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cMaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-En-Josas, France

Abstract

In the context of global sensitivity analysis, the replication procedure allows
to estimate Sobol’ indices at an efficient cost. However this method still
requires a large number of model evaluations. In this paper, we consider the
ability of increasing the number of evaluation points, thus the accuracy of
estimates, by rendering the replication procedure recursive. The key feature
of this approach is the construction of structured space-filling designs. For
the estimation of first-order indices, we exploit a nested Latin Hypercube
already introduced in the literature. For the estimation of closed second-order
indices, two methods are proposed to construct iteratively an orthogonal
array. One of the two leads to a partition of the coordinate space over a
Galois field. Various space-filling criteria are used to evaluate our designs.

Keywords: sensitivity analysis, Sobol’ indices, space-filling designs,
Orthogonal Array, recursive estimator

1. Introduction

Mathematical models used in various fields are often quite complex. The
behavior of some of these models may only be explored through the study of
uncertainties propagated from their inputs. Sensitivity analysis studies how
the uncertainty on an output of a mathematical model can be attributed
to sources of uncertainty among the inputs. Global sensitivity analysis is a
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common practice to identify influent inputs of a complex model and detect
the potential interactions between them. Among the large number of avail-
able approaches, the variance-based method introduced by Sobol’ [1] allows
to calculate sensitivity indices called Sobol’ indices. The method is based
on a variance decomposition of the model’s output into fractions which can
be attributed to sets of inputs, assuming that the uncertainty on the sets of
inputs is modeled by independent probability distributions. The influences
of each set are summarized by the Sobol’ indices which are scalars between
0 and 1. An index close to 1 means that the set of inputs is influent. At the
opposite, an index equal to 0 means that the set of inputs is not correlated
to the output. One can distinguish first-order indices that estimate the main
effect of each set of inputs from higher-order indices that estimate the cor-
responding order of interactions between sets of inputs. Various procedures
have been proposed in the literature (see Saltelli [2] for a survey) to estimate
Sobol’ indices. Unfortunately, these procedures require a significant number
of model runs. This cost can be prohibitive for expansive models. A solution
to reduce this cost lies in the use of replicated designs.

The notion of replicated designs to estimate first-order Sobol’ indices
probably goes back to McKay [3] and appears later in Mara et al. [4]. These
latter authors combine replicated designs with “pick-freeze” estimators [1] to
estimate first-order Sobol’ indices. This procedure has been further deeply
studied and generalized in Tissot and Prieur [5] to the estimation of closed
second-order indices. The generalization to closed second-order Sobol’ indices
relies on the replication of Orthogonal Arrays (see Lemieux [6] or Owen
[7]). The procedure in Mara et al. [4] has the major advantage of reducing
drastically the estimation cost as the number of runs (one design of size n
and a replication of this design) becomes independent of the input space
dimension. However, if the input space is not properly explored (if n is too
small), the Sobol’ indices estimates may not be accurate enough.

To address this issue, we need a procedure allowing to add new sample
points to the initial design. We also need a recursive formulation for our
Sobol’ index estimator. Adding new sample points is an easy task in case the
initial design is composed with independent and identically distributed points
in Rd. However, in the replication procedure, as it has been introduced in [5],
the initial design is a Latin Hypercube Sampling (resp. an Orthogonal Array
(OA)) for the estimation of first- (resp. closed second-) order indices. An
algorithm for the construction of nested Latin Hypercubes has been proposed
by Qian [8]. It allows to double the size of the sample at each update. Our
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approach to render the replication procedure recursive for the estimation of
first-oder Sobol’ indices is based on this construction.

In this paper, we propose two new algorithms to construct nested Or-
thogonal Arrays. These two algorithms start from an initial OA of size n
and update it sequentially by adding n new points at each step. At step k,
k ≥ 1, the updated design is of size k×n and possesses an OA structure. An
intuitive construction consists in duplicating the initial design at each step.
However, this approach is not satisfying as there is no benefit in exploring
redundant input space locations. In ([9], [10] and [11]) families of “nested
Orthogonal Arrays” are constructed. The constructions proposed in these
papers suffer from at least one of the following drawbacks:

• The size n of the initial design is rather large, hence at each step a
large number n of new points is added.

• The constructions deal only with specific values of the input space
dimension. There exists indeed an upper bound on the number of
columns of the designs constructed.

• The discretization is not the same in each dimension, more precisely
only one dimension is finely discretized.

The two algorithms proposed in this paper do not suffer from these draw-
backs.

The paper is organized as follows. In Section 2, backgrounds are given
on Sobol’ indices and on the replication estimation procedure. Then, the
process rendering the replication procedure recursive is detailed. Section
3 deals with the construction of the nested space-filling structures: nested
Latin Hypercube and nested Orthogonal Arrays of strength two. In Section
4, regularity and uniformity properties of these two designs are studied. The
end of this section is devoted to the application of the recursive replication
procedure. A classical case study is addressed to demonstrate the interest in
using the recursive approach.

2. Replicated designs and recursive estimation of sensitivity indices

2.1. Definition of Sobol’ indices

Consider the following model defined from a black box perspective:

f :

{
Rd → R

x = (x1, . . . , xd) 7→ y = f(x)
(1)
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where y is the output of the model f , x the input vector and d the dimension
of the input space. Denote by ( the proper (strict) inclusion symbol and by
⊆ the inclusion symbol.

Let (Ω,A,P) be a probability space. We model the uncertainty on the
inputs by a random vector X = (X1, . . . , Xd) whose components are indepen-
dent. Let PX = PX1⊗. . .⊗PXd

denote the distribution of X. We assume that
f ∈ L2(PX). The model f can then be uniquely decomposed into summands
of increasing dimensions (functional ANOVA decomposition [1, 12]):

f(X) = f0 +
∑
i

fi(Xi) +
∑
i<j

fij(Xi, Xj) + · · ·+ f1...d(X1, . . . , Xd) , (2)

where E[fI(XI)fK(XK)] = 0, ∀ (I,K) ⊆ {1, . . . , d}2, I 6= K. This im-
plies that f0 = E[Y ] and that the components are mutually orthogonal with
respect to PX . Let I ⊆ {1, . . . , d}, each component is defined by:

fI(XI) = E[Y |XI ]−
∑
J(I

fJ(XJ).

