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Abstract d grows, the chance that similar images are assigned to dif-

ferent clusters increases, and the ef ciency of these methods
We consider the image retrieval problem of nding the collapses|[20, 31]. This is problematic in computer vision
images in a dataset that are most similar to a query im- since most state-of-the-art image descriptors have high in-
age. Our goal is to reduce the number of vector operations trinsic dimensionality. A recent work tries to solve this by
and memory for performing a search without sacri cing ac- indexing descriptors based on sparse approximation [5].

curacy of the returned images. We adopt a group testing  Another popular approach to ef cient image search per-
formulation and design the decoding architecture using ei- forms a linear scan over the dataset, computing approximate
ther dictionary learning or eigendecomposition. The latter simijlarities using compact codes [2]3; 8, 8,14, 32]. These
is a plausible option for small-to-medium sized problems techniques have a complexity dfN whered® < d is the

with high-dimensional global image descriptors, whereas reduced dimensionality of the compact code. The similar-
dictionary learning is applicable in large-scale scenar- ity hetween vectors iflR? is approximated by the distance
ios. We evaluate our approach for global descriptors ob- petween their compact codes. State-of-the-art large scale
tained from both SIFT and CNN features. Experiments search algorithms combine indexing strategies with approx-
with standard image search benchmarks, including the Ya-imated similarities|[14].

hoo100M dataset comprising 100 million images, show that Recently, a complementary approach inspired by group
our method gives comparable (and sometimes superior) ac—testing has,emerged [1T,27]. Here the goal is to reduce
curacy compared to exhaustive search while requiring only the number of vectors against which the query is com-
10% of the vector operations and memory. Moreover, for pared. The full dataset dfl vectors is rst summarized
the same search complexity, our method gives signi cantly .\ \, N group vectors, where each group vector is also
better accuracy compared to approaches based on dimen'd-dimensional. As the name suggests, each group vector

sionality reduction or locality sensitive hashing. represents a small subset of images in the original dataset.
These groups are composed by a random partition of the
ducti dataset. Computation of the group vectors is performed
1. Introduction of ine under a speci ¢ construction such that a compari-

This paper is about image retrieval and similarity search SOn group vectovs query vector measures how likely the
for large datasets. Image retrieval aims to nd the images 9roup contains query matching vectors. Then, when pre-
in a large scale dataset that are most similar to a givensented with a query, the system compares the query with
guery image' Recent approaches [16, 24] aggregate |oca|:he group vectors instead of individual image vectors. This
SIFT [17] features or use deep-learning networks [4] to cre- reduces the complexity fromN to dM .
ate a global descriptor vector for each image. Visual simi- Initial attempts |[[11], 27] considered adaptivegroup
larity is then quanti ed by measuring the similarity of these testing approachM groups are composed from the dataset,
vectors (e.g., cosine similarity). If the dataset Nagnages and querying proceeds in two stages. In the rst stage,
each represented bydadimensional feature vector, then an the scores between group vectors and the query are com-
exhaustive search for each query requiisoperations. puted. They measure how likely their group contains some

A common approach to accelerate image search is in-matching images. Then, in the second stage, the query
dexing, which operates in sub-linear time [[20]. Indexing is compared with individual image vectors for only the
partitions the feature spad® into clusters and computes mostly likely positive groups. If the groups are roughly bal-
similarities between the query and dataset vectors that fallanced in size and the query only matches a small number
in the same or neighboring clusters. Yet, as the dimensionof group vectors, then the complexity is reduced frdih



tod(M + N=M). Although this results in ef cient image Our aim is to desigic 2 RM N andH 2 RM N to
retrieval, it has one major drawback: memory usage is in- allow for a fast and accurate search. Note that this setup is
creased since the group vectors and mapping from images tsimilar to the pioneering work of Skt al. [27]: in their pa-
groups are stored in addition to the dataset feature vectorsper,G is indeed a randomly generated binary matrix where
In other words, these works trade complexity for memory. G(i;j ) = 1 if X; belongs to the-th group ands(i;j ) =0

