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Abstract. Open complex systems in operation can only be managed
with internal observation, where the reproducibility and predictability of
conventional science with external observation is not necessary valid nor
fully achievable. However, globally important problems are mostly open
systems that beget one-time-only events. Still, in open complex systems,
internal observers may better manage the system by interactive database
and interfaces to explore e�ective variables. We develop plural modalities
of such data-driven interface for open systems exploration, taking an ex-
ample in ecosystems management with citizen observation. The examples
are developed from data-supported widening of choice, suggestion with
statistical inference, and to a basic setup that can interactively select a
best prediction model with inputs on-the-�y. These interfaces were ap-
plied to one-year �eld observation and yielded a tentative scoring system
of index species. We de�ne basic conceptual framework with a realization
of the initial steps of open systems exploration, that will subsequently
follow interactive recon�guration as the systems evolve.

Keywords: Open systems, exploration, management, biodiversity, en-
vironmental assessment, multi-partite graph, Voronoi diagram, hidden
Markov model

1 Introduction

1.1 Open Complex Systems and One-time-only Events

Complex systems science has been applied in various domains where theory and
experiment meets with a medium of computation (e.g.,[1]). Complex systems
science with external observation drastically advanced laboratory measurements,
and in some con�ned conditions succeeded to analyze the living phenomena as
an augmented phenomenology, without reducing the whole process into the parts
(e.g. [2]).

On the other hand, complex systems in real world cannot be fully simulated
when the observation is limited from inside of the systems. When the system scale
is larger than a controlled laboratory , when the sensor resolution is not su�cient
to reconstruct a predictable model, and when inherent dynamics such as chaos
produces principal unpredictability, we are forced to handle internal observation
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(e.g., [3][4][5][6]). Internal observation is not only a compromise of conventional
scienti�c methodology but a subjective strategy to yield an e�ective description
of the system in dynamical functioning, where characteristic measures can only
be de�ned on the transient con�guration of many-to-many bodies systems [7].

This working hypothesis becomes especially informative when a system is
open to external environment. In open complex systems(open systems in short),
we cannot fully de�ne a system's boundary as it interacts with external envi-
ronment through time line. The con�guration of subsystems is also fuzzy and
change temporally. The systems may not be possible to model with parent-slave
relation in closed environment. The systems are basically unpredictable in a
long term by internal observers, uncontrollable depending on the fragility to ex-
ternal disturbance and complexity of interactions, and manifest one-time-only
events that are neither fully predictable by modelling nor reproducible by the
real phenomenon itself [8][9]. Whether it be technological innovation, social or-
der reformation, natural disasters, etc., transition of history in open systems has
been always triggered by a new event of unpredictable scale [10][11][12].

In such open systems lie greatest challenges of complex systems science, es-
pecially those concerned with the sustainability of our civilization, that is left
behind as negative legacies of the modern scienti�c achievement. For exam-
ples, environmental problems, epidemic outbreak, life-course chronic diseases,
technology-inherent breakdown of social infrastructure, climate change and as-
sociated social-ecological transitions are predominant examples of one-time-only
events that requires open systems approach [13][14][15][16][17]. These tasks re-
quire the application of e�ective measure by internal observers during the oper-
ation, as it cannot be halted, analyzed, experimented separately from the real
world.

In coping with the needs of such global agenda, we need to explore novel
scienti�c methodologies that can be applied in open complex systems. Based
on the past achievement of rigorous science with external observation, we need
further extend the e�ectiveness of internal observers' science in an open environ-
ment, where real-world problems remain untouched. In contrast to the perfection
myth of science seeking the control of the system as a dominant objective, we
rather need to struggle in the real-world operation where the prediction and con-
trol is not always valid. How much can we attain with incomplete observation,
heterogenous database, in unpredictable environment, with lots of new events
that have never happened, but with the aid of �ne mathematical theory, ubiqui-
tous sensors, social networks of citizens, and massive computation power? What
should we explore during the time-limited operation of open complex systems,
in order to survive and create sustainability options in various forms?

In this article, we investigate a conceptual framework of scienti�c exploration
in open complex systems and develop a framework of exploration interfaces tak-
ing an example in ecosystems management.
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2 Open Systems and Closed Systems Approximation

Most of the natural systems can be described as open systems, and open systems
science includes a proto-scienti�c description ranging between phenomenology
and science. In a broad term, conventional science, or closed systems science is
an approximation of originally open systems with an arti�cial boundary de�ni-
tion that prohibits open interaction with further external environment. We need
however clarify what is common with conventional scienti�c methodology and
what is new or explorable with the conception of open systems. For that pur-
pose, we formalise the comparison between open systems and its closed systems
approximation that already has speci�ed examples in conventional science.

