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Delaunay triangulations of closed Euclidean d-orbifolds ∗
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Abstract

We give a definition of the Delaunay triangulation of a point set in a closed Euclidean d-manifold, i.e.

a compact quotient space of the Euclidean space for a discrete group of isometries (a so-called Bieberbach

group or crystallographic group). We describe a geometric criterion to check whether a partition of the

manifold actually forms a triangulation (which subsumes that it is a simplicial complex). We provide

an incremental algorithm to compute the Delaunay triangulation of the manifold defined by a given set

of input points, if it exists. Otherwise, the algorithm returns the Delaunay triangulation of a finite-

sheeted covering space of the manifold. The algorithm has optimal randomized worst-case time and

space complexity. It extends to closed Euclidean orbifolds. An implementation for the special case of

the 3D flat torus has been released in Cgal 3.5. To the best of our knowledge, this is the first general

result on this topic.
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1 Introduction

The Delaunay triangulation of a point set in Ed is a well-studied structure in computational geometry.

Efficient algorithms are known [BY98, dBvKOS00] and there exist several implementations. We rephrase

the definition of the Delaunay triangulation to extend it to the case of closed Euclidean d-manifolds. We

define a triangulation as a simplicial complex, which allows us to propose an extension of the well-known

incremental algorithm [Bow81], which was designed for Ed, to these manifolds. Closed Euclidean d-manifolds

can be represented as quotient spaces of Ed for a certain class of discrete groups of isometries, the so-called

Bieberbach groups or crystallographic groups [Thu97]. For a given closed Euclidean d-manifold, there are

sets of points that do not admit a Delaunay triangulation, as we define it; we describe a geometric test that

can be used to check this while running the incremental algorithm. In such cases, the algorithm actually

computes the Delaunay triangulation of copies of the input points in a finite-sheeted covering space of the

manifold. This scheme extends to general closed Euclidean d-orbifolds.

So far we are not aware of any robust and efficient algorithm for computing Delaunay triangulations

in such spaces. In the literature, proved algorithms are restricted to special cases, and they require the

computation of the Delaunay triangulation of a certain number of copies of the input points in the Euclidean

space: it was shown that there exists a finite number of copies that allows for computing the correct

triangulation in a fundamental domain in 2D [MR97, GM01] and in 3D [DH97]. This obviously leads

to an important slow-down. Indeed, in practice, data sets are likely to define a Delaunay triangulation; our

geometric test allows the algorithm to avoid copying points whenever possible.

In the engineering community, Thompson proposed an implementation for computing what he calls a

periodic Delaunay “tessellation” in the 3D flat torus, avoiding duplications of points [Tho02]. All cells in

the tessellation are simplices but they do not necessarily form a simplicial complex, and not all tetrahedra

satisfy the Delaunay property. More importantly, the algorithm heavily relies on the assumption that input

points are well distributed.

Our research was originally motivated by the needs of astronomers who study the evolution of the large

scale mass distribution in our universe by running dynamical simulations on periodic 3D data, i.e., on points

in the three-dimensional flat torus. In fact there are numerous application fields that need robust software

for geometric problems in periodic spaces, for instance biomedical computing [Wei08], solid-state chemistry

[Rob06], physics of condensed matter [Duq], fluid dynamics [dFC03], astronomy [vdWPV+10], this list

being far from exhaustive. For simulations, the input data is often not inherently periodic, but the use of

periodic spaces is useful to avoid handling boundary conditions and to simulate an infinite working space.

Nevertheless, some of these applications are working on truly periodic data, like material engineering for bone

scaffolding [Moe08], which requires computations of meshes of periodic surfaces. A selection of applications
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was presented at the “Cgal Prospective Workshop on Geometric Computing in Periodic Spaces”1 and at the

workshop “Subdivide and Tile: Triangulating spaces for understanding the world”.2 While the case of the

flat torus with cubic domain fulfills the needs of many application fields, some of them, like computational

biology [Ber09] [LvdSH10, Section 3.2] or nano-structures, require more general manifolds that are quotient

spaces of E3 by other crystallographic groups.

In the introductory Section 2, we first recall basic notions about Euclidean triangulations (Section 2.1),

then we introduce closed Euclidean d-manifolds and orbifolds and their properties (Section 2.2). Section 3

proposes a definition of a triangulation of a Euclidean manifold and presents sufficient conditions ensuring

that a given point set defines a Delaunay triangulation. In Section 4 we prove, using the Bieberbach theorem,

that for a closed Euclidean d-orbifold, there is always a finite-sheeted covering orbifold in which the Delaunay

triangulation is defined for any set of points. Section 5 proposes an algorithm and analyzes it. Section 6

elaborates on the case of the 3D flat torus, and presents experimental observations performed with our

Cgal software package [cga, CT]. The software was demonstrated by a video [CT08] and has already been

used by researchers in other research fields, eg. by cosmologists [Sou11, SPK11, vdWVE+11, vdWPJ+11,

HvdWV+12].

2 Preliminaries

2.1 Euclidean Simplicial Complexes and Triangulations

Let us briefly recall a few elementary definitions. A k-simplex σ in the Euclidean space Ed (k ≤ d) is the

convex hull Ch(Pσ) of k + 1 affinely independent points Pσ = {p0, p1, . . . , pk}. A simplex τ defined by

Pτ ⊆ Pσ is called a face of σ and has σ as a coface. This is denoted by σ ≥ τ and τ ≤ σ. A Euclidean

simplicial complex is a collection K of simplices in Ed such that :

(a). σ ∈ K, τ ≤ σ ⇒ τ ∈ K

(b). σ, σ′ ∈ K ⇒ σ ∩ σ′ = ∅ or σ ∩ σ′ ≤ σ, σ′

(c). (local finiteness) Every point in a simplex of K has a neighborhood that intersects at most finitely

many simplices in K.

We refer to [Lee00, Chapter 5] for more details. We denote as St(v) the star of a vertex v of a simplicial

complex K, i.e., the smallest simplicial subcomplex of K that contains all simplices incident to v [BY98,

Section 11.1.2] (this would rather be referred to as the closed star in some other references).

1http://www.cgal.org/Events/PeriodicSpacesWorkshop/
2http://www.lorentzcenter.nl/lc/web/2009/357/info.php3?wsid=357
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The simplicial complex K forms a triangulation of the union |K| =
⋃
σ∈K σ. A triangulation defined

by a point set P in Ed is a Delaunay triangulation iff each simplex satisfies the Delaunay property, i.e. its

circumscribing ball does not contain any point of P in its interior [BY98, Chapter 17] [dBvKOS00, Chapter 9].

If a point set P ⊂ Ed shows degeneracies, then the Delaunay triangulation DT (P) actually is not uniquely

defined. More precisely, let Qcos be a polytope defined by more than d + 1 points of P, all lying on the

same sphere Scos, and such that Scos does not enclose any other point of P; then each partition of Qcos

into simplices is a valid Delaunay triangulation of Qcos. This sometimes leads to rather define the Delaunay

complex, whose cells can be polytopes with any number of vertices. Triangulating such polytopes in any

way yields a triangulation of Ed in which each simplex satisfies the Delaunay property. Up to a misuse of

language, unless specified otherwise, the term the Delaunay triangulation actually refers to any triangulation

satisfying the Delaunay property.