The functional decomposition can be used to measure the global sensitivity
of the output Y to the input Xi. By squaring and integrating (2), due to
orthogonality we get:

V =
∑
i

Vi +
∑
i<j

Vij + · · ·+ V1,...,d (3)

where VI = Var[fI(XI)] = Var[E[Y |XI ]]−
∑
J(I

VJ

and V = Var[Y ] .

Resulting from this decomposition, the Sobol’ indices are defined by:

SI =
VI
V
.

Let |I| denote the cardinal of I. The Sobol’ index SI measures the contri-
bution to V of the |I|th-order interaction between the {Xi}, i ∈ I. Closed
Sobol’ indices are defined by:

SI =
Var[E[Y |XI ]]

V
.
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The closed Sobol’ index SI measures the contribution of the Xi, i ∈ I by
themselves or in interaction with each other. As an example, if there exist
i 6= j, (i, j) ∈ {1, . . . , d}2 such that I = {i, j}, then Sij = Sij + Si + Sj. At
last, note that: ∑

I⊆{1,...,d},I 6=∅

SI = 1,

allowing a direct interpretation of the value of each index.
Most of the time, there does not exist any explicit formulation of Sobol’

indices which thus need to be estimated.

2.2. Estimation of Sobol’ indices

Let X and X ′ be two independent vectors distributed as the inputs vector.
We define:

X = (X1, . . . , Xd), XI = (X∗1 , . . . , X
∗
d),

where X∗i = Xi if i ∈ I and X∗i = X ′i otherwise. We also define Y and YI the
corresponding model outputs: Y = f(X), YI = f(XI). Then, the following
expression (see [13, Lemma 1.2]) for SI is obtained:

SI =
Cov(Y, YI)

Var[Y ]
.

To estimate SI , we proceed as in [1] and introduce two designs, each of size
n:

X =


X1

1 ... X
1
i ... X

1
d

...
...

...

Xj
1 ... X

j
i ... X

j
d

...
...

...
Xn

1 ... X
n
i ... X

n
d

 =


X1

...
Xj

...
Xn

 ,X’ =


X ′11 ... X

′1
i ... X

′1
d

...
...

...

X ′j1 ... X
′j
i ... X

′j
d

...
...

...
X ′n1 ... X

′n
i ... X

′n
d

 =


X ′1

...

X ′j

...
X ′n



From these two designs we construct the n × d matrix XI =


XI

1

...
XI

j

...
XI

n

 with

Xj
I = (X∗,j1 , . . . , X∗,jd ), j = 1, . . . , n where X∗,jj = Xj

i if i ∈ I and X∗,jj = X ′ji
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otherwise. We then define Y =


Y 1

...
Y j

...
Y n

 = f(X) and YI =


YI

1

...
YI

j

...
YI

n

 =

f(XI). Following [14], we propose the following estimator for SI :

ŜI =

1
n

n∑
j=1

Y jY j
I −

(
1
n

n∑
j=1

Y j
)(

1
n

n∑
j=1

Y j
I

)
1
n

n∑
j=1

(Y j)2 −
(

1
n

n∑
j=1

Y j
)2 , (4)

Other choices are possible for the estimator. We focus on (4) whose asymp-
totic properties have been studied in [13].

The main drawback of the aforementioned approach is the high number of
model evaluations needed. Estimating all first- (resp. all closed second-) or-
der Sobol’ indices requires n(d+1) (resp. n(

(
d
2

)
+1)) model evaluations. The

larger n, the more accurate the estimation of Sobol’ indices. For models with
substantial computational times, this solution becomes rapidly intractable in
case of large input space dimension. Some improvements have been intro-
duced by Saltelli [2] to reduce the number of evaluations but with a cost still
depending on the dimension d of the input space.

A solution to reduce drastically this costs lies in the use of replicated
designs. In the following, we review the procedure, denoted by replication
procedure, based on replicated designs to estimate first- or closed second-
order Sobol’ indices. For the sake of clarity of the paper, we assume that the
variables X1, . . . , Xd are independent random variables uniformly distributed
on [0, 1]. The generalization to other product distributions is provided in
Remark 1.

2.2.1. Replication procedure for first-order indices

Mara and Rakoto Joseph [4] proposed a strategy based on replicated
designs to estimate all first-order Sobol’ indices with only two designs each of
size n. More precisely, denote by X = (Xj

i )1≤j≤n, 1≤i≤d the first design. The
second design X’ is said to be replicated from X if it is obtained by permuting
the entries of each column: X’ = (X

πi(j)
i )1≤j≤n, 1≤i≤d, where π1, . . . , πd are

d permutations on {1, . . . , n} selected randomly and independently without
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replacement. Let Y and Y’ be the vectors of evaluations associated to those
two designs:

Y = (Y 1, . . . , Y n)T , Y’ = (Y ′
1
, . . . , Y ′

n
)T ,

where T denotes the transpose operator. To estimate the Sobol’ index Sk,
k ∈ {1, . . . , d}, a new vector Ỹk is constructed by re-arranging Y with the
permutation πk:

Ỹk =
(
Y πk(1), . . . , Y πk(n)

)T
=
(
f(Xπk(1)), . . . , f(Xπk(n))

)T
.

Remark that:

Xπk(j) =
(
X
πk(j)
1 , . . . , X

πk(j)
k−1 , X

′j
k, X

πk(j)
k+1 , . . . , X

πk(j)
d

)
.

All the coordinates have been re-sampled except the k-th one which has
been frozen. Sk is then estimated by replacing Y and YI in Formula (4)

by Ỹk and Y ′. With this approach, known as replication procedure, the
computation cost for all the first-order Sobol’ indices has been reduced to
2× n (evaluations on X and X ′ only). There are various choices for the two
replicated designs X, X’. In [4], X and X’ are composed with iid rows. In
[5], the authors propose the use of Latin Hypercube Sampling (LHS) insuring
a better exploration of the input space. We recall below the definition of a
LHS:

Definition 1 (Latin Hypercube Sampling). Denote by Πn the set of all
the permutations on {1, . . . , n} and let π1, . . . , πd be d independent random
variables uniformly distributed on Πn. We say that (Lji )1≤j≤n, 1≤i≤d is a Latin
Hypercube if:

Lji = πi(j), ∀i ∈ {1, . . . , d},∀j ∈ {1, . . . , n}.