This is not a tractable option for largé-datasets. otherwise. Hence, in the previous group testing approach,
In this work, we pursue the idea of deducing which vec- G captures both how groups are made and how the group
tors are matching in a database of gizérom onlyM < N vectors are computed (a simple sum[in|[27]). On the con-

measurements. We re-examine the group testing formu-trary, we look for the best matrix representing the dataset,
lation. Rather than a random partition of the dataset into which will heavily depend oiX .

groups followed by a speci ¢ construction of the group vec- Complexity. Exhaustive search involves computigg X,
tors, we formulate the problem of nding an optimal group - which has a complexity adN . Computing the group mea-
testing design for a given image dataset. Removing the re-surements[{2) takesM operations, and the decodirg (3)
striction to binary designs, the continuous version of this takesMN . This gives a complexity ofiM + NM for
optimization problem turns out to be equivalent to dictio- group-testing search, compareddhl operations for ex-
nary learning. For small and medium sized datasets, withhaustive search. The complexity ratio is thus M=N +
N <d, one can remove the requirement of a sparse designyi=d, implying thatM must be smaller than botd andd
matrix, and then the problem simpli es further to that of a o yield ef cient queries.
matrix factorization whose solution is given by the SVD. Previous work based on group testing|[11, 27] designs
The paper is organized as follows. Secfipn 2 introducesgroups so that every column & has exactlym M
the problem formulation and notation. Sectjdn 3 proposesgnes; i.e., each dataset vector belongsntgroups. This
different techniques to solve the problem depending on theproduces a sparse decoding matixvhich, in turn, yields
parameter®N andd. Sectior] # shows the compatibility of the petter complexity ratio = M=N + m=d. However,
our approgch with an existing codin_g method in the litera- none of the approaches [11]27] attempt to optinGzend
ture. Sectiof 5 presents the evaluation of proposed methody | They either creat& randomly or use a clustering algo-

using real image datasets. rithm to coarsely group similar dataset vectérs [11]. In the
following sections, we discuss two techniques that optimize
2. Problem statement the matricess andH for a particular datase .

We focus on the complexity of performing a query. De-
termining the optimal encoding and decoding matri€es
_andH requires additional computation applied of ine or
periodically. We assume that the corresponding complexity
is not as critical as in the query stage. Our only require-
ment is that the complexity of this of ine computation be
polynomial inN andd to ensure that it is tractable.

The dataset is composed bf d-dimensional vectors
fxigiN:1 such thatkx;k = 1, for all i, and eaclx; is the
global feature vector of one image in the dataset. The sim
ilarity between two vectors; andx; is the scalar product

As mentioned in Sectidr] 1, we aimto nd group vec-
tors of dimensiord, fy;g!, , stored ind M matrix Y .
Unlike the previous group testing approaches, we do not
randomly assign dataset vectors to groups and we do no
compute the group vectors according to a speci ¢ construc-  We now provide two alternative solutions for the setup
tion. Our goal is to directly nd the besl group vectors  described in Sectign 2. As we will show in the experimen-
globally summarizing the dataset. We call this process thetal section, both solutions have advantages and drawbacks,
encoding, and we restrict our scope to a linear encoding:  and can be chosen depending on the feature vectors and the

number of items in the dataset.

§. Proposed solutions

Y = endX)= XG”: Q)
3.1. First solution: Eigendecomposition
Given a query image, represented by its global descriptor

vectorg, we compute the group scores, In the rst approach, we consider nding matric€ 2

RM N andH 2 RM N so that the approximate scorés
s=q’Y: ) and exact scores are as close as possible. Based[dn (1),
(2) and [(3), this amounts to:
Finally, we estimate the similarities between query and X
database vectors = g~ X from the measurements
Again, we assume a linear estimator: @
minimize kq"X q"XG > HK3;
¢ = deqs) = sH: 3 GiH 420

minimize ke €k3 =
GiH



whereQ is assumed to be representative of typical queries.YH whereH 2 RM N stores the sparse representations
Of course, this distance cannot be zero fogal RY since of the dataset vectors in terms of columns (so-called atoms)
theN N matrix G> H has rank at mos¥l < N . We of the dictionaryY 2 RY M. This leads to the following
focus on providing accurate scores for typical queries. We optimization problem:
use the dataset of vectors itself as a proxy of the typical
ensemble of queries. This amounts to replagjiy X and minimize }kx YH K2 + KkHk