Let us state a general relation between the Delaunay property and local finiteness for a simplicial complex

in Ed. Surprisingly, we have not found any similar result in the literature.

Proposition 2.1. Let K be a set of simplices whose set of vertices PK is a discrete point set in Ed that is

not contained in any half-space of Ed. If K fulfills conditions (a) and (b), and the Delaunay property with

respect to PK , then K satisfies the local finiteness property (c) as well, i.e., K is a simplicial complex.

Proof. The hypothesis that PK is not contained in any half-space, together with the Delaunay property,

implies that all balls circumcribing d-simplices in K have a finite radius.

The half-space hypothesis means that no point of PK is extremal. So, for each point p ∈ PK , there

exist at least d + 1 points p0, p1, . . . , pd ∈ PK forming a d-simplex that contains p. For each i ∈ {0, . . . , d},

let Bi be the closed ball circumscribing the d-simplex (p0, . . . , pi−1, p, pi+1, . . . , pd) (taking pd+1 = p0). Let

now q ∈ PK be a point lying outside the union of balls Bi. Elementary geometry shows that a ball whose

boundary contains p and q must contain at least one of the points pi, so pq cannot be an edge of K. This

shows that St(p) is contained in the union B0 ∪ . . . Bd. This union is compact, and PK is discrete, so, only

finitely many points of PK can be incident to p.

A point p in Ed that is not an element of PK can only be in the interior of one d-simplex, or lie on a

(d − k)-face. In any case, it has a neighborhood that has non-empty intersection with a finite number of

simplices in K.

As a counter-example for a set of points contained in a half-space, take the discrete set {(n, n2), n ∈ N}

of points on a half-parabola in the plane E2. The origin (0, 0) is a vertex incident to infinitely many simplices

in the Delaunay triangulation.
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2.2 Closed Euclidean Manifolds and Orbifolds

This section is dedicated to introducing closed Euclidean manifolds and orbifolds, their properties, and how

to construct them. Most of the material of this section is taken from [Thu97, Section 4.2].

A closed manifold is a compact manifold without boundary. A d-manifold is called Euclidean or flat, if

every point has a neighborhood isometric to a neighborhood in Ed.

We need some more notions: Let G be a group and H denote a subgroup of G. H is called normal in G

if it is invariant under conjugation, i.e., if for all h ∈ H and g ∈ G, ghg−1 ∈ H. For a group element g ∈ G,

the set {gh | h ∈ H} is called a coset of H in G. The index of a subgroup H in G is defined as the number of

cosets of H in G.

If G is a group of isometries of Ed, then G is said to act on Ed by the binary operator G×Ed → Ed, (g, x) 7→

g · x, which satisfies associativity ((g.h) · x = g · (h · x),∀g, h ∈ G, x ∈ Ed) and identity (1G · x = x, ∀x ∈ Ed,

where 1G denotes the unit element of G). The quotient space Ed/G is then the set of all orbits of the group

action, i.e., the set of equivalence classes for the equivalence relation x ≡ y ⇔ ∃g ∈ G, y = g · x.

We quickly survey some background on Bieberbach groups. A d-dimensional Bieberbach group G is a

discrete group of isometries of Ed with compact quotient space Ed/G. Such groups are also called crystallo-

graphic groups or space groups. From the Bieberbach theorem, such a group contains a subgroup of finite

index isomorphic to Zd, the so-called translation subgroup.

Note that the quotient space Ed/G is not necessarily a manifold: If elements of G fix points, these points

do not have a neighborhood in Ed/G that is homeomorphic to a neighborhood in Ed. The quotient space

Ed/G can always be described by the more general concept of an orbifold [BMP03][Thu02, Chapter 13]. For

the quotient space to be a manifold, the group must act freely on Ed, i.e., elements of G must not fix points.

From the Bieberbach theorem, classes of closed Euclidean d-manifolds up to diffeomorphism correspond

to groups acting freely on Ed and containing a translation subgroup; this gives a classification of closed

Euclidean manifolds.

The Bieberbach theorem states that there are only finitely many d-dimensional Bieberbach groups, up to

isomorphism [Bie10]. In dimension 2 there are 17, in dimension 3 there are 230.3 In two dimensions, there are

only two Bieberbach groups acting freely and thus two closed Euclidean manifolds, up to isomorphism: the

torus (quotient of E2 by a group generated by two independent translations) and the Klein bottle (quotient

of E2 by a group generated by a translation and a glide-reflection whose direction is perpendicular to the

translation). In three dimensions, there are 10 closed Euclidean manifolds, four of which are non-orientable.

From now on, G denotes a Bieberbach group in Ed with quotient map π : Ed → Ed/G.

3The number of Bieberbach groups by dimension is assigned the id A006227 in the On-Line Encyclopedia of Integer Sequences

[Slo]. The number of torsion-free Bieberbach groups is assigned the id A059104.
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A fundamental domain of G is a closed and convex subset DG of Ed such that (see [Arm82, Section 4.4]

for a formal definition):

• DG contains at least one point of the preimage by π of any point in Ed/G.

• If DG contains more than one point of the same preimage, then all points of this preimage lie on the

boundary of DG .

We call original domain a subset of a fundamental domain that contains exactly one element of the preimage

by π of any point in Ed/G. We denote an original domain by D.

As an illustration, let us consider the 2D torus E2/(Z2,+) (resp. the 3D torus E3/(Z3,+)). Here, we

identify the group generated by the d translations by the unit orthogonal basis vectors of Ed to the additive

group (Zd,+). The closed unit square (resp. cube) is a fundamental domain for this torus, whereas the

original domain is a half-open unit square (resp. cube).

For the discussions below we need the following two values:

(1). The minimum distance δ(G) by which the action of a group G moves a point of Ed:

δ(G) = min
p∈Ed,g∈G,g 6=1G

dist(p, gp).

Note that if G acts freely on Ed, then δ(G) > 0.

(2). The diameter ∆(S) of the largest d-ball in Ed that does not contain any point of a set S in its interior.

The existence of the translation subgroup shows that ∆(Gp) is finite for each point p ∈ Ed.

3 Triangulations of Closed Euclidean Manifolds

Let GF be a d-dimensional Bieberbach group acting freely on Ed (the subscript in notation GF is to keep in

mind that the action is free), P a non-empty finite point set in Ed, X = Ed/GF a closed Euclidean manifold

with quotient map π : Ed → X.

3.1 Definitions

The notion of convex hull, on which the usual definition of a simplex in Ed relies, is not defined in the

manifold X. Therefore, to be able to consider triangulations of X, as defined in Section 2, we first give a

definition for a simplex in such a manifold. If σ is a simplex with set of vertices Pσ, we denote as σ̇ the set

σ \ Pσ.

Definition 3.1. Let σ be a k-simplex (k ≤ d) in Ed. If the restriction π|σ̇ of π to σ̇ is injective, the image

of σ by π is called a k-simplex in X.
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In more intuitive terms, this definition requires simplices not to self-intersect in the quotient manifold,

except possibly at vertices. See Figure 1 for an illustration in the torus E2/(Z2,+). Our definition is less

restrictive than Wilson’s definition, which does not even allow the projection of vertices to coincide [Wil08,

Section 3.2].

a

a′

b

Figure 1: Case of a 2D flat torus. a and a′ are simplices, while b is not a simplex.

