COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting

Nikolaus Hansen 1 Anne Auger 1 Olaf Mersmann 2 Tea Tusar 3 Dimo Brockhoff 3
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
3 DOLPHIN - Parallel Cooperative Multi-criteria Optimization
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : COCO is a platform for Comparing Continuous Optimizers in a black-box setting. It aims at automatizing the tedious and repetitive task of benchmarking numerical optimization algorithms to the greatest possible extent. We present the rationals behind the development of the platform as a general proposition for a guideline towards better benchmarking. We detail underlying fundamental concepts of COCO such as its definition of a problem, the idea of instances, the relevance of target values, and runtime as central performance measure. Finally, we give a quick overview of the basic code structure and the available test suites.
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01294124
Contributeur : Nikolaus Hansen <>
Soumis le : jeudi 28 juillet 2016 - 18:41:18
Dernière modification le : jeudi 11 janvier 2018 - 06:27:32

Fichiers

coco-doc.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01294124, version 3
  • ARXIV : 1603.08785

Citation

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, Dimo Brockhoff. COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting. ArXiv e-prints, arXiv:1603.08785. 2016. 〈hal-01294124v3〉

Partager

Métriques

Consultations de la notice

201

Téléchargements de fichiers

72