N

N
N

HAL

open science

COCO: The Experimental Procedure

Nikolaus Hansen, Tea Tusar, Olaf Mersmann, Anne Auger, Dimo Brockhoff

» To cite this version:

Nikolaus Hansen, Tea Tusar, Olaf Mersmann, Anne Auger, Dimo Brockhoff. COCO: The Experimen-

tal Procedure. 2016. hal-01294167v2

HAL Id: hal-01294167
https://inria.hal.science/hal-01294167v2

Preprint submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01294167v2
https://hal.archives-ouvertes.fr

COCO: The Experimental Procedure

Nikolaus Hansen!?, Tea Tusar®, Olaf Mersmann?, Anne Auger'-?, Dimo Brockhoff?
"nria, research centre Saclay, France
2Université Paris-Saclay, LRI, France
3Inria, research centre Lille, France
4TU Dortmund University, Chair of Computational Statistics, Germany

Abstract

We present a budget-free experimental setup and procedure for benchmarking numeri-
€00 banatiomlimgitatfonma Mackdsoribe dnatindizTthon prd eaduisperntd¢heppl gedithith thd
touch upon the relevance of termination and restarts.

Contents

1 Introduction 2
1.1 Terminology e 2

2 Conducting the Experiment 2
2.2 Butdghyzatemandtiopéidethe, Abgoiehtarts 3

3 TPaneCenfhikiiyg Engddimmieny of Algorithms 45

https://github.com/numbbo/coco

Based on [HAN2009] and [HAN2010], we describe a comparatively simple experimental setup
for black-box optimization benchmarking. We recommend to use this procedure within the
platform [HAN2016C0].1

Our central measure of performance, to which the experimental procedure is adapted, is the
number of calls to the objective function to reach a certain solution quality (function value or
f-value or indicator value), also denoted as runtime.

1.1

Junction We talk about an objective function [as a parametrized mapping R” — R™ with scal-
able input space, that is, n is not (yet) determined, and usually m € {1,2}. Functions are
parametrized such that different instances of the “same” function are available, e.g. trans-
lated or shifted versions.

problem We talk about a problem, coco problem t , as a specific function instance on which
the optimization algorithm is run. Specifically, a problem can be described as the triple
(dimension, function, instance). A problem can be evaluated and returns an
f-value or -vector. In the context of performance assessment, a target f- or indicator-value
is attached to each problem. That is, a target value is added to the above triple to define a
single problem in this case.

runtime We define runtime, or run-length as the number of evaluations conducted on
a given problem, also referred to as number of function evaluations. Our central performance
measure is the runtime until a given target value is hit [HAN2016perf].

suite A test- or benchmark-suite is a collection of problems, typically between twenty and a hun-
dred, where the number of objectives m is fixed.

The optimization algorithm to be benchmarked is run on each problem of the given test suite once.
On each problem, the very same algorithm with the same parameter setting, the same initialzation
procedure, the same budget, the same termination and/or restart criteria etc. is used. There is no
prescribed minimal or maximal allowed budget, the benchmarking setup is budget-free. The longer
the experiment, the more data are available to assess the performance accurately. See also Section
Budget, Termination Criteria, and Restarts .

! The platform provides several (single and bi-objective) test suites with a collection of black-box optimiza-
tion problems of different dimensions to be minimized. automatically collects the relevant data to display the
performance results after a post-processing is applied.

https://github.com/numbbo/coco
http://numbbo.github.io/coco-doc/C/coco_8h.html#a408ba01b98c78bf5be3df36562d99478
https://github.com/numbbo/coco
https://github.com/numbbo/coco

2.1

An algorithm can use the following input information from each problem. At any time:
Input and output dimensions as a defining interface to the problem, specifically:
* The search space (input) dimension via coco problem get dimension ,

* The number of objectives via coco problem get number of objectives ,

which is the “output” dimension of coco evaluate function . All functions of
a single benchmark suite have the same number of objectives, currently either one or
two.

* The number of constraints via coco problem get number of constraints ,
which is the “output” dimension of coco evaluate constraint . All problems
of a single benchmark suite have either no constraints, or one or more constraints.