With this definition of a simplex, we can adopt the same definition of a triangulation in a topological

space as in a Euclidean space (Section 2.1:

Definition 3.2. A simplicial complex is a set K of simplices such that:

(i). σ ∈ K, τ ≤ σ ⇒ τ ∈ K

(ii). σ, σ′ ∈ K ⇒ σ ∩ σ′ = ∅ or σ ∩ σ′ ≤ σ, σ′

(iii). (local finiteness) Every point in a simplex of K has a neighborhood that intersects at most finitely

many simplices in K .

A triangulation of X is a simplicial complex K such that |K| =
⋃
σ∈K σ is homeomorphic to X. A triangulation

of X is defined by a point set P if its set of vertices (0-simplices) is identical to π(P).

We refer to [Lee00, Chapter 5] for a complete formal presentation, using the notions of an abstract

simplicial complex and its geometric realization.

The main reason why we choose to define a triangulation this way is that we are aiming at extending

the use of the standard incremental algorithm [Bow81], which was proved to be very efficient in practice,

to the case of Euclidean manifolds. As will be seen in Section 5 (see in particular the last paragraph of

Section 5.2), that algorithm strongly relies on the fact that the structure is a simplicial complex after each

insertion. So, though the definition has sometimes been relaxed, see e.g., [BS97, FSSB07], we stick to the

definition of a triangulation as a simplicial complex, as often done in topology and combinatorics (see for

example [BCdVN13], [EH10, Section III.1], [Zom05, Section 2.3.4], [Lee00, Chapter 5], [GGL95, Chapter 34],
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[Arm82, Section 6.1], [Hen79, Section 20], [Spa66, Section 3.1]). Moreover this definition allows the computed

triangulation to be used by other algorithms that assume that their input is a simplicial complex; this is

the case for instance for meshing algorithms [RY07, ART+] as well as algorithms to compute α-shapes, for

which there are applications in the torus E3/(Z3,+) [Moe08, vdWPV+10].

In the sequel we will also need structures that are more general than triangulations. Let us reuse

Zomorodian’s term “simplicial set” [Zom10]:

Definition 3.3. A simplicial set is a set K of simplices satisfying conditions (i) and (iii) of Definition 3.2.

The next sections will study the projection π(DT (GFP)) onto X of the Delaunay triangulation DT (GFP)

of the infinite point set GFP in Ed.

3.2 Properties of the projection π(DT (GFP))

Assume that the restriction of π to σ̇ is injective for each σ of DT (GFP), i.e., the simplices of DT (GFP)

project onto simplices on X. From the fact that incidence relations are maintained by π follows that if τ is

a simplex in π(DT (GFP)) and τ ′ ≤ τ , then τ ′ is a simplex in π(DT (GFP)).

Let us first prove that the projection makes sense, i.e., if the simplices of DT (GFP) project onto simplices,

then they also “match” under π: all copies of a simplex in DT (GFP) are mapped onto the same simplex in

X under π.

To achieve this even in degenerate cases, we choose a Delaunay triangulation in the following way. When

more than d+1 points of GFP forming a polytope Qcos are all lying on a sphere Scos satisfying the Delaunay

property, then all images g · Qcos, g ∈ GF , are also polytopes with cospherical vertices since GF is a group

of isometries. Then we choose any triangulation T (Qcos) of Qcos, and triangulate each g · Qcos by the

image g · T (Qcos). We obtain simplices satisfying the Delaunay property (again, because GF is a group of

isometries), and which are projecting onto a well-defined triangulation of π(Qcos) in π(DT (GFP)).

Lemma 3.4. If the restriction of π to σ̇ is injective for each simplex σ of DT (GFP), then π(DT (GFP)) is

a set of internally disjoint simplices in X that do not contain any point of π(GFP) in their interior.

The term internally disjoint for two simplices means that their respective relative interiors are disjoint.

Proof. Consider a d-simplex σ of DT (GFP), whose vertices are a (d+ 1)-tuple of points Pσ ⊂ GFP. Simplex

σ satisfies the Delaunay property, so all copies GFPσ also have an empty circumscribing ball. This shows

that all these copies form d-simplices of DT (GFP). With the choice made above, it is also true in degenerate

cases.

Followingly, π collapses precisely all the copies of σ onto its equivalence class in X. As any lower-

dimensional simplex in DT (GFP) is incident to some d-simplex, and thus is defined by a subset of its

vertices, the same holds for simplices of any dimension.
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Now the projections under π of two internally disjoint k-dimensional simplices σ and τ in DT (GFP) are

either equal or internally disjoint for k ≥ 1, due to the bijectivity of π between both simplices and their

respective images. The same argument implies that the interior of a simplex cannot contain any vertex.

Lemma 3.5. The number of simplices in π(DT (GFP)) is finite.

Proof. Since GF is a Bieberbach group, it is discrete and GFP is discrete for a finite set P. In addition,

by the Bieberbach theorem GF contains a subgroup of translations isomorphic to Zd, so no point of GFP

is extremal and DT (GFP) is locally finite by Proposition 2.1. Followingly, the star of any vertex is finite.

All d-simplices have a certain volume larger than some constant, so there are only finitely many d-simplices

necessary to fill the original domain D (see end of Section 2, Page 6, for the definition), which is bounded by

definition of a Bieberbach group. The projections of these d-simplices fill X, and finitely many d-simplices

have only finitely many faces. So, overall the size of π(DT (GFP)) is also finite.

Lemma 3.6. |π(DT (GFP))| is homeomorphic to X.

Proof. By its construction |DT (GFP)| = Ed and π is surjective. Followingly, π(|DT (GFP)|) is equal to X.

Then, the chain of equalities

π(|DT (GFP)|) = π
(⋃

σ∈DT (GFP) σ
)

(1)
= π

(⋃
τ∈π(DT (GFP)) π

−1(τ)
)

(2)
=

⋃
τ∈π(DT (GFP)) τ =

⋃
σ∈DT (GFP) π(σ)

= |π(DT (GFP))|

holds with the following arguments:

(1) This step just regroups the order of the simplices but does not change the set (cf. Lemma 3.4).

(2) There are only a finite number of elements in π(DT (GFP)).

The projection π(DT (GFP)) is a simplicial set (Definition 3.3). Note that, even when all simplices of

DT (GFP) project onto simplices in X, there are actually cases in which π(DT (GFP)) is not a simplicial

complex: Figure 2 shows an example in the torus E2/Z2, where condition (ii) is not satisfied.

We can now propose a (partial) definition of the Delaunay triangulation of π(P) in X.

Definition 3.7. If π(DT (GFP)) is a triangulation of X (which subsumes that it is a simplicial complex in

X), then we call it the Delaunay triangulation of π(P) in X.

3.3 Combinatorial Condition

This section is devoted to proving Theorem 3.8, which gives the combinatorial condition ensuring that the

Delaunay triangulation is defined, i.e., that the projection π(DT (GFP)) actually is a simplicial complex.

The 1-skeleton of a simplicial set is the graph that consists of all its edges and vertices.

9



Figure 2: Case of a 2D flat torus. The intersection of σ and τ is {p} ∪ e, which is not a simplex. Note that

the projection of the periodic triangulation of E2 onto the quotient torus is not injective on the star of p,

which contains two copies of edge e.