2.1 Open Systems with respect to Dynamical Systems

Dynamical systems modelling is one of the primary methods in complex systems
science [18]. Table 1 and �gures 1 compare open systems with closed systems
approximation in dynamical systems perspective. Dynamical systems, when used
in closed systems application, usually treat isolated systems with �nite boundary
conditions, in which control of reproducible events with a feedback to a desired
state is the object of analysis. For such purpose, high-resolution modelling and
simulation with external observation is e�cient, and controlling the phenomena
requires the information quantity in terms of information theory de�ned on a
closed environment without the dynamic exchange of components with external
environment.

On the other hand, open systems as it is in real world contain important
dynamics in one-time-only events. Such phenomena cannot be externally con-
trolled nor can be �nely predicted from past data. Instead, we need to cope with
the emerging phenomena and seek for an active transition to an alternative state
with strategic adaptation that resolves the con�ict. This is not a resilient feed-
back with a �xed de�nition of systems, but rather an expansion of the systems
including outer environment that leads to the rede�nition of the boundary with
transition phenomena, in which e�ective information measures should be rede-
�ned. This process is associated with both the exploration and management from
inside of the systems that precede modelling and simulation. The importance of
exploration is not to gain the information quantity with a �xed framework of
observation, but to explore the extended de�nition of the systems that can en-
capsulate necessary information for the management as a result. We call this
process of extending the systems de�nition and evaluate the information within
to cope with irreproducible events as information generation.

2.2 Open Systems with respect to Machine Learning

Machine learning incorporates a wide forms of statistical modelling in complex
systems [19]. Theoretically, non-linear statistical measures can classify any kind
of statistical dependency within the e�ective dimensions of feature space [20].
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Closed Systems Approximation Open Systems
Nature Reproducible events One-time-only events

Control objective Resilient feedback to controlled state Active transition to alternative state
Information requirement Information quantity Information generation

Methodology Modelling and simulation Exploration of management
Table 1. Conception of open systems in contrast to closed systems approximation in
dynamical systems.

Fig. 1. Conception of open systems in contrast to closed systems approximation in
dynamical systems. Left: Resilient feedback to controlled state in closed systems ap-
proximation. Right: Active transition to alternative state in open systems. Blue lines
indicate the potential of the environment, in which systems depicted with orange circles
are controlled and managed with red trajectories.

However, basic frameworks of machine learning are mostly based on closed sys-
tems approximation.

Table 2 and �gures 2 compare open systems with closed systems approxima-
tion in machine learning perspective. While standard closed systems approaches
de�ne the format of database and observation methods, open systems reality
do not always guarantee the continuity both in the de�nition of data items and
its quality. Ubiquitous sensor network and citizen observation, for example, in-
evitably contain biases in various scales. This situation has a common challenge
with the frame problem in arti�cial intelligence [21]. In the open systems reality
where we do not su�ciently know how to assume the e�ective boundary of the
systems, evaluation with a single algorithm can be a blind measure with respect
to the global management goal including future utility. We need to prepare a
portfolio of various evaluations within available resources, with respect to a con-
ceivable range of future scenarios, in order to set up a try-and-error work�ow
that can maximally avoid the operation to fail. This process is not a mere eval-
uation with an external algorithmic measure, but a creation of novel suitable
measures for future transition, in which sense we call it ontogenesis associated
with information generation.
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Closed Systems Approximation Open Systems
Framework of database Fixed Dynamically change

Protocol Single algorithm Work�ow of algorithms
Optimization Exploration and optimization

Implication Evaluation Ontogenesis
Table 2. Conception of open systems in contrast to closed systems approximation in
machine learning.

Fig. 2. Conception of open systems in contrast to closed systems approximation in
machine learning. Left: Single algorithm optimization on a �xed database framework in
closed systems approximation.Right: Exploration and optimization with a work�ow of
algorithms in open systems. Blue rectangles correspond to the framework of databases
or observation, in which algorithmic optimisations are performed with information
criteria depicted as orange distributions.

3 Open Systems Exploration: An Example with

Ecosystems Management

Based on the above conception of open systems exploration, we develop a con-
crete example of the interfaces for the management of ecosystems as open sys-
tems.

3.1 Towards Dynamical Assessment of Ecosystems

Ecosystems functions and the services they provide is a major source of social-
ecological sustainability [22]. Although an increasing number of literatures reveal
general positive relation between biodiversity and ecosystems functions, local
assessment and its utilization depend highly on local initiative and industrial
inertia that devoid of appropriate scienti�c support [23]. We try to convert the
conventional environment assessment protocol with the use of open systems sci-
ence methodology in order to achieve a dynamical assessment of ecosystems.