Search domain of interest defined from coco problem get largest values of interest
and coco problem get smallest values of interest . The optimum (or
each extremal solution of the Pareto set) lies within the search domain of interest. If the
optimizer operates on a bounded domain only, the domain of interest can be interpreted as
lower and upper bounds.

Feasible (initial) solution provided by coco problem get initial solution

The initial state of the optimization algorithm and its parameters shall only be based on these input
values. The initial algorithm setting is considered as part of the algorithm and must therefore
follow the same procedure for all problems of the suite. The problem identifier or the positioning
of the problem in the suite or any (other) known characteristics of the problem are not allowed as
input to the algorithm, see also Section Parameter Setting and Tuning of Algorithms.

During an optimization run, the following (new) information is available to the algorithm:

1. The result, i.e., the f-value(s) from evaluating the problem at a given search point via
coco evaluate function

2. The result from evaluating the constraints of the problem at a given search point via
coco evaluate constraint

3. The result of coco problem final target hit , which can be used to terminate a
run conclusively without changing the performance assessment in any way. Currently, if the
number of objectives m > 1, this function returns always zero.

The number of evaluations of the problem and/or constraints are the search costs, also referred to
as runtime, and used for the performance assessment of the algorithm.2

2 coco problem get evaluations(const coco problem t problem) is a convenience func-
tion that returns the number of evaluations done on problem. Because this information is available to the optimization
algorithm anyway, the convenience function might be used additionally.

http://numbbo.github.io/coco-doc/C/coco_8h.html#a0dabf3e4f5630d08077530a1341f13ab
http://numbbo.github.io/coco-doc/C/coco_8h.html#ab0d1fcc7f592c283f1e67cde2afeb60a
http://numbbo.github.io/coco-doc/C/coco_8h.html#aabbc02b57084ab069c37e1c27426b95c
http://numbbo.github.io/coco-doc/C/coco_8h.html#ad5c7b0889170a105671a14c8383fbb22
http://numbbo.github.io/coco-doc/C/coco_8h.html#ab5cce904e394349ec1be1bcdc35967fa
http://numbbo.github.io/coco-doc/C/coco_8h.html#a29c89e039494ae8b4f8e520cba1eb154
http://numbbo.github.io/coco-doc/C/coco_8h.html#a4ea6c067adfa866b0179329fe9b7c458
http://numbbo.github.io/coco-doc/C/coco_8h.html#ac5a44845acfadd7c5cccb9900a566b32
http://numbbo.github.io/coco-doc/C/coco_8h.html#aabbc02b57084ab069c37e1c27426b95c
http://numbbo.github.io/coco-doc/C/coco_8h.html#ab5cce904e394349ec1be1bcdc35967fa
http://numbbo.github.io/coco-doc/C/coco_8h.html#a1164d85fd641ca48046b943344ae9069
http://numbbo.github.io/coco-doc/C/coco_8h.html#a6ad88cdba2ffd15847346d594974067f

2.2

Algorithms and/or setups with any budget of function evaluations are eligible, the benchmarking
setup is budget-free. We consider termination criteria to be part of the benchmarked algorithm. The
choice of termination is a relevant part of the algorithm. On the one hand, allowing a larger number
of function evaluations increases the chance to find solutions with better quality. On the other hand,
a timely termination of stagnating runs can improve the performance, as these evaluations can be
used more effectively.

To exploit a large(r) number of function evaluations effectively, we encourage to use independent
restarts®, in particular for algorithms which terminate naturally within a comparatively small bud-
get. Independent restarts are a natural way to approach difficult optimization problems and do not
change the central performance measure used in (hence it is budget-free), however, inde-
pendent restarts improve the reliability, comparability™, precision, and “visibility” of the measured
results.

Moreover, any multistart procedure (which relies on an interim termination of the algorithm)
is encouraged. Multistarts may not be independent as they can feature a parameter sweep (e.g.,
increasing population size [HAR1999]), can be based on the outcome of the previous
starts, and/or feature a systematic change of the initial conditions for the algorithm.