Theorem 3.8. If the 1-skeleton of π(DT (GFP)) does not contain cycles of length ≤ 2, then π(DT (GFP))

is a triangulation of X.

The next two lemmas will allow us to finally prove this theorem at the end of the section.

Lemma 3.9. Assume that the restriction of π to each simplex in DT (GFP) is injective (i.e. DT (GFP) does

not contain cycles of length 1). Let σ, τ ∈ π(DT (GFP)) be any two simplices in X, then σ ∩ τ is a set of

simplices in π(DT (GFP)).

Proof. Without loss of generality, we assume that σ∩ τ 6= ∅. We show that σ∩ τ =
⋃
p∈σ∩τ χp, where χp is a

simplex in π(DT (GFP)). The union is finite because there are only finitely many simplices in π(DT (GFP)).

Consider a point p ∈ σ ∩ τ . If p is a vertex of π(DT (GFP)), then it is not contained in the interior of any

other simplex, according to Lemma 3.4, and we set χp = {p}. If p is not a vertex in π(DT (GFP)), then p lies

in the relative interiors of σ′ and τ ′ for some proper faces σ′ ≤ σ and τ ′ ≤ τ because σ and τ are internally

disjoint (Lemma 3.4). Since σ′ and τ ′ are again either internally disjoint or identical, it follows that they are

the same face and we set χp = σ′ = τ ′. By condition (i) the simplex χp is contained in π(DT (GFP)).

We can now formulate the following sufficient condition:

Lemma 3.10. If for each vertex v of DT (GFP), the restriction π||St(v)| of the quotient map is injective,

then π(DT (GFP)) forms a simplicial complex.
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Proof. We set K = π(DT (GFP)). Let σ be a simplex of DT (GFP) and v an incident vertex; then σ ⊂ |St(v)|,

thus the restriction of π||St(v)| to σ is injective as well, and K is a set of simplices (Lemma 3.4).

Conditions (i) and (iii) follow from the above discussion. It remains to show condition (ii): Consider

two simplices σ, τ ∈ K with σ ∩ τ 6= ∅. From Lemma 3.9, we know that σ ∩ τ is a set of simplices in K.

So there exists a vertex p ∈ σ ∩ τ . By definition of a simplex, there exist sets Pσ,Pτ in GFP such that

σ = π(Ch(Pσ)) and τ = π(Ch(Pτ )); we choose Pσ and Pτ in such a way that they contain a common

point v in the fiber of p. By assumption π||St(v)| is injective, so π is injective on Ch(Pσ) and Ch(Pτ ), and

σ∩τ = π(Ch(Pσ))∩π(Ch(Pτ )) = π(Ch(Pσ∩Pτ )). Also, the restriction of π||St(v)| to Ch(Pσ∩Pτ ) is injective.

So from Definition 3.1, it follows that σ ∩ τ is a simplex. Since σ ∩ τ ⊆ σ, τ , we have σ ∩ τ ≤ σ, τ .

Proof of Theorem 3.8. We set K = π(DT (GFP)). From Lemma 3.4, we know that K is a finite set of simplices

that fulfills conditions (i) and (iii). Assume that K is not a simplicial complex. From Lemma 3.10 there is

a vertex v ∈ DT (GFP) for which π||St(v)| is not injective. This implies the existence of two different points

p, q ∈ |St(v)| with π(p) = π(q). Let σ denote the simplex of K that contains π(p) = π(q) in its interior. Then

there are two different simplices σ′E ∈ π−1(σ) and σ′′E ∈ π−1(σ) containing p and q, respectively. Thus σ′E and

σ′′E are both elements of St(v). Let u,w be vertices different from v with u ≤ σ′E and w ≤ σ′′E. The vertices

u,w are also elements of St(v) and thus there are edges (u, v) and (v, w) in DT (GFP). From π(σ′E) = π(σ′′E)

follows that π(u) = π(w), and so the projection of (u, v) and (v, w) under π forms a cycle of length two in

X, which contradicts the assumption that π||St(v)| is injective. So K must be a simplicial complex that is

homeomorphic to X by Lemma 3.6, which means that π(DT (GFP)) is a triangulation of X. �

3.4 Geometric Criterion

The next result follows from Theorem 3.8 by simple geometric reasoning.

Criterion 3.11. If ∆(GFP) < δ(GF )
2 , then π(DT (GFP ′)) is a triangulation of X for any finite P ′ ⊇ P.

The conclusion is stronger than that of Theorem 3.8. Indeed, adding a point in a Delaunay triangulation

that is a simplicial complex can create a cycle of length two, as illustrated in the case of the flat torus

E2/(Z2,+) in Figure 3. This is the reason why this criterion is actually used in the incremental algorithm

presented later. In addition, it is easy to check in practice.

Proof. The edges of a simplex are completely contained in its circumscribing ball and are thus bounded by

the ball diameter. If the diameter of each circumscribing ball is smaller than δ(GF )
2 , then all edges in the

triangulation are also shorter than this quantity. In order to create a cycle of length two, the sum of the

lengths of the two edges needs to be at least δ(GF ), which is not possible if both edges are shorter than half

this length. From Theorem 3.8, it follows that π(DT (GFP)) is a simplicial complex. If we add more points,

the diameter of the largest empty ball cannot become larger. The claim follows.
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Figure 3: Adding a point in a simplicial complex can create a cycle of length two.

For any Bieberbach group acting freely on Ed, there are point sets such that Criterion 3.11 is fulfilled,

because δ is strictly positive and ∆ can be made arbitrarily small by the choice of the point set. So, for

any closed Euclidean manifold, there are point sets that define a Delaunay triangulation of the manifold.

However, this is not true for general closed Euclidean orbifolds, which is illustrated by Figure 4; in the case

when the center does not belong to P (left), the input point that is closest to the singularity will always

create a cycle of length 1 (even if ignoring the dashed diagonal); the right picture shows that when the center

belongs to P, then edges between the same closest point (and maybe others) and the center will form a cycle

of length 2. So Definition 3.7 does not extend to orbifolds.

Figure 4: Delaunay triangulation of GP shown locally around the center of a rotation in G; (left) the center

does not belong to P; (right) the center belongs to P.

In a given closed Euclidean manifold, there are point sets that do not define a Delaunay triangulation,

as mentioned above. In such a case, the following section shows that it is still possible to define a Delaunay

triangulation of a finite-sheeted covering space of the manifold; this is also true for a general closed Euclidean

orbifolds with a covering orbifold.
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4 What if the Delaunay Triangulation is not defined?

This section focuses on cases when the Delaunay triangulation as defined by Definition 3.7 does not exist,

either because of a singularity (like in Figure 4), or because the set of input points does not satisfy good

properties. We first recall a Bieberbach theorem already mentioned in Section 2.2; we will use it to prove

Theorem 4.2.

Theorem 4.1 (Bieberbach [Bie10]). Let GB be a d-dimensional Bieberbach group. There is a group GT of

d linearly independent translations that is a normal subgroup of GB of finite index. GT is the translation

subgroup of GB.

The theorem is not restricted to groups acting freely, so all results in this section actually hold for any

closed Euclidean orbifold X = Ed/GB , where GB is a Bieberbach group. GT is a subgroup of d independent

translations of GB , so Ed/GT is a d-torus.