Figures 3 and table 3 shows the comparison between typical environmental
assessment and possible open systems extension. Usually, environmental assess-
ment is performed on a basis of static, �xed scoring framework that is derived
from past empirical studies [24][25]. Current environmental studies are based on
sensing parameters and index species whose score in relation to environmental
quality is de�ned with past experience [26]. There is however few consideration
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of possible future change of base-line ecosystems, especially regime shifts in re-
sponse to climate change and human perturbation in a global scale[27]. The
number of index species are pre-de�ned and limited. Observation methods are
speci�ed that often require training by professional to assure the quality of data.
By respecting the quality of reproducible observation based on the past statistics,
therefore limiting the target systems in space and time, conventional assessment
lacks in some aspects the accessibility to a wide public and adaptability to abrupt
environmental changes where rede�nition of the systems, descriptive index, and
future insight should be renewed on time.

To cope with an ever-changing open systems that lies in the nature of ecosys-
tems and associated human activities, we need to extend assessment protocols
to an interactive and dynamical interface that can treat on-the-�y modi�cation
of the protocol itself. The acceleration of information sharing, processing, and
augmentation of interactivity can further modify the way of environmental as-
sessment, and contribute to the readiness of the management. Information com-
munication technology(ICT) is expected to bring more dynamic and re�exive
dimension in citizen science, allowing to �ll the gap between crude, diverse data
and re�ned governance on multifunctional ecosystems [28]. Since model-based
prediction from physical to biological diversity still confronts complexity of eco-
logical response [4], direct biodiversity measurement with human observation
still plays an essential role. The distributed measurement of biodiversity with
interactive ICT has a potential to shift the modality of indexing and scoring of
species, from stable, qualitative description to dynamic, quantitative data-driven
assessment in real time. This approach will expand current assessment in its ob-
servation network, data quantity, and analytic tools, on an integrated design of
distributed ICT. By means of the on-the-�y observation, re�exive rede�nition of
index species and its environmental score is possible. Such dynamic recon�gura-
tion of assessment criteria would introduce more �exibility for rapidly adapting
to changing situation. For that purpose, we propose an iterative framework that
comprises database, models, and observation that can modify its relationship
according to the actual change of situation.

Observation of multi-scale systems such as society and ecosystems is internal
observation in principle. We cannot rely on empirical external measurement in
terms of data e�ciency and analytical predictability [4]. Rather, we need to as-
sure a diversity of strategies to allow multiple actors to explore possible scenarios
that are rich enough to mitigate unpredictable change. Open systems exploration
in ecosystems management may not realize the reproducibility or predictability
on what will happen, but should seek for the capacity of exploration on what
could happen for a �exible planning of strategy portfolio. This is a common
principle in ICT-mediated citizen science in the roadmap of complex systems
science [28].

With this respect, structural design of exploratory simulation tools should
have emphasis on the diversity of the models, their parameters, and re�exive
evaluation of substantive variables for dynamic adaptability. Figure 3(right)
shows conceptual framework of open systems exploration in ecosystems man-
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Fig. 3. Environmental assessment protocols in closed systems approximation and open
systems exploration. Left: Typical conventional protocol with closed systems perspec-
tive (based on [24][25][26]). To ensure the objectivity and reproducibility of observation,
violet processes are usually �xed based on the past assessment data. Orange processes
need to respect pre-de�ned methods that usually call for training by professionals.
Right: Dynamical assessment as a process of open systems exploration applied in
ecosystems management. Hence the right protocol can include the left one by �xing
the corresponding parameters.

Current environmental assessment Dynamical assessment
Interface Static, �xed scoring framework Interactive, dynamical, on-the-�y ICT
Index Pre-de�ned and limited Can be expanded and renewed by observation

Observation method Fixed Can be modi�ed, various
Accessibility Mainly for trained professionals Open to wide public without training
Evaluation Based on the past experience By renewal of the observation scheme

according to the focused change
Table 3. Characteristics of environmental assessment protocols in closed sys-
tems approximation(Current environmental assessment) and open systems explo-
ration(Dynamical assessment).
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agement: Distributed measurements including the sensing of ecosystem agents
collect massive data with multiple and �uctuating criteria. A copious combina-
tion of analytical and numerical simulators produce possible predictions in the
background, which are given feedback by the on-going measurement to evaluate
the e�cacy of each model and weight the data variable in a re�exive work�ow
with multiple timescale. Not only the e�ect of single variable but synergetic ef-
fects between variables can be explored with a variety of model functions. The
observation network should be recon�gured according to the e�ciency of the ac-
tual management, in order to assure su�cient diversity of substantive variables
by eliminating useless ones and investing for novel exploration. Here, the frame
problem of determining su�ciently diverse and e�ective subset of variables is
a consistent task to resolve. Cloud computing resource and parallel-processed
simulators would play essential role for the on-site implementation.