. . . . Y H 2 F 1
to consider the Frobenius matrix norm:

5 subjectto kyxk, 1forall0 k<M:

minimize XX X7 XG H _: (4)
GiH The “;-norm penalty orH (sum of the magnitude of
its elements) encourages a solution where each column of
X can be represented as a sparse combination of columns
of the dictionaryY . The level of sparsity depends on
Unlike the previous solution of Sectign 8.1, this scheme
is competitive wherN is larger thand since we bene't
from the reduced complexity of sparse matrix multiplica-
tion. An algorithm such as Orthogonal Matching Pursuit
(OMP) [7/23] allows us to strictly control the sparsitytéf
For a given dictionaryy , OMP ndsH =[hy; ;hy]by
sequentially solving

This problem is commonly solved by eigendecomposi-
tion. LetA = X~ X be the Gramian symmetric matrix
associated tX . As a real symmetric matri@ is diago-
nalizable:A = U U~”, whereU is an orthogonal matrix
(U”U = UU > = Iy). This means that we can simply as-
signG” = Uy andH = Uy, , whereUy are the eigen-
vectors associated with thé largest eigenvalues.

In practice, we do not need to compute the Gram matrix
A = X> X . The singular value decomposition (SVD) of
X isdenedasX = S U~”, whereS are the eigenvectors
of XX ~, andU are the eigenvectors &~ X . Hence, this o 1 ,
SVD gives us the desired output without having to calcu- m|n|m|ze > ki Yhik;
late A . Itis worth noting that this solution resembles a well
known dimension reduction method: Principal Component
Analysis (PCA). However, while PCA is usually employed
to reduce the dimensionality of the vectors frafrto d®

subjectto khik, m:

Adopting this algorithm, we control the sparsity of the
] : matrix H by settingm to a desired value. Note that this
components, in our approach we use it to reduce the num-qq| tion s directly related with the problem statement in

ber of vectors fronN to M. Alternatively, more ef cient Sectior[ 2, even if5 is not directly a part of the solution.
dimensionality reduction methods, such as sparse projeCrne reconstruction of the vectors is linear up to an ap-

tors [21], C‘?n be used to cons.trlhtt ) ) proximation,X  YH . Since this is a linear process , we
The major drawback of this approach is thétis not haveY = XG> (1) whereG> = H* (pseudo-inverse).

sparse. Therefore, the complexity of the decod[ig (3) is Therefore, the connection is obvious. Furthermdseis

in O(MN ). Hence, this solution is ef cient for scenarios 4t needed during the search; what matted isndH .
whered is larger tharN . This solution is similar to the recently proposed indexing
strategy based on sparse approximation [5], which also in-
volves training a dictionary and a sparse matrkt. How-

Dictionary learning has been widely applied in imaging ever, the way these matrices are used |n [5] is completely
problems, e.g., to obtain ef cient representations and dis- different from the approach proposed here. Their frame-
cover structure using local patches; se€ [18] for a survey.work adheres to a space partitioning approach; it indexes
Our second solution applies dictionary learning to nd a each descriptor in buckets using an inverted le based on
sparse description of the dataset enabling ef cient image the non-zero entries dfi. For a given query, their system
search. For any queny, we expect the score vectorto runs orthogonal matching pursuit (OMP) to nd a sparse
be sparse; the few high-amplitude coef cients correspond approximation, and then it calculates distances between the
to the matching images, and remaining low-amplitude coef- query and the dataset vectors that share the same buckets.
cients correspond to non-matching images. Moreover, we In contrast, the method proposed here involves no indexing
do not need the estimaéeto be very close t@, per se, as  and makes no direct distance calculations between the query
long as the matching images receive a substantially higherand the dataset vectors. Indeed, this allows us to completely
score than the non-matching ones. avoid touching dataset vectors at query time.