After a multistart procedure has been established, a recommended procedure is to use a budget
proportional to the dimension, £ X n, and run repeated experiments with increase k, e.g. like
3,10, 30, 100, 300, . . ., which is a good compromise between availability of the latest results and
computational overhead.

An algorithm can be conclusively terminated if coco problem final target hit returns
1.3 This saves CPU cycles without affecting the performance assessment, because there is no target
left to hit.

Any tuning of algorithm parameters to the test suite should be described and the approximate
overall number of tested parameter settings or algorithm variants and the approximate overall
invested budget should be given.

The only recommended tuning procedure is the verification that termination conditions of the
algorithm are suited to the given testbed and, in case, tuning of termination parameters.6 Too early

3 The platform provides example code implementing independent restarts.

4 Algorithms are only comparable up to the smallest budget given to any of them.

> For the bbob-biob suite this is however currently never the case.

% For example in the single objective case, care should be taken to apply termination conditions that allow to hit the
final target on the most basic functions, like the sphere function f7, that is on the problems 0, 360, 720, 1080, 1440,
and 1800 of the bbob suite.

In our experience, numerical optimization software frequently terminates too early by default, while evolutionary
computation software often terminates too late by default.

https://github.com/numbbo/coco
http://numbbo.github.io/coco-doc/C/coco_8h.html#a1164d85fd641ca48046b943344ae9069
https://github.com/numbbo/coco

or too late termination can be identified and adjusted comparatively easy. This is also a useful
prerequisite for allowing restarts to become more effective.

On all functions the very same parameter setting must be used (which might well depend on the
dimensionality, see Section Initialization and Input to the Algorithm). That means, the a priori use
of function-dependent parameter settings is prohibited (since 2012). The function ID or any func-
tion characteristics (like separability, multi-modality, ...) cannot be considered as input parameter
to the algorithm.

On the other hand, benchmarking different parameter settings as “different algorithms” on the
entire test suite is encouraged.

In order to get a rough measurement of the time complexity of the algorithm, the wall-clock or
CPU time should be measured when running the algorithm on the benchmark suite. The chosen
setup should reflect a “realistic average scenario”.’ The time divided by the number of function
evaluations shall be presented separately for each dimension. The chosen setup, coding language,
compiler and computational architecture for conducting these experiments should be given.

Acknowledgments

The authors would like to thank Raymond Ros, Steffen Finck, Marc Schoenauer, Petr Posik and
Dejan TuSar for their many invaluable contributions to this work.

This work was support by the grant ANR-12-MONU-0009 (NumBBO) of the French National
Research Agency.

References

[AUG2005] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing pop-
ulation size. In Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2005), pages 1769-1776. IEEE Press, 2005.

[HAN2016perf] N. Hansen, A. Auger, D. Brockhoff, D. TuSar, T. Tusar.
Assessment. ArXiv e-prints,, 2016.

7 The example experiment code provides the timing output measured over all problems of a single dimension by
default. It also can be used to make a record of the same timing experiment with “pure random search”, which can
serve as additional base-line data. On the bbob test suite, also only the first instance of the Rosenbrock function fg
had been used for this experiment previously, that is, the suite indices 105, 465, 825, 1185, 1545, 1905.

http://numbbo.github.io/coco-doc/perf-assessment
http://numbbo.github.io/coco-doc/perf-assessment
http://arxiv.org/abs/1605.03560

[HAN2009] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-Parameter Black-Box Optimiza-
tion Benchmarking 2009: Experimental Setup, Inria Research Report RB»6828.inria.fr/inria-Of

[HAN2010] N. Hansen, A. Auger, S.
tion Benchmarking 201

http://hal.inria.fr/inria-00362649/en
http://hal.inria.fr/inria-00362649/en
http://numbbo.github.io/coco-doc/
http://numbbo.github.io/coco-doc/
http://arxiv.org/abs/1603.08785

	Introduction
	Terminology

	Conducting the Experiment
	Initialization and Input to the Algorithm
	Budget, Termination Criteria, and Restarts

	Parameter Setting and Tuning of Algorithms
	Time Complexity Experiment