For example, data-driven assessment of biodiversity and associated environ-
mental quality can be realized with this framework. Taking environmental vari-
ables and biodiversity as a database, a wide range of possible de�nitions of index
species and their environmental scores can be generated from simulators, which
will be selected to extract high-resolution assessment scheme as actual mea-
surement continues. Steep change of biodiversity, environment and observation
network can be immediately re�ected to the assessment protocol by producing
new possibilities of scoring system with new inputs. We develop basic interfaces
and models of such protocol in the next chapters.

3.2 Example of Data Interface: Multi-Partite Graph Exploration

We develop prototypical interfaces for open systems exploration applied in ecosys-
tems management. As a testbed we use an ecological database developed in
Synecoculture project [29]. The database comprises biodiversity observation in
various Synecoculture farms and surrounding environment in Japan. To assess
these environment in open systems perspective, one needs to diversify the ob-
servation until it can attain the saturation of the biodiversity measures related
to the management principles.

For this purpose, extensive link of data and related information is useful
as an initial hands-on interface. Figures 4 show a multi-partite graph visuali-
sation of biodiversity records. The observation of plants and insects species are
linked according to the geographical cooccurrence with taxonomical relationships
and observation places. The users can explore on this graph to seek concurrent
and/or allied species, that could extend their observation activity and learn re-
lated ecological information. This model can support extensive search for data
registration within the framework of cumulative past experience. It represents a
simplest model for prediction in which all past cooccurrences are superimposed.

Management requires wider choice in response to a change. Ecosystems dy-
namics under human perturbation is especially irregular and di�cult to harness
[30]. By combining further information source such as climate data and ecolog-
ical literature, multi-partite links can provide wider choice triggered by actual
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observation when a new data is recorded and connected in the web of multi-
partite relations. The real-time development of complex network of observation
with automated link to relevant information is a primary interface that complex
systems science can o�er to open systems exploration. The evolution of com-
plex network autonomously combines observation and related knowledge, and
extends the framework of possible observation to provide collective suggestion
between users.

Fig. 4. Snapshots of multi-partite graph between plants(green), insects(magenta), bio-
logical taxonomy(orange), and observation place(yellow). The links represent the total
co-occurrence in the database (Synecoculture CMS [29]).
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3.3 Example of Suggestion Tool : Integration of Environmental and

Biodiversity Data with Symbolic Dynamics Analysis

Integration of biodiversity and sensor data is a fundamental task in data-driven
environmental management. While current studies try to integrate biodiversity
records with remote sensing databases [31][32], little has been investigated on a
local scale under direct e�ect of management. For example in agricultural land,
sensor-based measurement and control of precision agriculture [33] is not con-
nected with local biodiversity observation. Natural farming practices based on
local biodiversity, on the other hand, rely merely on human observation and have
little introduced sensor technology [34][35]. In actual management of farmland
with both yield and biodiversity promotion, one needs to consider the integrated
aspects of biodiversity and environmental conditions [36][37][38].

We propose a general framework to integrate biodiversity data based on hu-
man observation and sensor data in general with the use of symbolic dynamics
in dynamical systems [39]. Biodiversity data is a list of species names and re-
lated taxonomy in correspondence to its meta data such as observation place
and time. This is a symbolic data that refers to the quality of the taxonomic
pro�le of observed biota. In contrast, sensor data are the numerical values of
physical characteristics measured on the environment with the meta data. This
is in general represented with a real data type that refers to the quantity of each
measurement item. The integration of biodiversity and sensor data can be gen-
eralised into the following problem: What is the characteristics of the symbolic
dynamics of a measured ecosystem, in which sensor data is the estimate of un-
derlying dynamical system and biodiversity data as the symbols that represent
the states of the systems?

The reconstruction of symbolic dynamics with given biodiversity and sensor
data of an ecosystem is possible by matching the meta data such as place and
time between them. As a concrete example, we employ Voronoi diagram [40] to
segment sensor data phase space with biodiversity symbols. Figures 5 show the
symbolic dynamics analysis of the Synecoculture biodiversity database during
April 2011 - March 2013 by matching with the corresponding meteorological data
from Automated Meteorological Data Acquisition System(AMeDAS) provided
by Japan Meteorological Agency [41].