We denote by LH(n, d) the set of all n× d Latin Hypercubes. Let U j
i be in-

dependent random variables uniformly distributed on [0, 1] and independent
of the πi. X = (Xj

i )1≤j≤n, 1≤i≤d is a randomized Latin Hypercube Sampling
(LHS) if:

Xj =
(
Xj

1 =
Lj1 − U

j
1

n
, . . . , Xj

d =
Ljd − U

j
d

n

)
(5)

Using Definition 1 above, permuting the entries of each column of a LHS
provides a new LHS. As a result, two LHS can be used in place of X and X’
to estimate all first-order Sobol’ indices.
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2.2.2. Replication procedure for closed second-order indices

For the estimation of closed second-order Sobol’ indices, the previous
idea of applying column-wise permutations to replicate the first design is not
enough. Indeed, to estimate second-order Sobol’ indices, a way to “freeze”
each subset of two variables has to be found. A solution was proposed by
Tissot and Prieur in [5]. It relies on the use of Orthogonal Arrays. The
introduction of Orthogonal Arrays probably goes back to Kishen [15] and
was further extended by Rao [16]. Let us consider the following definition
[17, Definition 1.1]:

Definition 2 (Orthogonal Array (OA)). A N × d array A with values
from a set S of cardinality q is said to be an Orthogonal Array with q levels,
strength t (0 ≤ t ≤ d) and index λ if every N × t sub-array of A contains
each t-tuple based on S exactly λ times as a row. The Orthogonal Array A
satisfies N = λqt. It is denoted by OAλ(q, d, t).

Here, the space S is identified as the Galois field of order q, denoted by
GF (q), where q is a prime number or prime power number (q = pα, p prime
and α ∈ N). For the rest of the paper, once an OA is constructed its levels
are substituted by 1, . . . , q where q corresponds to the number of points
into which each input is discretized. For the construction of an Orthogonal
Array OAλ(q, d, t) we invite the reader to consult the different constructions
proposed in [17, Theorem 3.1, Lemma 6.12].

The strategy proposed by Tissot and Prieur [4] allows to estimate all
closed second-order Sobol’ indices with two designs each of size q2. The
creation of these two designs relies on the construction of an Orthogonal
Array OA1(q, d, 2) denoted by A = (Aji )1≤j≤q2, 1≤i≤d, A

j
i ∈ {1, . . . , q}. The

first design X = (Xj
i )1≤j≤q2, 1≤i≤d, is a randomized OA constructed as follows

(see [5] for further details):

Xj =
(
Xj

1 =
Aj1 − U

Aj
1

1

q
, . . . , Xj

d =
Ajd − U

Aj
d

d

q

)
(6)

where the {U j
i }1≤j≤q2, 1≤i≤d are independent random variables uniformly dis-

tributed on [0, 1] and independent from A. The construction of the second
design relies on the replication of A. This can be achieved through the use
of the following definition:
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Definition 3 (replicated Orthogonal Array). Let L ∈ LH(q, d). Let A
be an Orthogonal Array OAλ(q, d, 2). Define A′ as follows:

A′
j
i = L

Aj
i
i , j ∈ {1, . . . , q2}, i ∈ {1, . . . , d}

Then A′ is called an Orthogonal Array OAλ(q, d, 2) replicated from A. De-
note by ♦ this operation: A′ = ♦(A,L).

By applying Definition 3, a second Orthogonal Array A′ is replicated from
A. The second design X’ = (X ′ji )1≤j≤q2, 1≤i≤d is constructed using (6) with

A′ in place of A and with the same random variables {U j
i }1≤j≤q2, 1≤i≤d:

X ′
j

=
(
X ′

j
1 =

A′j1 − U
A′j

1
1

q
, . . . , X ′

j
d =

A′jd − U
A′j

d
d

q

)
.

Let Y and Y’ be the associated vectors of model outputs:

Y =
(
f(X1), . . . , f(Xq2)

)T
, Y’ =

(
f(X ′

1
), . . . , f(X ′

q2
)
)T
,

the estimation of the Sobol’ index Sk,l , (k, l) ∈ {1, . . . , d}2, relies on a specific
ordering of Y and Y’. Denote by Ak the k-th column of A. The Sobol’ index
Sk,l, k, l ∈ {1, . . . , d}2, is obtained by re-arranging the values of Y (resp. Y’)
such that Ak ×Al (resp. A′k ×A′l) is sorted in ascending lexicographic order.
The two resulting vectors are then used in formula (4) in place of Y and YI

to estimate Sk,l. This procedure allows to estimate all closed second-order
Sobol’ indices at a total cost of 2× q2 evaluations of the model.

Remark 1. In this section, the constructions of designs X and X’ for either
first- or second-order Sobol’ indices estimation are only valid when dealing
with variables X1, . . . , Xd independent and uniformly distributed on [0, 1].
However, this construction can be generalized to other non-uniform dis-
tributions. Denote by F1, . . . , Fd the cumulative distribution functions of
X1, . . . , Xd. Denote by Xg and X’g the two designs constructed for the gen-
eral case, they are defined as follows:

Xj
g = (F−11 (Xj

1), . . . , F−1d (Xj
d))

X’jg = (F−11 (X ′
j
1), . . . , F

−1
d (X ′

j
d))

where F−11 , . . . , F−1d are the inverse cumulative distribution functions (quan-
tile functions) of X1, . . . , Xd. Then the estimation is performed with Xg and
X’g in place of X and X’.
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2.3. Recursive procedure

The recursive approach presented in this section consists in rendering the
replication procedure recursive. This approach requires first to write down
a recursive formula for the Sobol’ index estimator. Recall the expression of
the Sobol’ index:

SI =
Cov[Y, YI ]

Var[Y ]
=

E[Y YI ]− E[Y ] E[YI ]

Var[Y ]
(7)

where Y and YI are the model outputs calculated from the two replicated
designs. At each step of the recursive procedure, both designs are augmented
with a new set of points. Denote by Dl, D

′
l these two designs at the l-th step

and by nl their number of points. At the (l + 1)-th step of the recursive
estimation, a new set of points, denoted by Dnew,l+1, of size ml+1 is added
to Dl to form Dl+1. Thus, Dl+1 = Dl ∪ Dnew,l+1 and nl+1 = nl + ml+1.
Dnew,l+1 is then replicated (see Sections 2.2.1, 2.2.2) and its replication serves
to increase D′l to form D′l+1. At step l, the Sobol’ index SI is estimated by

the family of recursive estimators defined as follows: ŜI
(l)

=
φl − ψlξl

Vl
, where:



φl = 1
nl

nl∑
j=1

Y jY j
I ,

ψl = 1
nl

nl∑
j=1

Y j,

ξl = 1
nl

nl∑
j=1

Y j
I ,

Vl = 1
nl−1

nl∑
j=1

(Y j − ψl)2.