Theorem 4.2. There is a normal subgroup GC of GB of finite index such that the projection of the Delaunay

triangulation of GBP ∪ GCQ in Ed onto XC = Ed/GC is a triangulation for any non-empty finite point set

P in Ed and any Q ⊆ GBq with any q ∈ Ed.

As will be detailed after the proof, this theorem shows that there is always a space XC in which the

Delaunay triangulation is defined. In fact it shows a stronger result: more points can be added to the point

set in the initial orbifold, still keeping the Delaunay triangulation of XC well defined. This stronger property

ensures the correctness of the incremental algorithm presented in Section 5.

In both Criterion 3.11 and Theorem 4.2 we deal with a condition of the form ∆(some point set) <

δ(some group)
2 . Criterion 3.11 is a condition on the point set for ∆ to be small enough, whereas Theorem 4.2

gives a condition on the group for δ to be large enough.

Proof. According to Theorem 4.1, there is a group GT of d linearly independent translations that is a normal

subgroup of GB with finite index h′. We choose generators g1, . . . , gd of GT in the following way: Let g1

be the shortest translation in GT . Let gi+1 be the shortest translation in GT that is linearly independent

of the translations g1, . . . , gi. Note that ∆(GT p) does not depend on a specific choice of p and thus can be

considered constant. We can find an integer c such that for each gi the inequality dist(p, gci p) > 2∆(GT p)

holds for any p ∈ Ed. The group GC generated by gc1, . . . , g
c
d is a subgroup of GT of index cd with the

property δ(GC) > 2∆(GT p) for any p ∈ Ed. As GT is normal in GB we have ggT g
−1 ∈ GT for each

g ∈ GB , gT ∈ GT . By construction of GC there is a bijection between the gT ∈ GT and the gC ∈ GC given

by gC = gcT . Now it is easy to see that GC is a normal subgroup of GB with index h = h′ · cd. Note

that ∆(GCGBP) = ∆(GBP) ≤ ∆(GT p) for any p ∈ Ed. Thus ∆(GCGBP) < δ(GC)
2 holds and according to

Criterion 3.11 the projection of the Delaunay triangulation of GCGBP = GBP onto XC forms a triangulation,

which remains true even when adding further points.
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Note that the proof is constructive, i.e. it describes how to construct GC from GT . The group GT can

be constructed from GB , using for instance the Reidemeister-Schreier algorithm [Sim94] implemented in

GAP [GAP08].

Theorem 4.2 implies that there exists a space XC , in which the Delaunay triangulation of the point

set π(P) is defined. If X is a manifold, then the space XC is a covering space of X with a finite number

of sheets [Arm82, Section 10.4]; If X is a non-manifold orbifold, then XC is a covering orbifold [Thu02,

Definition 13.2.2].

The construction of Theorem 4.2 can also be understood as a direct construction of XC from X, as follows.

Each closed Euclidean d-orbifold has a d-torus as covering space with a finite number of sheets: this

follows from Theorem 4.1. As an example we consider the flat Klein bottle E2/GK , where GK is the group

generated by a translation gt and a glide-reflection gg, that is a reflection together with a translation parallel

to the reflection axis (see Figure 5). The group generated by gt and g2g is a translation subgroup of GK of

index 2.

Figure 5: A part of the infinite point grid GKp.

When the d-torus has been found, i.e., when the translation subgroup with finite index has been found, a

subgroup can be chosen so that it fulfills the condition of Theorem 4.2: a fundamental domain of the d-torus

is a d-dimensional hyperparallelepiped. By gluing two of these hyperparallelepipeds together, we get a new

covering space that is again a d-torus. We can construct XC by gluing as many copies of the fundamental

domain as necessary to fulfill Criterion 3.11, i.e., to fulfill the inequality ∆(GCGBP) = ∆(GBP) < δ(GC)
2 . See

Figure 6 for an illustration in two dimensions.

Let us remark that all the criteria that we are using give sufficient conditions. There may be covering

spaces of X with fewer sheets than the number given by this constructions, and still allowing us to construct

a triangulation; the study of the flat torus gives an example (see Section 6.1).

As will be seen in Section 5, we actually avoid as much as possible to compute with copies of input points.
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Figure 6: Sufficient number of copies of the fundamental domain.

5 Algorithm and Complexity

Let X = Ed/GB , where GB is a Bieberbach group, be a general closed Euclidean orbifold. The h-sheeted

covering space XC = Ed/GC can be pre-computed as shown in Section 4.

We propose an algorithm derived from Bowyer’s [Bow81] that, for a given set P of input points, returns

the Delaunay triangulation of X defined by P if possible, and the Delaunay triangulation of XC otherwise.

We first give a general overview of the incremental algorithm in Section 5.1, then we present point

insertion in more detail in Section 5.2. Finally, Section 5.3 shows that the algorithm has optimal randomized

complexity, expressed as a function of the number of input points.

5.1 Overview

Let the input set of points P be given. A Delaunay triangulation, initially empty, is computed incrementally

by adding the points of P one by one. The triangulation can be stored as a graph: each d-simplex stores a

table of pointers to its vertices and a table of pointers to its adjacent d-simplices. Each vertex contains the

coordinates of the point it corresponds to. Additionally, an external list L stores a pointer for each d-simplex

of the Delaunay triangulation whose circumscribing ball diameter is larger than the threshold δ(GB)/2. Each

such d-simplex of the Delaunay triangulation stores a pointer to its corresponding element in L.

(1) The algorithm starts computing the triangulation in XC , inserting for each input point the h points

forming its fiber in the covering space. These h points are inserted one by one in the triangulation.4

The fiber can be determined as follows. Let GQ = GB/GC denote the quotient group of GB and GC .

As GC is a subgroup of GB of index h, the group GQ has h elements. For a given input point p, the h

copies to be inserted in the triangulation are the h points of its orbit under the action of GQ.

The triangulation of XC and the list L are updated at each insertion.

(2) Once Criterion 3.11 is met for the current point set, i.e. once L is empty, the algorithm converts the

triangulation of XC to a triangulation of X: it iterates over all d-simplices and all vertices to delete

4We skip the technicalities of the initialization of the triangulation with the first point of P.
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all copies, keeping only one; it also updates the incidence relations of the d-simplices whose adjacent

d-simplices have been deleted.

Then the algorithm inserts each of the remaining input points only once into the triangulation of X.

If P is such that Criterion 3.11 is never fulfilled (which will always be the case if X is not a manifold, i.e.,

if GB does not act freely), then the algorithm never enters (2) and returns the triangulation of the covering

space XC .

Note however that when X is a manifold, even when Criterion 3.11 is not fulfilled at the end of the

algorithm, it is still possible to check at the end of the computation whether the 1-skeleton of π(DT (GP))

contains no cycle of length ≤ 2, and if so, to convert the triangulation of XC to a triangulation of X as above.

However, there is no guarantee that it will be possible to insert further points in it.

5.2 Point Insertion

The insertion of each point consists of two steps: a geometric step (locating the point, then identifying all

simplices that disappear after the point is inserted) and a combinatorial step (creating new simplices).