We �rst performed principal component analysis to choose the linear com-
binations of the most distinctive 2-dimensional feature space of meteorologi-
cal parameters (�gure 5 Top Left). Based on the �rst 2 principal components
space(PC1-PC2), 30 previous days mean of AMeDAS data is segmented with
Voroni diagram for each observation date recorded in Synecoculture database.
Analysis of observable species diversity(�gure 5 Top Right), niche estimation of
particular species (�gures 5 Bottom Left and Right) are possible on this model.
For example, when the meteorological sensor data of a new day are obtained, the
model can indicate what is the list of observed species in the past, and whether
the observation in the corresponding partition is already rich or poor. The seg-
mentation can further augment resolution as the observation cumulates. When
the distribution of a species is con�ned in a subspace of the Voronoi diagram,



Open Systems Exploration 11

it is possible to estimate its niche boundary by an interpolation. Signi�cant cor-
relation between estimated niches(e.g. order-wise correlation [42]) can provide
suggestions that there might be underlying ecological dependence between those
species.

Theoretically, in�nite sequence of �nite biodiversity symbols can specify any
arbitrary trajectory of meteorological data with real-value precision, if the sys-
tem is deterministic and the partition is �generating� in terms of symbolic dy-
namics [43]. To enrich the suggestion based on the spatio-temporal structure,
this model is further accessible to mathematical analysis of symbolic dynamics
that can treat complex trajectories in dynamical systems including chaos.

3.4 Example of Model Selection: Seasonal Segmentation and

Prediction of Biodiversity Observation

Besides the data interface and integration model that can provide interactive
suggestions to the observation, we further consider how to select a better pre-
dictive model in a changing situation. We take an example of biodiversity pre-
diction combined with meteorological data in time development. This is again a
prototypical model for the integration of sensor and biodiversity data, but with
consideration to the re�nement of real-time feedback on observation based on
the model selection.

We employ hidden Markov model(HMM) as a primitive example of seasonal
segmentation of meteorological data [44]. We applied the standard forward-
backward algorithm for the inference of hidden states from the past AMeDAS
data, and the Viterbi algorithm to inversely infer hidden states with new data
for each observation. Figure 6 Top shows an example of seasonal segmentation of
AMeDAS data. Hidden states with the highest probability was chosen to asso-
ciate the observed species in Synecoculture database in the same day. The species
diversity associated with each hidden state is expressed as a discrete distribution
on a set of observed species name, with cumulative occurrence probability. Each
time new species is observed, the model acquires additional list of species for
the corresponding hidden state. The discrete probability distribution of species
occurrence associated with each hidden state is a model of prediction when a
new observation is estimated to be in the same hidden state.

Based on the estimated models with the hidden states number ranging from 2
to 10, we performed a numerical experiment to evaluate the prediction capacity
of each HMM with respect to each 30 observations mean(�gure 6 Middle). Each
model was evaluated with the standard likelihood function of discrete probability
distribution with respect to the observed species. The results show a dynamical
trend in the number of hidden states that gives the best prediction model. For ex-
ample, in �gure 6 Bottom, initial phase during April 2011 - January 2012 shows
an increase of the number of hidden state for the best model, which implies an in-
crease of model resolution for seasonal segmentation. Observation of new species
also tends to saturate as it is in winter time. Between February 2012 - October
2012, as the summer time reactivates the ecosystems, new species records become
more frequent which leads to the decrease of the model resolution (hidden states
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Fig. 5. Example of symbolic dynamics analysis of biodiversity and meteorological
data. Top Left: Factor loading of principal components analysis(PC1 and PC2) of
11 daily meteorological parameters(mean/maximum/minimum temperature, daily pre-
cipitation, day length, global solar radiation, mean wind speed, mean vapour pres-
sure, mean atmospheric pressure, mean humidity, mean cloud cover, snow depth) in
AMeDAS data. Top Right: Voronoi segmentation of AMeDAS data PC1-PC2 space
with Synecoculture biodiversity database for each 30 days mean. The colour repre-
sents the number of species observed in the same partition. Bottom Left: Example of
niche estimation of Parnara guttata guttata (Bremer et Grey, 1852) (in picture) on the
symbolic dynamics analysis. Bottom Right: Example of niche estimation of Sonchus
asper (L.) Hill (in picture) on the symbolic dynamics analysis. Partitions where the
species appeared are �lled with red.
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number of the best model). The models go through a heuristic learning process
of biodiversity change with low likelihood for estimation, until it regains the res-
olution and relative likelihood in the next winter time around November 2012 -
March 2013. Since likelihood of the models monotonously decreases as the list
of observed species expand, relative increase/decrease of likelihood is important
to characterise the model resolution. When the relative increase of likelihood is
associated with the increase of the number of hidden states in the best model,
model resolution is considered to increase. During the observation, the diver-
sity of observation is maintained su�ciently high without producing statistical
bias on new species appearance rate(data not shown). Therefore, the numerical
experiments imply a dynamic model selection process during the real-time learn-
ing, in which the system manages to select the best in time prediction model by
compromising between the adaptability to new observation and reproducibility
of past statistics.