Using the recursive formula of φl+1, ψl+1, ξl+1 and Vl+1, the following
recursive formula is obtained:

ŜI
(l+1)

=
φl+1 − ψl+1ξl+1

Vl+1

(8)
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where:

φl+1 = nlφl +ml+1

nl+1∑
j=nl+1

Y jY j
I ,

ψl+1 = nlψl +ml+1

nl+1∑
j=nl+1

Y j,

ξl+1 = nlξl +ml+1

nl+1∑
j=nl+1

Y j
I ,

Vl+1 = (nl − 1)Vl + nlψl
2 +

nl+1∑
j=nl+1

(Y j)2 − 1
nl+1

(nlψl +ml+1

nl+1∑
j=nl+1

Y j)2,

C l+1 = nl+1−1
nl+1

.

Then, the recursive procedure relies on the construction of a nested space-
filling structure design (discrete LHS for first-order indices and discrete OA
for closed second-order indices). This structured design is partitioned into
subsets denoted by blocks in the following. Algorithm 1 summarizes the main
steps of our recursive estimation procedure. The variable order indicates
whether first-order (value 1) or closed second-order (value 2) indices are
estimated. The randomization applied in Step 3 of Algorithm 1 ensures
that each point of the set Dnew,l+1 is uniformly distributed in [0, 1]d. The
method of randomization is detailed in the next section. The form of the
stopping criterion is discussed in Section 4.3.

In the next section, we detail the construction of the nested space-filling
structured designs for the estimation of either first-order or closed second-
order Sobol’ indices. In both cases, the construction ensures that at each
step l of the recursive procedure, the nested design Dl possesses a space-
filling structure.

3. Space filling construction of the blocks

For the estimation of first-oder indices, the nested space-filling structured
design is a nested Latin Hypercube. The number of blocks partitioning the
structure has to be specified beforehand. The discretization of each input is
further refined while adding new blocks. For the estimation of closed second-
oder indices, the nested space-filling structured design is an Orthogonal Array
of strength two and index λ > 1. The number of blocks is iteratively aug-
mented. However, the discretization of each input is the same for all blocks.

11



Algorithm 1: Recursive estimation procedure

1. if (order == 1): Construct the nested space-
filling structured design given a maximum number
of runs

2. Set: l← 0, D0 ← ∅, ŜI
(0)
← 0

3. while ( ! stopping criterion):

3.1 if (order == 1): Select a block of the nested
space-filling structured design,
if (order == 2): Create a block of the nested
space-filling structured design

3.2 Randomize the block to obtain Dnew,l+1.
3.3 Replicate Dnew,l+1 using the replication proce-

dure of Section 2.2.1 or 2.2.2
3.4 for each index SI :

3.4.1 Compute Y and YI from Dnew,l+1 and its
replication.

3.4.2 Evaluate ŜI
(l)

with (8).

3.5 Dl+1 ← Dl ∪ Dnew,l+1

3.6 l← l + 1

4. return the estimated Sobol’ indices

3.1. Nested Latin Hypercube for first-order indices

A way to augment the number of points while conserving a discrete Latin
Hypercube structure has been proposed by Qian [8]. A nested Latin Hy-
percube is a discrete Latin Hypercube that is partitioned into sets of points
referred here as blocks. Each of this block possesses a Latin Hypercube
structure when projected onto a less refined grid. As an illustration, a two
dimensional nested Latin Hypercube with 3 blocks is presented in Figure 1
(a). Each block represented in Figure 1 (b), (c), (d) possesses a discrete Latin
Hypercube structure in their respective grid (delimited by the dark lines).

The algorithm underlying the construction of a nested Latin Hypercube
can be found in [8, Section 5]. With this algorithm, the blocks constituting
the nested Latin Hypercube possess at the minimum the following number
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(a)

(b) (c) (d)

Figure 1: Final nested Latin Hypercube with 3 blocks. (a) Nested Latin Hypercube. (b)
first block. (c) second block. (d) third block. (b), (c) and (d) are derived from the
construction of (a).

of points: (1,1,2,22,23,. . . ). It is important to note that the construction of a
nested Latin Hypercube is not sequential, the whole structure must be con-
structed at once. However, the construction ensures that the concatenation
of the k-th block with the formers still possesses a discrete Latin Hypercube
structure (see [8] for details).

The randomization of a block (Step 2.2 of Algorithm 1) is performed
using a formula similar to (5). As an example, the randomization of the
blocks in Figure 1 would consist to sample points inside the hatched areas.
We formalize thereafter this procedure. Denote by Bl = (Bj,l

i )1≤j≤ml, 1≤i≤d
the l-th block of the nested Latin Hypercube. Let m be the number of points
of the final nested Latin Hypercube. Denote by Dnew,l+1 the design resulting
from the randomization of Bl. Dnew,l+1 is defined as follows:

Dnew,l+1
j =

(
Dnew,l+1

j
1 =

Bj,l
1 − U

j,Bl

1

m
, . . . , Dnew,l+1

j
d =

Bj,l
d − U

j,Bl

d

m

)
,

j = {1, . . . ,ml}, where U j,Bl

i are independent random variables uniformly
distributed on [0, 1] and independent of Bl. Dnew,l+1 is then used within Al-
gorithm 1 to estimate all first-order Sobol’ indices. The cost of the estimation

equals 2× (
K∑
l=1

ml) where K is the step at which the recursive estimation has

terminated.
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3.2. Orthogonal Array for closed second-order indices

The nested space-filling structured design constructed for the estimation
of closed second-order indices is an Orthogonal Array of strength two with
index λ ≥ 1, denoted by OAλ(q, d, 2). This OAλ(q, d, 2) can be partitioned
into λ blocks where each block has the geometric structure of an Orthogonal
Array of strength two OA1(q, d, 2). We propose two procedures to construct
such an OAλ(q, d, 2). The first one is an accept-reject procedure. The sec-
ond one is called algebraic procedure and relies on results from arithmetic.
Both methods consist in iteratively constructing the λ blocks composing the
OAλ(q, d, 2). As stated before, the discretization of the inputs is given by
the first block and is not further refined with the addition of new blocks.
However, the whole structure can be sequentially augmented.