Geometric step For efficiency reasons, this step uses a point location data structure, the Delaunay hierar-

chy, originally designed for efficient computation of Delaunay triangulations of Ed. We refer the reader to the

original paper for a complete description of this data structure [Dev02]. In a nutshell, it is built incrementally

and has several levels: The intermediate levels store the Delaunay triangulations of an increasing sequence

of subsets of the set of input points, while the last level stores the complete triangulation. There are pointers

between vertices in different levels corresponding to the same input point. The Delaunay hierarchy can be

adapted to our algorithm. Each new level of the hierarchy stores a triangulation of XC when it is created,

and this triangulation is converted to a triangulation of X when possible. Note that, if a given level l stores

a triangulation of X, then the next level l+ 1 is also in X, since it contains more points and thus also stores

a triangulation of X by Criterion 3.11. However, some level l can store a triangulation of XC while the next

level l+ 1 is converted into X. In this case, for all the vertices corresponding to copies of a given input point

p in that level l, their pointers to the level l + 1 all lead to the same vertex corresponding to p in X.

After locating the point using the Delaunay hierarchy, the simplices that will not satisfy the Delaunay

property after insertion of the new point must be identified. The algorithm starts at the d-simplex containing

the point and does a simple traversal using the adjacency relations to detect these simplices.

Each d-simplex of the triangulation stores the information on how to map it isometrically into Ed, i.e.

the appropriate element of its preimage under the quotient map π (or the quotient map of XC , denoted as

πC). This is used to evaluate the two predicates that are necessary to perform this geometric step:

- testing the orientation of d+ 1 points (to locate the point), and
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- computing whether a point lies inside or outside a d-ball circumscribing d + 1 points (to check the

Delaunay property).

Both predicates are evaluated in Ed: For each d-simplex on which we need to evaluate a predicate, we take

its preimage under π (or πC) from the data structure and evaluate the predicate on this preimage. This

works exactly the same way even if X is non-orientable: the orientation of a preimage under π is computed

using the orientation predicate in Ed.

Combinatorial step This step consists in updating the triangulation: the simplices that do not satisfy the

Delaunay property after the insertion are removed, and the resulting hole is then triangulated by simplices

incident to the new point.

Note that this approach only works if the hole is homeomorphic to a d-ball. The hole is the union of all

simplices of the star of the newly inserted point. Since the algorithm guarantees that the structure after the

point insertion is a simplicial complex (see also Section 3.1), then the hole is always homeomorphic to a ball

(Lemma 3.10 and Theorem 3.8).

5.3 Complexity

The randomized analysis of [Dev02] assumes that the insertion of points of P is performed in a random

order. The changes to this analysis, when computing in XC , are minor: The points are inserted in sets of

constant size (the number h of sheets), and these sets are inserted in random order. The randomized worst-

case complexity of the algorithm remains equal to the one of the algorithm for computing the Delaunay

triangulation of Ed.

Theorem 5.1. The algorithm described in Section 5.1 has optimal randomized worst-case time complexity

O
(
nd

d
2 e + log n

)
and space complexity O

(
nd

d
2 e
)

, where n is the number of points in P.

Note that the complexity is only expressed as a function of the number of input points. The covering

space XC is independent of the set of points (Section 4); it is precomputed beforehand.

Proof. The vertex set of the Delaunay triangulation in level i is denoted by Pi and the levels of the hierarchy

are numbered from bottom to top, that is P0 = P. Let 1/α denote the probability that a point is in Pi+1

given that it is in Pi. In the algorithm of Section 5.1, the points of P can be inserted in random order but

when computing in XC , a constant number of copies of each point are inserted consecutively.

The randomized worst-case analysis in [Dev02] shows that, if the input points are inserted in a random

order, the expected cost of the walk in level i is linear in the product of α and the average vertex degree in

a triangulation, which is O
(
nd

d−2
2 e
)

in the worst case. The proof is based on the fact that the number of

points in Pi that are closer to a query point q than to any other point in Pi+1 is in O(α). This property

17



extends to the case of computing in XC . The vertex set of the Delaunay triangulation in level i is the set

P ′i that contains all copies of the points of Pi showing up in XC . As for each point of Pi there is a constant

number of copies in P ′i, the above bound can be at most a constant times larger, which is still in O(α).

Thus the cost of the walk in level i is still in O
(
αnd

d−2
2 e
)

. Summing up over all levels yields an expected

O
(
nd

d−2
2 e + log n

)
complexity for one point insertion.

We insert at most hn points into the Delaunay triangulation, where h is a constant depending on the

group GB , so the asymptotic size of the hierarchy does not change with respect to [Dev02].

Furthermore, the conversion from XC to X in step (2) of the algorithm is linear in the size of the

triangulation, and it is applied only once during the algorithm run, so, it does not increase the overall

complexity.

The total number of elements that are inserted to and removed from L is at most proportional to the

total number of d-simplices that are created and destroyed during the algorithm. Also, the maximum size of

L is the maximum number of d-simplices in the triangulation. Hence, the maintenance of L does not impact

the complexity of the algorithm.

The bound for the point insertion comes from the worst-case average vertex degree in a triangulation.

Thus for triangulations where the vertex degrees stay small throughout the construction, the complexity is

even better, since it is dominated by the point insertion. For instance, for random distributions the expected

complexity is O(n log n) [Dev02].

6 Further Results and Experiments in the Case of the 3D Cubic

Flat Torus

In this section, we focus on the 3D flat torus X = T3
c = E3/GT with GT = ((cZ)3,+), where c = (c, c, c) ∈

(E \ {0})3. The group is generated by three orthogonal translations of length c and the original domain D

is a half-open cube with the same edge length. Other notation are the same as in previous sections.

Implementation. The algorithm presented in Section 5 has been implemented for T3
c. The package has

been reviewed by the Cgal Editorial Board and has been included in the library since version 3.5 [CT]; a

package for the 2D case was integrated in Cgal 4.3 [Kru].

We only present the implementation very briefly here; more details can be found in [Car10, Chapter 3].

There are several differences with Cgal 3D triangulations [PT], which are representing triangulations in the

Euclidean space. In particular, covering spaces are handled in the following way:

• Each cell of the triangulation stores an offset for each of its vertices. A vertex stores a point in the

original domain. The offset associated to a vertex is a vector giving the translation that specifies which
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element of the orbit of the point is considered.

• We maintain the covering map that associates to each vertex the corresponding vertex in the original

domain. Conversely, we also maintain the reverse covering map that allows to find all vertices associated

to a given vertex in the original domain.

Degeneracies are handled using a symbolic perturbation that only relies on the lexicographic comparison be-

tween input points [DT03, DT11]. This symbolic perturbation allows us to define the Delaunay triangulation

of a degenerate polytope Qcos in a unique way. Since the lexicographic order is preserved by translations in

the group (Z3,+) each image g · Qcos, g ∈ Z3, will automatically be triangulated as the image by g of the

triangulation of Qcos, so, all these images project to the same triangulation of π(Qcos) in E3/Z3.

In the sequel, we report a few observations that are specific to the case of T3
c, and which are used in our

Cgal implementation.

6.1 Number of sheets

Let us introduce new notation. The torus T3
hc = E3/(hcZ)3 is the h3-sheeted covering space of T3

c. Its

corresponding original domain Dhc is a half-open cube with edge length hc. Let πh3 denote the corresponding

projection map.