4 Conclusion

4.1 Components Evaluation of Dynamical Assessment

We have conceptualised the methodology of open systems exploration based on
open systems science, and developed prototypical interfaces with models taking
an example in ecosystems management, namely dynamical assessment. Basic
properties of the example systems in view of incorporation into dynamical as-
sessment are summarised in table 4. By generalising these properties such as
data processing mode from batch to real-time, parameter segmentation type
from simple superposition to spatio-temporal segmentation, and model selection
range from single to group selection, respectively, these systems can be further
developed and integrated to support a whole cycle of dynamical assessment.

Properties MPG SDM HMM
Data processing mode Batch Batch Real-time

Parameter segmentation type None Spatial Temporal
Model selection range Single Single Group

Table 4. Achievement of basic system properties of 3 example models, multi-partite
graph(MPG), symbolic dynamics model(SDM), and hidden Markov model(HMM), for
the integration in dynamical assessment.

The correspondences between the processes in the �gure 3 (Right) of dynam-
ical assessment and the utilisation of each example model are summarised in the
table 5.

The information generation proposed as the essential dynamics of open sys-
tems exploration in table 1 can further be explored in the following contexts:

� Multi-partite graph: Exploration of links and validation by observation
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Fig. 6. Example of model selection on an integrated model of biodiversity and sensor
data with hidden Markov model(HMM). Top: Example of seasonal segmentation of
AMeDAS daily mean temperature data with 3 hidden states. Estimated probability
of each state is plotted with corresponding colour. Middle: Numerical experiment
of model selection based on the likelihood of HMMs with hidden states 2 to 10, for
each 30 observations mean. Likelihood of each HMM is depicted as dots with colours
that corresponds to the number of hidden states. Bottom: Time development of new
species appearance rate for each 30 observations and number of hidden states of selected
HMM giving maximum likelihood for prediction. Dynamic trend of model selection and
learning occurs with the real-time feedback of observation.
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Process in �gure 3 (Right) Process in example models
Input AMeDAS and Synecoculture database

Prediction Links in MPG
Suggestion from SDM
Prediction with HMM

Feedback Selection of e�ective information in MPG
Selection of time window in SDM
Parameters selection in HMM

Selection Selection of AMeDAS variables in SDM and HMM
Geographical and time window selection of Synecoculture database

Registration Modi�cation of actual observation
Introduction of new observation method

Setting of new sensors
Table 5. Correspondence between dynamical assessment process in �gure 3 (Right)
and multi-partite graph(MPG), symbolic dynamics model(SDM), and hidden Markov
model(HMM).

� Symbolic dynamics model: Field exploration of suggested species diversity,
niche condition, and its validation

� Hidden Markov model: Exploration of wider parameter spaces, model selec-
tion with a real-time observation likelihood during operation

4.2 Example of Assessment Result: Generative Index Species

Scoring Systems

By gradually introducing the suggestion from prototypical models, environmen-
tal assessment in Synecoculture project started to operate the initial steps of
dynamical assessment. Data-driven lists of index species candidates are obtained
from the �eld practice between August 2014 - July 2015 as in the table 6. These
generative index species, when connected with other database that refers to the
quality of environment such as yield, will serve as timely recon�gurable mea-
sures of environmental quality in an ever-changing open systems surrounding
the practice and management.

The table 7 gives the list of observed species in the table 6. As an example
of scoring system generation, the environmental score of these species are cal-
culated from the number of edible species observed in the same date and place
as an indicator of the productivity. The environmental score of each species was
calculated as follows:

1. Calculate the observation-wise environmental score of each species as the
number of edible species for each observation.

2. Take mean value of all observation to obtain the overall environmental score
of each species.

These environmental scores will evolve as the observation continues and can
serve as a data-driven predictor of edible species diversity. Although the scores
are not yet �ne-grained due to the one-year time scale limit, future observations
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Date Place Suggestion Observation Consistent Past Novelty
index index index

2014/8/7 Todoroki(Tokyo) 16 23 12 4 11
2014/9/14 Oiso(Kanagawa) 33 32 24 8 7
2014/9/13 Todoroki(Tokyo) 36 35 22 14 13
2014/11/22 Oiso(Kanagawa) 17 16 8 9 8
2014/12/21 Oiso(Kanagawa) 21 14 3 18 11
2015/3/28 Todoroki(Tokyo) 22 21 4 18 18
2015/4/25 Todoroki(Tokyo) 22 18 5 17 13
2015/5/2 Oiso(Kanagawa) 62 26 22 40 5
2015/5/30 Todoroki(Tokyo) 16 25 4 12 22

