A. Anandkumar and H. Sedghi, Learning mixed membership community models in social tagging networks through tensor methods

A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and L. , A Spectral Algorithm for Latent Dirichlet Allocation, Adv. NIPS, 2012.
DOI : 10.1007/s00453-014-9909-1

A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and L. , A Spectral Algorithm for Latent Dirichlet Allocation, Algorithmica, vol.26, issue.4, pp.1204-6703, 2013.
DOI : 10.1007/s00453-014-9909-1

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, Tensor decompositions for learning latent variable models, J. Mach. Learn. Res, vol.15, pp.2773-2832, 2014.

S. Arora and R. Kannan, Learning mixtures of separated nonspherical Gaussians, The Annals of Applied Probability, vol.15, issue.1A, pp.69-92, 2005.
DOI : 10.1214/105051604000000512

S. Arora, R. Ge, and A. Moitra, Learning Topic Models -- Going beyond SVD, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, 2012.
DOI : 10.1109/FOCS.2012.49

S. Arora, R. Ge, Y. Halpern, D. Mimno, A. Moitra et al., A practical algorithm for topic modeling with provable guarantees, Proc. ICML, 2013.

F. Bach and M. I. Jordan, Kernel independent component analysis, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)., pp.1-48, 2003.
DOI : 10.1109/ICASSP.2003.1202783

F. Bach and M. I. Jordan, A probabilistic interpretation of canonical correlation analysis, 2005.

B. Balle, W. L. Hamilton, and J. Pineau, Method of moments for learning stochastic languages: Unified presentation and empirical comparison, Proc. ICML, 2014.

D. J. Bartholomew, Latent Variable Models and Factor Analysis, 1987.
DOI : 10.1002/9781119970583

A. Basilevsky, Statistical Factor Analysis and Related Methods: Theory and Applications, 1994.
DOI : 10.1002/9780470316894

S. Bird, E. Loper, and E. Klei, Natural Language Processing with Python, 2009.

D. M. Blei and M. I. Jordan, Modeling annotated data, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , SIGIR '03, 2003.
DOI : 10.1145/860435.860460

D. M. Blei, A. Y. Ng, J. , and M. I. , Latent Dirichlet allocation, J. Mach. Learn. Res, vol.3, pp.993-1022, 2003.

M. W. Browne, The maximum-likelihood solution in inter-battery factor analysis, British Journal of Mathematical and Statistical Psychology, vol.32, issue.1, pp.75-86, 1979.
DOI : 10.1111/j.2044-8317.1979.tb00753.x

A. Bunse-gerstner, R. Byers, and V. Mehrmann, Numerical Methods for Simultaneous Diagonalization, SIAM Journal on Matrix Analysis and Applications, vol.14, issue.4, pp.927-949, 1993.
DOI : 10.1137/0614062

J. Cardoso, Source separation using higher order moments, International Conference on Acoustics, Speech, and Signal Processing, 1989.
DOI : 10.1109/ICASSP.1989.266878

J. Cardoso and P. Comon, Independent component analysis, a survey of some algebraic methods, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, 1996.
DOI : 10.1109/ISCAS.1996.540360

J. Cardoso and A. Souloumiac, Blind beamforming for non-gaussian signals, IEE Proc-F, 1993.
DOI : 10.1049/ip-f-2.1993.0054

J. Cardoso and A. Souloumiac, Jacobi Angles for Simultaneous Diagonalization, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.1, pp.161-164, 1996.
DOI : 10.1137/S0895479893259546

P. Comon, Independent component analysis, A new concept? Signal Process, pp.287-314, 1994.

P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00460653

N. Cristianini and J. R. Shawe-taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 2000.
DOI : 10.1017/CBO9780511801389

P. J. Eberlein, A Jacobi-Like Method for the Automatic Computation of Eigenvalues and Eigenvectors of an Arbitrary Matrix, Journal of the Society for Industrial and Applied Mathematics, vol.10, issue.1, pp.74-88, 1962.
DOI : 10.1137/0110007

T. Fu and X. Gao, Simultaneous diagonalization with similarity transformation for non-defective matrices, Proc. ICASSP, 2006.

Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, A Multi-View Embedding Space for Modeling Internet Images, Tags, and Their Semantics, International Journal of Computer Vision, vol.22, issue.12, pp.210-233, 2014.
DOI : 10.1007/s11263-013-0658-4

A. Haghighi, P. Liang, T. B. Kirkpatrick, and D. Klein, Learning bilingual lexicons from monolingual corpora, Proc. ACL, 2008.