Criterion 3.11 used in the construction of Theorem 4.2 and in the algorithm can be rewritten here as:

If ∆(GTP) < c
2 , then π(DT (GTP ′)) is a triangulation of T3

c for any finite P ′ ⊇ P.

A direct application of this criterion shows that a Delaunay triangulation can always be defined in a

64-sheeted covering space of the initial torus:

Corollary 6.1. Let P ⊂ D, P 6= ∅ be a finite point set. Then π64(DT (GTP ′)) is a triangulation of T3
4c for

any finite P ′ ⊇ P,P ′ ⊂ D.

Proof. For |P| = 1, the largest empty ball in GTP has diameter
√

3 c; empty balls cannot become larger

when inserting more points. The domain D4c is a cube of edge length 4c, which is more than twice
√

3 c.

Thus the above criterion applies.

However, using a totally different proof, it is possible to reduce the number sheets from 64 to 27.5 This

constant 27 is the same as the number of copies previously used in the literature [DH97]. Using the framework

of normal subgroups and covering spaces is more powerful and general than using copies of the points in E2

(resp. E3). Also, there is no boundary in the data structure since whole manifolds are triangulated, and

adjacency relations are valid for all simplices.

5The incremental algorithm actually requires a slightly stronger result than Proposition 6.2. All details can be found in

[Car10, Section 2.3.1], in particular Lemma 2.3.2. We omit them in this paper, since the precise setting and the proof are long

and technical.
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Proposition 6.2. For any finite point set P ⊂ D, P 6= ∅, π27(DT (GTP)) is a simplicial complex.

Proof. The proof uses the proof of Dolbilin and Huson [DH97]. They consider the infinite Delaunay triangu-

lation DT (GTP) in the universal covering space E3 of T3
c. They prove that only the points of GTP contained

in D and the 26 copies that surround it can have an influence on the simplices that are completely contained

in D.

Let F (1) denote the Voronoi cell of the origin O in the Voronoi diagram of the orbit GTO of O. Then F (1)

is a fundamental domain of GT . Let furthermore Q be a point set in F (1). A ⊕ B denotes the Minkowski

sum of A and B, and we define F (i) = F (1) ⊕ F (i−1) for i ≥ 2.

Lemma 6.3 ([DH97]). Let σ and τ be simplices in the infinite periodic Delaunay triangulation DT (GTQ)

such that one of the vertices of σ lies at O and τ ∩ F (1) 6= ∅. Then

(1). the center of the circumscribing ball of σ lies in F (1),

(2). σ is completely contained inside F (2).

(3). τ is completely contained inside F (3).

See Figure 7 for an illustration of Lemma 6.3.

F (2) = F (1) ⊕ F (1)

F (3) = F (1) ⊕ F (2)

F (1)

σ

F (1)

σ

F (1)

σ

τ

Figure 7: (2D illustration) It is sufficient to consider F (3) in order to compute a Delaunay triangulation of

the flat torus.

Let us briefly sketch the proofs of the three properties.

(1). This follows directly from the fact that F (1) is a Voronoi cell of the Voronoi diagram of GTO: If the

center of the circumscribing ball of σ was outside F (1), then it would be closer to some other point of

GTQ, contradicting the fact that it is the center of the circumscribing ball of σ.

(2). This follows directly from (1), and from the fact that F (2) is the Minkowski sum of F (1) with itself.

(3). This follows directly from the definition of F (3).

From Lemma 6.3 follows that all triangles with vertices in Q in the Delaunay triangulation of GTQ are

contained inside F (3) and so it is sufficient to compute the finite Delaunay triangulation DT (GTQ∩ F (3))

in E3. According to Lemma 6.3, all simplices of DT (GTQ∩ F (3)) that have at least one vertex in F (1) are

simplices of the infinite periodic Delaunay triangulation DT (GTQ). Since the set of these simplices covers

F (1), applying the action of G on it yields an infinite periodic partition of E3.
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Now, let us show that there are no cycles of length 2 in π27(DT (GTP)). Let D(i, j, k) denote the translated

copy of D by (i · c, j · c, k · c), i.e. D(i, j, k) = [i · c, (i+ 1) · c)× [j · c, (j + 1) · c)× [k · c, (k + 1) · c). Assume

that there is a cycle of length two in π27(DT (GTP)). Then there are vertices v, v′, v′′ ∈ DT (GTP) such that

the edges (v, v′) and (v′, v′′), (v, v′) 6= (v′, v′′), are contained in DT (GTP) and that π27(v) = π27(v′′). Let

D(i, j, k),D(i′, j′, k′), and D(i′′, j′′, k′′) denote the translations of D that contain v, v′, and v′′, respectively.

According to Lemma 6.3, if a simplex intersects both D(i, j, k) and D(i′, j′, k′), then |i− i′| ≤ 1, |j− j′| ≤ 1,

and |k − k′| ≤ 1. Without loss of generality, we can choose v and v′ such that (i, j, k), (i′, j′, k′) ∈ {0, 1}3.

Note that π27(D(i, j, k)) = π27(D(i mod 3, j mod 3, k mod 3)), so at least one of the i′′, j′′, and k′′ must be

in {0− 3, 1− 3, 0 + 3, 1 + 3} for π27(v) = π27(v′′) to hold. This is not possible according to Lemma 6.3.

This concludes the proof of Proposition 6.2.

6.2 Geometric criteria

Criterion 3.11 is a condition on the diameter of the largest circumscribing ball. However, computing the

circumradius of a tetrahedron is numerically less robust than computing the distance of two points. Therefore,

the implementation actually uses Criterion 6.4, which involves edge lengths, which are simpler to compute.

Criterion 6.4. If DT (GTP) contains only edges shorter than 1√
6
c, then π(DT (GTP ′)) is a triangulation of

T3
c for any finite P ′ ⊇ P.

Proof. Let B be a ball of diameter d that does not contain any point of GTP in its interior. Consider the

tetrahedron t in DT (GTP) that contains the center of B. The length of the largest edge of t is bounded

from below by the edge length of the regular tetrahedron with circumscribing ball B, which is 2d√
6
. So if all

edges in DT (GTP) are shorter than 1√
6
c, then the diameter of any empty ball is smaller than 1

2 c. The claim

follows from Criterion 3.11 and Lemma 3.6.

Both criteria are only sufficient criteria, and Criterion 3.11 is weaker than Criterion 6.4: There are point

sets with maximum empty ball diameter shorter than 1
2 c but edges longer than 1√

6
c.

Section 6.3 presents experimental observations and a theoretical analysis of the number of points needed

for a uniformly distributed point set to satisfy the criteria. Section 6.4 shows that computing in covering

spaces can be avoided in practice. Section 6.5 shows the running time of the code.

6.3 Satisfying the Criteria

6.3.1 Experimental Study

We tested the implementation on real data from research in cosmology. The input sets consist of up to

several hundreds of thousands of points, and their distributions are roughly uniform. This property holds for
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most of the applications mentioned in the introduction. With these real data, usually less than 400 points

are needed to reach the threshold on the length of edges (Criterion 6.4) and switch to computing in T3
c.

We further tested on randomly generated point sets whether they define a Delaunay triangulation of T3
c.