2015/6/13-14 Ise(Mie) 96 64 22 74 42
2015/6/27 Todoroki(Tokyo) 37 21 9 28 13
2015/7/25 Oiso(Kanagawa) 36 21 14 22 7

Table 6. Numbers of generative candidates of index species extracted from dynamical
assessment in Synecoculture project. The numbers indicate the number of species that
were suggested from the prototypical models, observed on �eld, and classi�ed as consis-
tent/past/novelty index species according to the inclusion and exclusion relationships
between suggestion and observation: Consistent index species commonly appeared in
both suggestion and observation, while past and novelty index species only appeared
in either suggestion or observation, respectively.

can be evaluated using the generated scoring systems of index species and fur-
ther re�ne and expand the list. The time scale of the database that generates
a better scoring system can then be selected to optimise the predictability. The
scoring systems can also enrich exploration process as species with similar scores
are susceptible of e�cient exploration to entail more comprehensive observation.
When su�cient diversity of observation is assured in the loop of dynamical as-
sessment, the scoring systems are expected to yield an e�ective measure with
available means, timely re�ecting ever-changing conditions of open systems. In-
formation generation, a crucial requirement for open systems exploration, can
therefore be evaluated by the dynamical recon�guration of the generative index
species scoring system in response to environmental change.

Table 7: List of observed species and its environmental score based
on the edible species diversity during the observations between Au-
gust 2014 - July 2015.

Academic name Score
Morella rubra Lour. 37

Ficus carica L. 37
Zanthoxylum ailanthoides Siebold et Zucc. 37

Megacopta punctatissima (Montandon, 1894) 37
Popillia japonica Newmann, 1844 37

Graphosoma rubrolineatum (Westwood, 1873) 37
Mimela splendens (Gyllenhal, 1817) 37
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Table 7: List of observed species and its environmental score based
on the edible species diversity during the observations between Au-
gust 2014 - July 2015.

Academic name Score
Microcerasus tomentosa (Thunb.) G.V.Eremin et Yushev 37

Ipomoea batatas (L.) Poir. 37
Ficus erecta Thunb. var. erecta 37

Lycaena phlaeas daimio (Matsumura, 1919) 37
Orthetrum albistylum speciosum (Uhler, 1858) 37

Rubus fruticosus 37
Ziziphus jujuba Mill. var. inermis (Bunge) Rehder 37

Cyanococcus 37
Hyla japonica 37
Papilio protenor 37

Locusta migratoria Linnaeus, 1758 37
Uroleucon nigrotuberculatum 37

Aronia melanocarpa 37
Eumeta japonica Heylaerts, 1884 37

Actinidia polygama (Siebold et Zucc.) Planch. ex Maxim. 37
Hydrangea serrata (Thunb.) Ser. var. thunbergii (Siebold) H.Ohba 37

Camellia sinensis (L.) Kuntze 37
Citrus limon (L.) Osbeck 37

Oleandraceae 37
Eurema hecabe (Linnaeus, 1758) 37

Allium chinense G. Don (variant Shimarakkyo) 37
Elaeagnaceae 37
Prunus avium 37

Fragaria x ananassa Duchesne ex Rozier 37
Epilachna vigintioctomaculataMotschulsky, 1857 37

Diptera Linnaeus, 1758 37
Metaplexis japonica (Thunb.) Makino 37
Neoscona adianta (Walckenaer, 1802) 37

Vitis spp 30.66666667
Paederia scandens (Lour.) Merr. 30

Aralia cordata 27.5
Acca sellowiana (O.Berg) Burret 27.5

Trifolium repens L. 26.5
Rosa multi�ora Thunb. 24.5
Vitis �cifolia Bunge 24
Solidago altissima L. 23.33333333

Lycopersicon esculentum Mill. 23.33333333
Acrida cinerea (Thunberg, 1815) 23.33333333

Perilla frutescens (L.) Britton var. crispa (Thunb.) H.Deane 23
Smilax china L. 23
Ginkgo biloba L. 23
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Table 7: List of observed species and its environmental score based
on the edible species diversity during the observations between Au-
gust 2014 - July 2015.