To illustrate both construction methods, an example of an OA3(3, 3, 2),
denoted by A, is presented in Figure 2. In each graph (a), (b), (c) is rep-
resented one of three blocks of A. Each block possesses the structure of
an OA1(3, 3, 2). Each row of A is associated with a sub-hypercube of the d-
hypercube 1 . The idea of the construction reduces to progressively filling the
d-hypercube with sub-hypercubes distinct from those already constructed.

(a) (b) (c)

Figure 2: OA3(3, 3, 2) with 3 blocks. (a) first block. (b) second block. (c) third block.

The accept-reject and the algebraic procedures aim to construct both an
OAλ(q, d, 2) where the rows are two by two distinct. This construction is
performed iteratively during the recursive estimation procedure (Step 3.1 of
Algorithm 1). For the sake of clarity, we present in Algorithm 2 a new version

1Consider the standard basis {0, {~i,~j,~k}}. Each row (Aj
1, . . . , A

j
3), j ∈ {1, . . . , 9}, of A

is associated with the sub-hypercube {1/3, (Aj
1, . . . , A

j
3)} of the d-hypercube [0, 1]3 where

1/3 stands for the edges length of the sub-hypercube and (Aj
1, . . . , A

j
3) are the coordinates

of its furthest vertex from the origin 0.
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of Algorithm 1 detailing the iterative construction of the Orthogonal Array
OAλ(q, d, 2) for the estimation of closed second-order indices. The new steps
added are put in bold.

Algorithm 2: Recursive estimation procedure for closed second-order
indices

1. Construct A0 an OA1(q, d, 2)

2. Set: l← 0, D0 ← ∅, ŜI
(0)
← 0 and A← A0

3. while ( ! stopping criterion):

3.1 Create a block of the nested space-filling struc-
tured design:

3.1.1 Construct B from A0 such that
rows(B) ∩ rows(A) = ∅

3.1.2 A←
(

A
B

)
3.2 Randomize the block B to obtain Dnew,l+1.
3.3 Replicate Dnew,l+1 using the replication proce-

dure of Section 2.2.1 or 2.2.2
3.4 for each index SI :

3.4.1 Compute Y and YI from Dnew,l+1 and its
replication.

3.4.2 Evaluate ŜI
(l)

with (8).

3.5 Dl+1 ← Dl ∪ Dnew,l+1

3.6 l← l + 1

4. return the estimated Sobol’ indices

The Orthogonal Array OAλ(q, d, 2) iteratively constructed is denoted by
A in Algorithm 2. it is constructed by adding a new block B to an initial Or-
thogonal Array A0 at each step of the recursive estimation procedure. Each
block B added possesses the structure of an Orthogonal Array OA1(q, d, 2).
Hence, the randomization of a block B (Step 3.2 of Algorithm 2) reduces
to use equation (6) to obtain a randomized OA. This randomized OA cor-
responds to the new sets of points Dnew,l+1. With this construction, the
number of new points added equals q2.

The process is repeated until the stopping criterion is met. The form of
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the stopping criterion is discussed in Section 4.3. The parameter λ of the
OAλ(q, d, 2) constructed corresponds to the total number of blocks B added.
The accept-reject and the algebraic procedures differ on the way the block B
is constructed at Step 3.1.1 of Algorithm 2. We detail below this construction
for each method.

Method 1: accept-reject. It uses the application ♦ defined in Definition 3.
Variant 1 details Step 3.1.1 of Algorithm 2 when using the accept-reject
method. This step tests if the new block B and A have no common rows.
This test may be computationally expansive when the dimension d of the
input space dimension is small (d ≤ 4).

Variant 1: Step 3.1.1 of the accept-reject method

3.1.1 choose L ∈ LH(q, d)
construct B = ♦(A0, L)
if rows(B) ∩ rows(A) = ∅ accept B
else discard B and start again

Method 2: algebraic method. Let C be the set defined as follows:

C =
{
g = (0, 0, g3, . . . , gd) | ∀i ≥ 3, gi ∈ GF (q)

}
( GF (q)d.

Denote by A0
j the j-th row of A0. Variant 2 details Step 3.1.1 of Algorithm

2 when using the algebraic method. This method has the advantage of not
relying on a computationally expensive comparison of rows. Furthermore,
the maximum value taken by λ is known and equals qd−2 (consequence of
Proposition 1 thereafter).

Variant 2: Step 3.1.1 of the algebraic method

3.1.1 choose g ∈ C
construct B = gA0 =

{
g+A0

j | ∀j ∈ {1, . . . , q2}
}

C ← C \ {g}
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For both methods, the resulting Orthogonal Array A constructed is an
OAλ(q, d, 2). For the accept-reject method, this result is a direct consequence
of Definition 3. For the algebraic method, this results comes from the follow-
ing proposition:

Proposition 1. Consider A0 an Orthogonal Array OA1(q, d, 2) based on the
Galois field GF (q)d, we have the following results:

i) ∀g ∈ GF (q)d, gA0 is an OA1(q, d, 2)

ii) ∀g, g′ ∈ C, such that g 6= g′, gA0 ∩ g′A0 = ∅. In other words, the sets
{gA0} form a partition of GF (q)d.

Proof. i) Let g = (g1, . . . , gd) ∈ GF (q)d. Consider A0k, A0l two columns of
A0. Denote by E the group (GF (q),+). Since gkE× glE is isomorph to
E × E, the 2-tuples (A0

j
k + gk, A0

j
l + gl) obtained after addition are all

two by two distinct.

ii) The proof can be found in [18] where an Orthogonal Array is regarded
as a “systematic linear code”.

From Proposition 1, the Orthogonal Array A constructed by the algebraic
method is an OAλ(q, d, 2) whose rows are two by two distinct. Furthermore,
as a consequence of ii), the maximum number of blocks λ on can construct
using the algebraic method equals the cardinality of C, that is qd−2. If this
maximum value is reached, the rows of A form a partition of the coordinate
space GF (q)d.

