has not been designed for monitoring and particularly deploying such

applications. This limit regarding deployment abilities is also present in most current IaaS

frameworks, such as OpenStack, VMWare vCD, or Amazon WS. [20] presents AppScale, an

open source extension of the Google AppEngine (GAE) PaaS cloud technology. These extensions

facilitate distributed execution of GAE applications over virtualized cluster resources, including

IaaS cloud systems such as Amazon’s EC2 and Eucalyptus. AppScale implements a number of

different components that facilitate deployment of GAE applications using local (non-proprietary)

resources. This solution has a specific focus on the deployment of Web applications whose code

conforms to very specific APIs (e.g., no Java threads).

[3, 21, 22] present protocols that automate the configuration of distributed applications in cloud

environments. These protocols work in a decentralized way as well, but do not support the possible

occurrence of failures, nor the possibility to repair the application being deployed when a failure

occurs. Another related work [4] presents a system that manages application stack configuration.

It provides techniques to configure services across machines according to their dependencies, to

deploy components, and to manage the life cycle of installed resources. This work presents some

similarities with ours, but [4] does not focus on composition consistency, architectural invariants

preservation, or robustness of the reconfiguration protocol. This is one of the main forces of our

approach, that is to work in a decentralized and automated fashion, and to support at the same time

correctness features via invariants preservation and failure handling.

[23] presents a protocol for reconfiguring applications running in the cloud. The protocol supports

the addition of new components and VMs as well as the removal of components and VMs. All these

reconfiguration operations are posted through a cloud manager, which is in charge of guiding the

reconfiguration of the whole application. This protocol also detects the occurrence of failures and

in those situations makes the application restore a global consistent state. The main difference is

that in this article, we focus on the deployment of applications whereas, in [23], the protocol applies

on running applications and proposes operations to modify them. Our protocol does not only detect

failures but also correct them by re-instantiating failed VMs. Last but not least, [23] presents the

formal design of a reconfiguration protocol whereas the deployment protocol was also implemented

and applied on real-world applications for evaluation purposes.

In [24], the authors present a technique for writing distributed applications which manage

themselves over one or more utility computing infrastructures. This technique particularly allows

to dynamically acquire new computational resources, deploy themselves on these resources, and

release others when no longer required. However, this approach does not propose any failure
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recovery mechanism. [25] describes a peer-to-peer architecture to automatically deploy services

on cloud infrastructures. The architecture uses a component repository to manage the deployment

of these software components, enabling elasticity by using the underlying cloud infrastructure

provider. The main added value of this framework is the incorporation of virtual resource allocation

to the software deployment process. This framework is one of the closest solution to ours. Yet

the centralized architecture and the absence of fault-tolerance mechanisms are two important

differences. On a wider scale, and as a summary, these two characteristics are also the two main

differences between all approaches presented before in this section and our deployment solution.

Aeolus [26] is a rich component model for designing distributed, scalable cloud applications. This

model particularly consider component dependencies, non-functional requirements, and stateful

applications. Each component is equipped with a state machine describing how required and

provided functionalities are enacted. Another contribution of this work is to check the existence

of a deployment plan. In comparison, in our approach, the plan is given by the user, but we provide

automated mechanisms for executing it. [27] presents an approach to enable the seamless integration

of script-centric and service-centric configuration technologies in order to customize and automate

provisioning of composite cloud applications. In [28], the authors present an extension of the

TOSCA standard in order to specify the behavior of a cloud application’s management operations.

They also propose several kinds of analysis for checking, e.g., the validity of a management plan or

the possibility to reach certain configuration given a plan. Our approach is different because there

is no explicit plan, and the protocol itself executes implicitly the plan to deploy the application at

hand. In that sense, our approach is more generic, but we only tackle the deployment phase so far.

In the cloud computing area, there are several configuration management tools, such as Puppet

or Chef, which allow one to automatically configure new machines as described in dedicated files

called manifests or recipes. Industrial technologies, such as Bosh, Cloudify, and Heat, help to create,

deploy, and orchestrate applications in multiple cloud infrastructures. As far as the configuration

steps are concerned, these technologies rely on the aforementioned configuration management tools

(e.g., Puppet or Chef). These industrial tools are very convenient for configuring many kinds of

applications and systems. Our focus is slightly different here because we propose an approach

working in a decentralized way and supporting failure detection and repair for complex application

architectures.