Academic name Score
Rubus hirsutus Thunb. 23

Angelica keiskei (Miq.) Koidz. 23
Polistes rothneyi iwatai van der Vecht, 1968 23

Gonista bicolor (de Haan, 1842) 23
Ampelopsis glandulosa (Wall.) Momiy. var. heterophylla (Thunb.) Momiy. 23

Scolia (Scolia) histrionicajaponica Smith, 1873 23
Lycoris radiata (L'Hér.) Herb. 23
Momordica charantia var. pavel 23

Morus 22.66666667
Artemisia indica Willd. var. maximowiczii (Nakai) H.Hara 22

Diaea subdola 21.66666667
Houttuynia cordata Thunb. 21.6

Asteraceae 20
Commelina communis L. 20

Formica (Serviformica) japonica Motschulsky, 1866 20
Colocasia esculenta (L.) Schott 20
Dioscorea japonica Thunb. 19.25

Allium �stulosum L. 18.5
Allium tuberosum Rottler ex Spreng. 18.42857143

Coccinella septempunctataLinnaeus, 1758 18.25
Daucus carota L. subsp. sativus (Ho�m.) Arcang. 18.11111111
Pieris (Artogeia) rapae crucivora Boisduval, 1836 18

Cucumis sativus L. 18
Eurydema rugosa Motschulsky, 1861 17.66666667

Brassicaceae 17.63636364
Poaceae 17.6

Equisetum arvense L. 17.5
Formicidae 17
Ericaceae 17

Parnara guttata guttata (Bremer et Grey, 1852) 17
Nonarthra cyanea Baly, 1874 17

Portulaca oleracea L. 17
Eurydema dominulus (Scopoli, 1763) 17

Arctium lappa L. 17
Menochilus sexmaculatus(Fabricius, 1781) 17

Solanum tuberosum L. 17
Eriobotrya japonica (Thunb.) Lindl. 17

Amygdalus persica L. 17
Cichorium intybus 17

Eucalyptus globula Labill. 17
Brassica oleracea L. var. capitata L. 16.6
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Table 7: List of observed species and its environmental score based
on the edible species diversity during the observations between Au-
gust 2014 - July 2015.

Academic name Score
Glycine max (L.) Merr. subsp. max 16.5

Rubus tri�dus Thunb. 16.5
Capsicum annuum 'grossum' 16.5

Nerium oleander L. var. indicum (Mill.) O.Deg. et Greenwell 16.33333333
Aedes (Stegomyia) albopictus (Skuse, 1894) 16

Apis mellifera Linnaeus, 1758 16
Armeniaca mume (Siebold et Zucc.) de Vriese 16

Promachus yesonicus Bigot, 1887 16
Setaria viridis (L.) P.Beauv. 16

Atractomorpha lata (Motschulsky, 1866) 15.75
Cynara scolymus L. 15.66666667

Papilio machaon hippocrates C. et R.Felder, 1864 15.66666667
Dolycoris baccalum (Linnaeus, 1758) 15.66666667

A. o�cinalis 15.6
Aphididae 15.5

Polistes jadwigae jadwigae Dalla Torre, 1904 15.5
Mentha suaveolens 15.5

Cornus controversa Hemsl. ex Prain 15.5
Akebia quinata (Houtt.) Decne. 15.5

Solanum nigrum L. 15.33333333
Rutaceae 15.33333333

Mentha canadensis L. var. piperascens (Malinv. ex Holmes) H.Hara 15.2
Helianthus annuus L. 15
Capsicum annuum L. 15

Petroselinum neapolitanum 15
Brassica oleracea L. var. italica Plenck 15

Solanum melongena L. 15
Nephotettix cincticeps (Uhler, 1896) 15

Lavandula o�cinalis Chaix. 15
Colias erate poliographus Motschulsky, 1860 15

Melissa o�cinalis 15
M. pumila 14.75

Nysius plebejus Distant, 1883 14.66666667
Rosmarinus o�cinalis 14.66666667
Pisum sativum L. 14.6

Zingiber mioga (Thunb.) Roscoe 14.5
Raphanus sativus L. 14

Aphis craccivora craccivora Koch, 1854 14
Vicia faba L. 14

Dolerus similis japonicus Kirby, l882 14
Coccinellidae 14
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Table 7: List of observed species and its environmental score based
on the edible species diversity during the observations between Au-
gust 2014 - July 2015.

Academic name Score
Fabaceae 14
Canna 14

Phytomyza horticola (Goureau, 1851) 13.66666667
Eruca vesicaria 13.5

Aulacophora femoralis (Motschulsky, 1857) 13
Nephila clavata 13

Gryllidae 13
Xanthophthalmum coronarium (L.) P.D.Sell 13

Diospyros kaki Thunb. 13
Brassica rapa L. var. perviridis L.H.Bailey 13
Illeis koebelei koebeleiTimberlake, 1943 13

Veronica persica Poir. 12
Takydromus tachydromoides ( Schlegel, 1838) 12

Armadillidium vulgare 10
Cycas revoluta Thunb. 10
Camellia japonica 10

Citrus japonica Thunb. 10
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