For each number of points between 0 and 600 we computed periodic Delaunay triangulations of 100 different

point sets6 and calculated the percentage of

(a). point sets that define a Delaunay triangulation of T3
c (Theorem 3.8),

(b). point sets whose largest empty circumscribing ball in the Delaunay triangulation has diameter smaller

than 1
2 c (Criterion 3.11),

(c). point sets for which the longest edge in the Delaunay triangulation is smaller than 1√
6
c (Criterion 6.4).
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Figure 8: Percentage of random point sets that define a triangulation of T3
c, that have largest ball diameter

< 1
2 c, that have longest edge length < 1√

6
c.

Figure 8 shows that almost all sets of 100 points already define a Delaunay triangulation of T3
c (Theorem 3.8);

however it can happen that inserting a point in such a triangulation leads to a point set that does not define a

Delaunay triangulation of T3
c. In general 100 to 200 points are necessary for the largest empty ball diameter

to be smaller than 1
2 c. According to Criterion 3.11 such point sets define a Delaunay triangulation of T3

c

even if we add further points. As Criterion 6.4 is a stronger criterion, about 200 to 400 points are required

for the algorithm to switch to computing in the original manifold. When the data set becomes large, this

number can be considered as a small constant.

6.3.2 Analysis

In this section, we consider the torus T3
1 whose fundamental domain is a unit cube. We give an upper bound

on the number of points required to fulfill Criteria 3.11 and 6.4 if the input point set is uniformly distributed.

6Using the random point generator from Cgal to generate uniformly distributed points in a cube.
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Let A be a finite set of balls of diameter 1
4 whose union covers T3

1. Lemma 6.5 below describes such a

cover with 180 balls. We first observe that any ball B of diameter 1
2 must contain at least one ball of A,

namely the ball that contains B’s center. So, if P is a set of n points evenly distributed in T3
1, we get:

Prob(∃B, diameter(B) ≥ 1

2
, B ∩ P = ∅) ≤ Prob(∃A ∈ A, A ∩ P = ∅)

≤
∑
A∈A

Prob(A ∩ P = ∅)

= 180 Prob(A0 ∩ P = ∅) for some A0 ∈ A

= 180 (1− volume(A0))n

= 180

(
1− 4π

3 · 83

)n
.

So Criterion 3.11 will be fulfilled with probability > 1− ρ if

n ≥ log2 ρ− log2 180

log2

(
1− 4π

3·83
) ' 632 + 58 log2

1

ρ
.

The condition will be obtained with probability higher than 1
2 as soon as about 700 points are inserted and

with probability higher than 1− 1
1000 as soon as about 1500 points are inserted.

It just remains to prove the following:

Lemma 6.5. T3
1 can be covered by a set of 180 balls of diameter 1

4 .

Proof. We consider a dense sphere packing in E3 consisting of spheres of radius r, built in a classical way

(sometimes named a cannonball packing): the x-axis contains centers of spheres equally spaced at distance

2r next from another, and the horizontal plane contains centers of spheres forming equilateral triangles of

side length 2r; in the next plane, spheres are placed on top of each hollow between three spheres centered in

the first plane; and so on. Spheres pairwise touching form a regular tetrahedra of side length 2r, and whose

circumradius is
√

3/2r. The set of balls having the same centers but with radius
√

3/2r covers E3 (see

Figure 9). Let us center one of the spheres at the origin (0, 0, 0). Then the spheres touching it are centered

at points (2r, 0, 0), (r,
√

3r, 0), and (1
2r,

1√
3
r, 2
√
2√
3
r).

We will set r = 1
8

√
2
3 = 1

4
√
6

in order to get spheres of diameter 1
4 . The projections of spheres whose

center lies in the unit cube are enough to cover T3
1. The number of these spheres is:⌈

1

2r

⌉
×
⌈

1√
3r

⌉
×

⌈ √
3

2
√

2r

⌉
=
⌈
2
√

6
⌉
×
⌈
4
√

2
⌉
× d6e = d4.9e × d5.7e × 6 = 180.

The longest edge in a Delaunay triangulation is bounded by the diameter of the largest empty ball. Thus

the same analysis works for estimating the number of points required such that the longest edge in the

triangulation is shorter than 1√
6
, as required by Criterion 6.4. We just have to replace the constant 1

2 for

the ball diameter by 1√
6
. We get a cover of T3

1 by 384 spheres of diameter 1
2
√
6
, and we can conclude that

Criterion 6.4 is satisfied with with probability higher than 1
2 when about 800 points are inserted.
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Figure 9: Covering (left) T2
1 with 30 disks and (right) T3

1 with 180 balls of diameter 1
4 .

The computations of probabilities above use overevaluations; as seen in the previous section, experiments

give better results.

6.4 Avoiding Covering Spaces in Practice

We propose an optimization that avoids computing in the 27-sheeted covering space T3
3c at all. We start with

a set S of 36 dummy points, chosen such that the diameter of the largest empty sphere is smaller than 1
2 c: Let

S0(a,b,c) = {(x+ a, y + b, z + c) ∗ c | x, y ∈
{

0, 13 ,
2
3

}
, z ∈

{
0, 12
}}

, then S is defined as S = S0(0,0,0) ∪ S
0

( 1
6 ,

1
6 ,

1
4 )

(see Figure 10). From Criterion 3.11 follows that any point set S ′ ∈ D with S ⊂ S ′ defines a Delaunay trian-

gulation of T3
c. So, we can insert all points of the input data set P and compute the Delaunay triangulation

of S ′ = S ∪ P in T3
c. In the end we remove the dummy points, which requires to convert the final result to

T3
3c in case the data set P alone does not define a Delaunay triangulation of T3

c.

It would be more intuitive to take 27 dummy points on a regular grid:
{

1
3 (x, y, z) | x, y, z ∈ {0, 1, 2}

}
.

However, as shown on Figure 11, this point set does not prevent cycles of length 2.

6.5 Timings

We compared the running time of our implementation for computing Delaunay triangulations of T3
c with the

running time of computing the Delaunay triangulation of E3 with the Cgal package [PT]. Our implementa-

tion benefits from some of the optimizations that are already available in the Cgal Delaunay triangulations

of E3, such as spatial sorting [DD].

For large random point sets, experiments show a factor of about 1.6 between the running time of our

current implementation with the above optimization using dummy points, and the Cgal implementation
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Figure 10: The Delaunay triangulation of the dummy point set.

for E3: the Delaunay triangulation defined by one million points is computed in about 23 seconds for T3
c,

instead of about 14 seconds for E3 (on a 2.33 GHz Intel Core 2 Duo processor). The timings have been

measured for the case when the original domain is a unit cube, using specialized predicates; if we allow any

cube, we lose about 12%. More experiments can be found in [Car10].

7 Future work

An interesting question is whether Delaunay triangulations can be computed in hyperbolic manifolds that

are quotients of hyperbolic spaces Hd by a Fuchsian group. The question is natural and exciting from a

mathematical point of view, since these groups are much richer than the crystallographic groups. Also, this

case would find applications in fields as diverse as computer graphics [RJSG11] and neuromathematics [CF09,

CFF11]. The problem is quite challenging even in the simplest case of a the Bolza surface (homeomorphic

to a torus having two handles), which corresponds to a group generated by four hyperbolic translations in

H2; it was recently shown that a 128-sheeted covering space is always sufficient [BTV16] but this is probably

not tight.
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