The cost of the recursive estimation of all closed second-order indices
equals 2×K×q2 where q refers to the levels of the initial Orthogonal Array A0

andK is the step at which the recursive replication procedure has terminated.

In the next section, the space-filling properties of the designs Dl aug-
mented at each step of the recursive replication procedure are studied. The
properties of the design Dl constructed for the estimation of first-order in-
dices are compared to those of low discrepancy sequences such as the Sobol’
sequence.
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4. Space-filling properties and applications

4.1. Sobol’ sequence

Low discrepancy sequences are sets of points sampled so as to approxi-
mate as close as possible a uniform distribution. These sequences are known
to achieve both uniformity and regularity properties. Here we focus on
the low discrepancy sequence introduced by Sobol’ and denoted by Sobol’
sequence. The construction of this sequence can be found in [6, Section
5.4.1]. The Sobol’ sequence is strongly related to the concept of (s1, . . . , sd)-
equidistribution in base 2. This notion is defined as follows:

Definition 4 (Equidistribution). Let s1, . . . , sd be nonnegative integers
and s = s1 + · · ·+ sd. A set of n = 2k points is (s1, . . . , sd)−equidistributed
in base 2 if every elementary interval of the form:

J(r) =
d∏
l=1

[ rl
2sl
,
rl + 1

2sl

)
where 0 ≤ rl ≤ 2sl , l = 1, . . . , d, contains 2k−s points of the set.

Denote by vj the j-th point of the Sobol’ sequence. The Sobol’ sequence is a
(t, s)-sequence which means that each subset vm2k , . . . , v(m+1)2k−1, where m ≥
0, of points of the sequence is (s1, . . . , sd)-equidistributed in base 2 whenever
s ≤ k− t. t is the t− value of the sequence. As an illustration, consider the
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Figure 3: points v8 to v15 of the 2-dimensional Sobol’ sequence, we have 2 points in each
elementary interval J(r).

subset of points v8,v9,. . . ,v15 of the 2-dimensional Sobol’ sequence represented

18



in Figure 3 . These points are obtained by fixing m = 1 and k = 3. This set
of 8 points is (1, 1)-equidistributed in base 2, that is each elementary interval
J(r) contains 2 points of the set.

In the recursive replication procedure, at each step the design Dl is aug-
mented by adding a new set of points Dnew,l+1. For the estimation of first-
order Sobol’ indices, Dnew,l+1 possesses an LHS structure. As an alternative,
a Sobol’ sequence could be used. Being a (t, s)-sequence, the Sobol’ sequence
can be partitioned into subsets of 2k points, k ≥ 1, where each subset pos-
sesses (s1, . . . , sd)-equidistribution properties. Thus, each subset can be seen
as a new set of points Dnew,l+1 augmenting the Sobol’ sequence. Sobol’ se-
quences are known to perform better than LHS for numerical integration.
However, if used within the recursive replication procedure, the Sobol’ se-
quence has to be replicated. The replication proposed in Section 2.2.1 does
not ensure that the equidistribution properties of the subsets of the sequence
are preserved.

In the next section, we compare the space-filling properties of the nested
design Dl to those of a replicated Sobol’ sequence. In addition, we compare
the properties of Dl to those of the replicated designs proposed by Tissot
and Prieur [5]: LHS and randomized OA (equation (6)).

4.2. Space-filling properties

We propose to compare first the properties of the designs used for the
estimation of first-order Sobol’ indices: (i) uniform design, (ii) LHS “non
recursive”, (iii) LHS “recursive” and (iv) replicated Sobol’ sequence. Design
(ii) refers to the LHS used in [5]. Design (iii) refers to the design Dl used
in our recursive replication procedure. Prior to its replication, the Sobol’
sequence is scrambled using the method proposed by Owen in [19]. The
uniform design serves as a base of comparison.

Three criteria are selected to study the properties of these four designs:
the mindist [20], the emst (euclidean minimal spanning tree [21]) and the
L2 star discrepancy [22]. The mindist criterion returns the minimum of
the distances between all pair of points of a design. It can be interpreted
as follows: the higher the value, the more regular the scaterring of design
points. The emst criterion can be interpreted using a (µ, σ) graph, graph
(c) of Figure 4, called interpretation graph. µ stands for the mean of the
tree edges lengths, σ for the standard deviation of the tree edges lengths.
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A value of the emst criterion is represented as a point in the (µ, σ) graph.
The uniform distribution is used as a reference. A design having a higher
value for µ and a smaller value for σ than those of a uniform design is more
regular. Mindist and emst criteria provide together a good estimation of the
regularity properties of a design. The L2 star discrepancy criterion measures
the uniformity property of a design. The smaller the value, the more uniform
is the design.
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Figure 4: Averaged results of mindist, emst and star discrepancy criteria over 100 repeti-
tions for different sizes n of the designs used for the estimation of first-order indices.
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Figure 4 shows the results obtained with each of the three criteria. The
results are averaged over r = 100 repetitions. The inputs space dimension d
equals 5. The comparison is made for the following sizes n of each design:
(23, 24, . . . , 210). For the LHS “recursive” these sizes correspond to those of
design Dl when iteratively adding a new set of points. For the replicated
Sobol’ sequence these sizes correspond to those of the design obtained when
iteratively adding a new subset of points of the sequence. Both the “non
recursive” and “recursive” LHS give similar results for the three criteria,.
Furthermore, both designs give better results than the replicated Sobol’ se-
quence for the first values of n.

The main conclusion is that the “recursive” LHS possesses regularity and
uniformity properties similar to those of the “non recursive” LHS. Hence, in
terms of space-filling properties of the designs, there is no drawback to render
the replication procedure recursive. The results for the replicated Sobol’
sequence are not better than those of the “recursive” LHS, they are even
slightly worse for small values of n. This justifies our choice of a “recursive”
LHS over a replicated Sobol’ sequence for the recursive replication procedure.

Remark 2. Most of the time, the replicated Sobol’ sequence obtained using
the procedure of Section 2.2.1 does not possess the same equidistribution
properties of the ones of the original sequence. To overcome this problem, a
proper procedure to replicate the Sobol’ sequence can be designed. This new
procedure satisfies the following conditions:

i) The Sobol’ sequence and its replication have the same one-dimensional
marginal values.

ii) The equidistribution properties of the original Sobol’ sequence are pre-
served.

