P. Bratley and B. L. Niederreiter, Implementation and tests of low-discrepancy sequences, ACM Transactions on Modeling and Computer Simulation, vol.2, issue.3, pp.195-213, 1992.
DOI : 10.1145/146382.146385

A. Dey, Construction of nested orthogonal arrays, Discrete Mathematics, vol.310, issue.21, pp.37-48, 2012.
DOI : 10.1016/j.disc.2010.06.028

J. Franco, O. Vasseur, N. Corre, and M. Sergent, Minimum Spanning Tree: A new approach to assess the quality of the design of computer experiments, Chemometrics and Intelligent Laboratory Systems, vol.97, issue.2, pp.164-169, 2009.
DOI : 10.1016/j.chemolab.2009.03.011

URL : https://hal.archives-ouvertes.fr/hal-00409737

L. Gilquin, L. A. Rugama, E. Arnaud, F. J. Hickernell, H. Monod et al., Iterative construction of replicated designs based on Sobol' sequences, preprint available at https, 2016.

A. S. Hedayat, N. J. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications, new york: springer Edition, 1999.
DOI : 10.1007/978-1-4612-1478-6

W. Hoeffding, A Class of Statistics with Asymptotically Normal Distribution, The Annals of Mathematical Statistics, vol.19, issue.3, pp.293-325, 1948.
DOI : 10.1214/aoms/1177730196

A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur, Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics, vol.18, pp.342-364, 2014.
DOI : 10.1051/ps/2013040

URL : https://hal.archives-ouvertes.fr/hal-00665048

M. E. Jonshon, L. M. Moore, and D. Ylvisaker, Minimax and maximin distance designs, Journal of Statistical Planning and Inference, vol.26, issue.2, pp.131-148, 1990.
DOI : 10.1016/0378-3758(90)90122-B

T. A. Mara and O. R. Joseph, Comparison of some efficient methods to evaluate the main effect of computer model factors, Journal of Statistical Computation and Simulation, vol.1, issue.2, pp.167-178, 2008.
DOI : 10.1016/S0378-7788(00)00127-4

URL : https://hal.archives-ouvertes.fr/hal-01093033

M. D. Mckay, W. J. Conover, and R. J. Beckman, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, pp.239-245, 1979.

H. Monod, C. Naud, and D. Makowski, Uncertainty and sensitivity analysis for crop models, pp.55-100, 2006.

W. J. Morokoff and R. E. Caflisch, Quasi-Random Sequences and Their Discrepancies, SIAM Journal on Scientific Computing, vol.15, issue.6, p.12511279, 1994.
DOI : 10.1137/0915077

A. B. Owen, Better estimation of small sobol' sensitivity indices, ACM Transactions on Modeling and Computer Simulation, vol.23, issue.2, p.11, 2013.
DOI : 10.1145/2457459.2457460

P. Z. Qian, Nested Latin hypercube designs, Biometrika, vol.96, issue.4, pp.957-970, 2009.
DOI : 10.1093/biomet/asp045

P. Z. Qian, M. Ai, and C. F. Wu, Construction of nested space-filling designs, The Annals of Statistics, vol.37, issue.6A, pp.3616-3643, 2009.
DOI : 10.1214/09-AOS690

P. Z. Qian, B. Tang, and C. F. Wu, Nested space-filling designs for computer experiments with two levels of accuracy, Stat. Sinica, vol.19, pp.287-300, 2009.

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

I. M. Sobol-', Sensitivity indices for nonlinear mathematical models, Mathematical Modeling and Computational Experiment, vol.1, pp.407-414, 1993.

D. R. Stinson and J. L. Massey, An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions, Journal of Cryptology, vol.8, issue.3, pp.67-173, 1995.
DOI : 10.1007/BF00202271

J. Y. Tissot and C. Prieur, A randomized orthogonal array-based procedure for the estimation of first- and second-order Sobol' indices, Journal of Statistical Computation and Simulation, vol.3, issue.2, pp.1358-1381, 2015.
DOI : 10.1214/aos/1069362310

URL : https://hal.archives-ouvertes.fr/hal-00743964