N. Halko, P. G. Martinsson, and J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Review, vol.53, issue.2, pp.217-288, 2011.
DOI : 10.1137/090771806

D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor, Canonical Correlation Analysis: An Overview with Application to Learning Methods, Neural Computation, vol.10, issue.12, pp.2639-2664, 2004.
DOI : 10.1093/biomet/58.3.433

H. Hotelling, RELATIONS BETWEEN TWO SETS OF VARIATES, Biometrika, vol.28, issue.3-4, pp.321-377, 1936.
DOI : 10.1093/biomet/28.3-4.321

D. Hsu and S. M. Kakade, Learning mixtures of spherical gaussians, Proceedings of the 4th conference on Innovations in Theoretical Computer Science, ITCS '13, 2013.
DOI : 10.1145/2422436.2422439

R. Iferroudjene, A. Meraim, K. Belouchrani, and A. , A new Jacobi-like method for joint diagonalization of arbitrary non-defective matrices, Applied Mathematics and Computation, vol.211, issue.2, pp.363-373, 2009.
DOI : 10.1016/j.amc.2009.01.045

M. Janzamin, H. Sedghi, and A. Anandkumar, Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods, 2016.

C. Jutten, Calcul neuromimétique et traitement du signal: Analyse en composantes indépendantes, 1987.

C. Jutten and J. Hérault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetric architecture. Signal Process, pp.1-10, 1991.

A. Klami, S. Virtanen, and S. Kaski, Bayesian exponential family projections for coupled data sources, Proc. UAI, 2010.

A. Klami, S. Virtanen, and S. Kaski, Bayesian canonical correlation analysis, J. Mach. Learn. Res, vol.14, pp.965-1003, 2013.

T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

V. Kuleshov, A. T. Chaganty, and P. Liang, Tensor factorization via matrix factorization, Proc. AISTATS, 2015.

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, Adv. NIPS, 2000.

X. Luciani and L. Albera, Joint Eigenvalue Decomposition Using Polar Matrix Factorization, Proc. LVA ICA, 2010.
DOI : 10.1007/978-3-642-15995-4_69

URL : https://hal.archives-ouvertes.fr/hal-00910872

K. P. Murphy, Machine Learning: A Probabilistic Perspective, 2012.

A. Podosinnikova, F. Bach, and S. Lacoste-julien, Rethinking LDA: Moment matching for discrete ICA, Adv. NIPS, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225271

A. Ruhe, On the quadratic convergence of a generalization of the Jacobi Method to arbitrary matrices, BIT, vol.11, issue.3, pp.210-231, 1968.
DOI : 10.1007/BF01933422

A. Slapak and A. Yeredor, Charrelation Matrix Based ICA, Proc. LVA ICA, 2012.
DOI : 10.1109/TNN.2006.875991

A. Slapak and A. Yeredor, Charrelation and Charm: Generic Statistics Incorporating Higher-Order Information, IEEE Transactions on Signal Processing, vol.60, issue.10, pp.5089-5106, 2012.
DOI : 10.1109/TSP.2012.2205572

R. Socher and L. Fei-fei, Connecting modalities: Semi-supervised segmentation and annotation of images using unaligned text corpora, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540112

L. Song, A. Anandkumar, B. Dai, and B. Xie, Nonparametric estimation of multi-view latent variable models, Proc. ICML, 2014.

G. W. Stewart and J. Sun, Matrix Perturbation Theory, 1990.

Y. C. Sübakan, J. Traa, and P. Smaragdis, Spectral learning of mixtures of Hidden Markov Models, 2013 21st Signal Processing and Communications Applications Conference (SIU), 2014.
DOI : 10.1109/SIU.2013.6531340

M. E. Tipping and C. M. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.61, issue.3
DOI : 10.1111/1467-9868.00196

K. Todros and A. Hero, Measure transformed independent component analysis, 2013.

H. Tung and A. Smola, Spectral methods for Indian buffet process inference, Adv. NIPS, 2014.

A. Vinokourov and M. Girolami, A probabilistic framework for the hierarchic organisation and classification of document collections, Journal of Intelligent Information Systems, vol.18, issue.2/3, pp.153-172, 2002.
DOI : 10.1023/A:1013677411002

A. Vinokourov, J. R. Shawe-taylor, C. , and N. , Inferring a semantic representation of text via crosslanguage correlation analysis, Adv. NIPS, 2002.

S. Virtanen, Bayesian exponential family projections, 2010.

Y. Wang and J. Zhu, Spectral methods for supervised topic models, Adv. NIPS, 2014.

A. Yeredor, Blind source separation via the second characteristic function. Signal Process, pp.897-902, 2000.