An illustration of the result this new approach is proposed in Figure 5.
Graph (a) shows that both the Sobol’ sequence and its replication are (1, 1)-
equidistributed thus satisfying condition ii). Graphs (b) and (c) show that
both the Sobol’ sequence and its replication possess the same one-dimensional
marginal values thus satisfying condition i). A generic algorithm for this new
replication procedure of Sobol’ sequence will be the concern of a futur work.

A second comparison is carried out between designs used for the esti-
mation of closed-second order indices: (i) uniform design, (ii) OA “non-
recursive”, (iii) accept-reject and (iv) algebraic. Design (ii) refer to the ran-
domized OA used in [5] and (i) is a uniform design. Designs (iii) and (iv)
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(a) (1, 1)-equidistribution properties.
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(b) First marginal values alignment.
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(c) Second marginal values alignment.

Figure 5: Sobol’ sequence and its replication using the new approach. The points represent
the Sobol’ sequence. The triangles represent the replicated Sobol’ sequence.

refers to the design Dl constructed with either the accept-reject or the alge-
braic method. The same three previous criteria are used: mindist, emst and
L2 star discrepancy. The results are averaged over r = 100 repetitions. For
the sake of visualization, results for the following sizes n of the designs are
represented: (3× 82, 5× 82, 8× 82, 11× 82, 15× 82, 18× 82).

Figure 6 shows the results obtained with each of the three criteria. The
algebraic design gives better results for both mindist and discrepancy crite-
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Figure 6: Averaged results of mindist, emst and star discrepancy criteria over 100 repe-
titions for different sizes n of the designs used for the estimation of closed second-order
indices.

ria than the accept-reject design. The OA “non-recursive” is the one giving
the best results. For the emst criterion, the OA “non-recursive” performs
the best. The accept-reject and the algebraic designs show similar results
on this criterion. The main conclusion is that the algebraic design possesses
regularity and uniformity properties overall slightly better than those of the
accept-reject design. The OA “non-recursive” gives better results than those
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two designs. This difference can be explained by the lack of progressive dis-
cretization of the inputs for both the algebraic and the accept-reject method.
As a conclusion, the nested designs used in the recursive replication proce-
dure possess slightly worse space-filling properties than the replicated designs
proposed by Tissot and Prieur [5] for the estimation of closed second-order
indices. However, these discrepancies are largely offset by the possibility to
perform a recursive estimation of the indices.

In the next section, the recursive replication procedure is applied to a
standard test function. This procedure is compared to the classical replica-
tion procedure of Tissot and Prieur [5].

4.3. Application to test functions

Stopping criterion. The recursive replication procedure is carried out until a
stopping criterion is reached. At each step l of the procedure, the following
quantity is evaluated:

rI
(l) =

∣∣∣∣∣∣ŜI (l) − ŜI (l−1)∣∣∣∣∣∣,
where ||.|| denotes the absolute value function. rI

(l) is an absolute difference
between two successive estimations of SI . The stopping criterion we proposed
is composed of two conditions c1 and c2. The first condition c1 reads as
follows:

∀ I ∈ J : rI
(l−l0) < ε, rI

(l−l0−1) < ε, . . . , rI
(l) < ε

where J equals either {1, . . . , d} or {(i, j) ∈ {1, . . . , d}2; i < j} depending
on whether first- or closed second-order Sobol’ indices are estimated and
l0 > 0 is an integer. Condition c1 tests if all quantities rI

(l) are smaller than
a tolerance ε on l0 consecutive steps. The second condition c2 is defined as
follows:

c2 = l > Lmax

where Lmax is a maximum number of iterations. The parameters ε, l0 and
Lmax have to be properly set.
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Bratley et al. function. In the following, the recursive replication procedure
and the classical replication procedure are both applied to the test function
introduced by Bratley et al. [23] and defined as follows:

f(X1, . . . , Xd) =
d∑
i=1

(−1)i
i∏

k=1

Xk .

where X1, . . . , Xd are independent random variables uniformly distributed on
[0, 1]. Both first- and closed second-order Sobol’ indices of the function are
estimated with each method. Both methods are repeated r = 100 times to get
a sample of estimated indices. We choose d = 5 for the input space dimension.
Since f has an analytical expression, theoretical values of the Sobol’ indices
can be precisely calculated through symbolic integrals evaluations.

The recursive procedure stops when one of the two conditions of the stop-
ping criterion is satisfied. When the first condition c1 is fulfilled, the recursive
procedure stops at a step K. Thus, the r repetitions of the procedure can be
decomposed as a vector (r1, . . . , rK , . . . , rLmax) where rK denotes the number
of time the recursive procedure has stopped at the K-th step and rLmax is the
maximum number of steps given by condition c2. Denote by rα the median of
(r1, . . . , rLmax) and α the corresponding step. To have a fair comparison, SI
is also estimated r times with the classical replication procedure using a de-
sign whose size equals the one of the design used in the recursive replication
procedure at the α-th step.

For the estimation of first-order indices, we consider the context where a
limited number of evaluations points is available as it is often the case in in-
dustrial applications. Therefore, a small value for Lmax is selected to highlight
that the recursive replication procedure can perform as well as the classical
one for a restricted budget of evaluation points. The parameters of the stop-
ping criterion for the recursive procedure are set as follows: ε = 0.15, l0 = 2
and Lmax = 9. The nested Latin Hypercube used to augment the designs
of the recursive replication procedure is constructed to obtain the following
sizes of the design Dl at each step of the recursion: (22, 23, 24, . . . , 29).

Figure 7 shows barplots representation of the rK obtained. We observe
that condition c2 is only reached one third of the time.

Figure 8 shows the boxplots representation of the estimates for the two
replication procedure: recursive (right boxplots) and classical (left boxplots).
The true values of indices S4 and S5 are identical.
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Figure 7: Distribution of the rK for the estimation of first-order indices. The bar associated
to the step α is colored in black.
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Figure 8: Boxplots of first-order Sobol’ indices estimated r = 100 times with both the re-
cursive and the classical replication procedures. For each index SI , the right boxplot refers
to the recursive replication procedure, the left boxplot refers to the classical replication
procedure. The dotted horizontal lines refer to the true values of the indices.