Fault tolerance and system reliability have been the subject of many works and studies in the

last decades [29]. A system may fail first because of incorrect specification, incorrect design,

design flaws, poor testing, or undetected software faults. In such cases, a possible approach

aims at improving system design and development using static analysis or specific programming

models [30]. Other reasons of failures are external events [31], caused either by human errors or

computing failures (both network failures and hardware failures). In all cases, failures are said to be

fail-stop and their occurrence leads the system to abruptly stop itself. To manage fail-stop failures,

a classic approach consists in using redundancy techniques, either active or passive ones.

Active redundancy techniques [32, 33, 34, 35, 36] intend to replicate the execution units in

a system, typically the processes or the threads that are involved. This means that any request

sent to a process or to a thread is in fact sent to the complete group of process replicas. Such

redundancy techniques rely on dedicated communication protocols providing atomic and ordered

group communication [37], for ensuring that all the members of a group receive a request or none at

all receive it. With this approach, the system can tolerate n− 1 failures when the replication group

is composed of n replicated processes.

Using passive redundancy techniques is an alternative approach [38, 39], which consists in

replicating the state and/or the data of a system. The objective is to ensure that such data or state will

stay available in case of failures, which can be achieved by saving it on a persistent storage such as

a disk. The state or data are saved at particular execution points (checkpoints) such that the system

can restart from the saved information (rollback) [40]. This approach is complex in a distributed

setting, because in the general case, only local checkpoints can be performed for efficiency reasons

and these checkpoints should allow for a global restart of the system in case of failure [41].
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In our approach, we adopt a recovery technique that relies on an asynchronous distributed

message oriented middleware (MOM). The MOM provides a certain level of reliability, tolerating,

among other things, transitory byzantine network failures using checkpoints and rollback

techniques. We extended the set of tolerated faults to consider crash-stop failures of physical and

virtual machines, by introducing a distributed replay mechanism (based on event logging) for state

recovery. Overall, we leveraged a lightweight passive approach for failure detection and recovery,

which was simple to develop and sufficient for ensuring fault-tolerance of our deployment solution.

A preliminary version of this work was published in [42] and was extended here as follows:

• We illustrate our contributions on a more complex case study.

• We describe more precisely the part of the protocol dedicated to the failure detection and

management.

• We present the formal specification and verification of the deployment protocol with more

details. In addition, we show a larger variety of experimental results and comment on issues

detected using these analysis techniques.

• We present with more details the implementation of the protocol and show evaluation results

in terms of performance and scalability on several real-world applications.

• We present an extended discussion comparing our approach with related work, particularly

those handling failures.

6. CONCLUDING REMARKS

In this paper, we have presented a self-deployment protocol that aims to configure a set of software

components distributed over a set of virtual machines. This protocol works in a fully automated way

and in a decentralized fashion. To the best of our knowledge, this protocol is the first deployment

protocol supporting VM failures, i.e., the protocol does not only detect failures, but also creates

a new instance for each failed VM, and restores a stable state for all the other VMs. The protocol

always succeeds in starting all the components hosted on the different VMs, even in case of multiple

failures. The protocol was formally specified and validated using up-to-date verification tools. The

protocol was implemented in Java and applied to industrial applications for evaluation purposes.

A first perspective is to make use of co-simulation techniques to ensure that the specification and

implementation conform to one another. Such techniques are not always required: when a bug is

found during the specification analysis, it is reported, and in many cases, this is a real bug, i.e., a bug

existing in the implementation. Co-simulation techniques would reduce the number of divergences

between the specification and the implementation, and this would avoid reporting bugs that are in

fact only specification errors. Second, we plan to consider failures of the deployment manager and

to propose a replication system to ensure reliability of this part of the deployment system. Our last

perspective is to extend the protocol and widen the role of deployment managers, allowing them

to dynamically reconfigure cloud applications, e.g., by removing or replacing a deployed VM. As a

side effect, the configurator’s behavior would need to be extended to incorporate those new features.
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