S. E. Brooks, Handbook of Markov Chain Monte Carlo (Chapman & Hall/CRC Handbooks of Modern Statistical Methods) Chapman and Hall, CRC, 2011.

D. M. Causon and C. G. Mingham, Introductory Finite Volume Methods for PDEs, 2011.

G. Ciardo, D. Nicol, and K. S. Trivedi, Discrete-event simulation of fluid stochastic Petri nets, IEEE Transactions on Software Engineering, vol.25, issue.2, pp.207-217, 1997.
DOI : 10.1109/32.761446

S. Haar and S. Theissing, A hybrid-dynamical model for passenger-flow in transportation systems, 5th IFAC Conference on Analysis and Design of Hybrid Systems, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01242903

S. Haar and S. Theissing, Forecasting Passenger Loads in Transportation Networks, Electronic Notes in Theoretical Computer Science, vol.327, 2016.
DOI : 10.1016/j.entcs.2016.09.023

URL : https://hal.archives-ouvertes.fr/hal-01259585

S. Haar and S. Theissing, Predicting traffic load in public transportation networks (2016), https

L. Hoogerheide, J. Kaashoek, and H. Van-dijk, Functional approximations to posterior densities: a neural network approach to efficient sampling, 1727.

D. J. Mackay, Introduction to Monte Carlo Methods, Proceedings of the NATO Advanced Study Institute on Learning in Graphical Models, 1998.
DOI : 10.1007/978-94-011-5014-9_7

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Second Edition, 1992.