The two methods give overall similar results. Hence, there is no drawback
to render the replication procedure recursive for the estimation of first-order
indices. Furthermore, the recursive replication procedure shows that it is
possible to decrease even more the number of simulations by adopting a
sequential approach. One can calculate the gain in terms of number of eval-
uations of our sequential approach. This gain corresponds to the ratio of the
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maximum number of evaluations rLmax divided by the iteration at which the
recursive replication procedure stopped. For this example the median gain
equals 9/8 = 1.125 and the maximum gain equals 9/7 = 1.29.

For the estimation of closed second-order Sobol’ indices, the parame-
ters of the stopping criterion for the recursive procedure are set as follows:
ε = 3 × 10−3, l0 = 3 and Lmax = 100. The Orthogonal Array of strength
two OAλ(q, d, 2) used to augment the designs of the recursive replication
procedure is constructed by setting q = 8 and λ = 100. Thus, the follow-
ing sizes of Dl are obtained: (82, 2 × 82, 3 × 82, . . . , 100 × 82). Both the
accept-reject method and the algebraic method are used to construct the Or-
thogonal Array. The estimations obtained with the recursive procedure using
both constructions are compared to those obtained while using the classical
replication procedure.

Figure 9 shows barplots representation of the rK obtained when applying
the recursive replication procedure r times using either the algebraic con-
struction or the accept-reject construction. Looking at Figure 9, the recur-
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Figure 9: Distribution of the rK when the recursive replication procedure is applied with
either (a) the algebraic construction or (b) the accept-reject construction. For each graph,
the bar associated to the median step α is colored in black.

sive replication procedure finishes at earlier steps when using the algebraic
construction.
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Figure 10 gives the boxplots representation of the estimates obtained
with: the recursive procedure using either the algebraic construction (middle
boxplots) or the accept-reject construction (right boxplots) and the classi-
cal replication procedure (left boxplots). The main observation is that the
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Figure 10: Boxplots of closed second-order Sobol’ indices estimated r = 100 times with
both recursive and classical replication procedures. For each index SI , the left boxplot
refers to the classical replication procedure, the boxplot in the middle (resp. on the
right) refers to the recursive replication procedure using the algebraic (resp. accept-reject)
construction. The horizontal dotted lines refer to the true values of the indices.

recursive replication procedure using the algebraic construction shows more
variability in the estimates than the two others. This observation is em-
phasized for graphs (b) and (c) of Figure 10 corresponding to Sobol’ indices
with low values. However, this variability observed is mostly due to the
algebraic construction itself stopping at earlier steps than the accept-reject
construction. The results obtained with the recursive procedure using the
accept-reject construction are overall similar to those obtained with the clas-
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sical replication procedure.
As for the case of first-order indices, one can calculate the gain of our

recursive approach in terms of number of evaluations. Table 1 gives the gain
of our method for each quartile of the vector (r1, . . . , rLmax). The recursive

quartile construction value gain=
rLmax

value

r1/4
algebraic 73 1.37

accept-reject 76 1.32

r1/2
algebraic 80 1.25

accept-reject 82 1.22

r3/4
algebraic 87 1.15

accept-reject 88 1.14

Table 1: Gain of the recursive replication procedure using either the algebraic or the
accept-reject construction. The gain is calculated in terms of number of evaluations for
each quartile (r1/4, r1/2, r3/4) of the vector (r1, . . . , rLmax).

replication procedure shows that it is possible to decrease even more the
number of simulations by adopting a sequential approach for the estimation
of closed second-order indices while conserving roughly the same precision.
However, as stated before, there is a computational price to pay induced
by the accept-reject construction. When the input space dimension is small
(d ≤ 4), it is harder to find new blocks, thus the algebraic construction
should be preferred to the accept-reject one. At the opposite, when the input
space dimension is high, new blocks are easier to find, thus the accept-reject
construction should be used as it gives more accurate results.

Conclusion

In this paper we proposed a new approach rendering the replication pro-
cedure recursive to estimate first-order or closed second-order Sobol’ indices.
We introduced a recursive formula for the Sobol’ index estimator. The recur-
sive procedure presented consists in augmenting the two replicated designs
with new sets of points. Through the construction of nested space-filling
structured designs a randomization of these sets of points was performed
(Step 3.2 of Algorithm 1). For the case of closed second-order indices, two
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methods were proposed to construct the nested space-filling structured de-
sign: an algebraic method and an accept-reject method. Our recursive repli-
cation procedure was compared to the classical replication procedure of Tis-
sot and Prieur [5]. The comparison focused on the space-filling properties of
the designs and on the precision of the Sobol’ indices estimates.

The replicated designs proposed in [5] are known to be highly efficient
in terms of number of simulations. Yet the results in this paper showed
that it is still possible to decrease the number of simulations by adopting
a sequential procedure based on a recursive method of estimation. More
precisely, the nested designs proposed here gave roughly the same precision
on sensitivity indices as the replicated designs used in [5] in N simulations.
But with a random number of simulations bounded by N and of a much
smaller expectation. Furthermore, the space-filling properties of the nested
designs constructed were on average as good as the one of the replicated
designs used in [5].

For the case of first-order indices, the nested design used could be im-
proved by considering Sobol’ sequences replicated using an approach that
preserve their equidistribution properties (see Remark 2). This will the ob-
ject of a future work. For the case of closed second-order indices, the variabil-
ity in the results showed by the recursive replication procedure while using
the algebraic construction could be reduced by further working on the set
C (Section 3.2 Variant 2). In our case, the set C was filled with elements
g chosen at random. A more deterministic choice of the g could lead to a
better exploration of the input space.
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Acronyms and Symbols

( (strict) inclusion symbol

⊂ inclusion symbol

|x| cardinality of a set x

xT transpose of x

Πn set of all the permutations on {1, . . . , n}
LH(n, d) set of all n× d discrete Latin Hypercubes

OAλ(q, d, t) Orthogonal Array of index λ, levels q and strength t

GF (q) Galois field of order q

♦ operator symbol

F cumulative distribution function

F−1 quantile function

||.|| absolute value function

SI closed Sobol’ index of order I

ŜI estimator of SI

d inputs space dimension

R real coordinate space

(Ω,A,P) probability space

PX distribution function of a random variable X

L2(PX) space of square integrable functions

E expectation symbol

Var variance symbol

Cov covariance symbol

N set of positive integers
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