Decoupling Passenger Flows for Improved Load Prediction

Stefan Haar 1, 2 Simon Theissing 2, 1
1 MEXICO - Modeling and Exploitation of Interaction and Concurrency
LSV - Laboratoire Spécification et Vérification [Cachan], ENS Cachan - École normale supérieure - Cachan, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8643
Abstract : We elaborate the approximate computation of a stochastic hybrid automaton (SHA) model, which we have developed for the analysis of perturbations in modern multi-modal transportation networks (TNs); where passengers spread the perturbations between the different modes and lines through transfers. In particular, we focus on one major bottleneck, which may arise in the approximate computation of the SHA model: the high-dimensionality of all stochastic differential equations (SDEs). They define how all considered fluid passenger loads evolve in time in a particular mode of the SHA model, which latter might exhibit jumps between its different modes only at equidistantly-spaced discrete points in time. In this context, we replace all high-dimensional SDEs set up for a particular mode of the SHA model by a set of lower-dimensional SDEs; in that we decouple all passenger flows in a mode. We proof that the resulting approximating dynamics converges to the original model dynamics if the fixed time interval between two jump layers of the SHA model approaches zero.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01294498
Contributeur : Simon Theissing <>
Soumis le : mardi 29 mars 2016 - 13:29:56
Dernière modification le : jeudi 11 janvier 2018 - 06:23:37
Document(s) archivé(s) le : lundi 14 novembre 2016 - 07:57:20

Fichier

QEST16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01294498, version 1

Citation

Stefan Haar, Simon Theissing. Decoupling Passenger Flows for Improved Load Prediction. 2016. 〈hal-01294498〉

Partager

Métriques

Consultations de la notice

300

Téléchargements de fichiers

29