Because the three stefpsg (1)} (2) (3) of our method Similarly, clustering can be used to make groups, as in
are linear, this reconstruction of the similarities through traditional indexing approaches [20], but the decoding does
a sparse matriH implies a sparse representation of the not perform well for the following reason. The decoding
dataset vectors, which leads to the connection with dictio- matrix is too sparse: a single non-zero component in each
nary learning. Speci cally, we aim to approxima¥e by column (this vector belongs to that cluster). This requires

3.2. Second solution: Dictionary learning



an additional veri cation step after the decoding step for 4. Compressed dictionaries
the vectors in the leading cluster. This is not needed in our
method, hence we obtain huge savings in complexity and
memory. Our approach can be seen as performing a sort
of soft clustering, where each vector belongs to multiple
clusters with different weights.

Instead of dealing with a databaseMfimage vectors of
lengthd, our novel approach now manages a databasé of
group vectors of the same dimension. Compared to a linear
scan, we reduce the number of comparisons fiorto M ,
and yet, ranlN items based on their estimated score.

Nevertheless, our scheme remains compatible with the
traditional coding methods brie y introduced in the intro-

When designing an image search system, one must conduction. Instead of a linear scan browsing group vectors,
sider large-scale problems consisting of millions to billions W& can add on top of our method an approximate search.
of images. As explained in Sectiph 1, our primary goal is an This can take the for_m of either an embedding prodgcmg
ef cient image search system whose query time complex- COMpact representations of the group vectors, or an index-
ity (computational, and memory) is reduced. Although we ind structure nding the closest group vectors w.r.t. a query.
have been ignoring the complexity of the encoding phase, Tis improves even further the overall ef ciency.
by assuming that the complexity of this stage is less critical Case study: Combination with PQ-codes. An embed-
application-wise, it should remain tractable. ding offers a compact representation of group vectors al-

One of the most Wide]y-known dictionary |earning a|go_ |0Wing a fast apprOXimation of their dot prOdUCtS with the
rithms is that proposed by Mairat al. [I9]. This algorithm  query. PQ-codes [14], for instance, argriori not compli-
provides a fast implementation and allows other possibili- @nt since they operate on Euclidean distances. We convert
ties such as mini-batch learning and online dictionary up- Euclidean distance to cosine similarity in the following way.
dates. These features make it an attractive algorithm forEach group vectoy is split into * subvectorsy,, where
large-scale problems. However, the training time increasesl U . Each subvectoy, is quantized using the code-
dramatically withM for largeN datasets, as reported in POOokG, = fciy gl,: vy =argming i gkyy Ciu ke
Sectio 5. Even though this calculation needs to be doneThe compact representationyifs the list of codeword in-
only once in the of ine stage, we still need a scalable train- dices(vy;:::;v-) 2 f1:::;Qg . This is exactly the same
ing approach to index all dataset vectors easily. encoding stage as the original PQ-codes [14].

One solution is to use a subset of dataset vectors as a | e dot product querys group vector is approximated
surrogate for the entire dataset. Once the dictionaris  PY the dot product querysquantized group vector:

3.3. Large-scale dictionary learning

trained on the subset, a less expensive sparse decoding al- X X
gorithm, such as OMP, can be used to compute the matrix qy = & Yo & Cy, v (5)
H for the entire dataset. u=1 u=1 '

Elhamifaret al. [9] propose a solution similar to dictio-
nary learning, with the sole aim of nding representatives
from the data. A related approach is to uzswesetd1].

A coresetC is a problem-dependent approximation of a
dataseX . Feldmanet al. [10] show that for ever)X and

> 0 there exists a cores&@ 2 RY N° NO < N, for
which the following inequality holds:

whereg, is theu-th subvector of the query. As in the orig-
inal application of PQ-codes, the quantities; ci., g are
computed at query time and stored in a lookup table for
evaluating[(b) ef ciently over a large number of group vec-
tors. Using approximate dot products is an additional source
of error, but experiments in the next section show that the
decoding schemes described above gracefully handle this.

2

(1 ) mn kX YHK mn C YA 5. Experiments
H2RM N g2RM NO F

After detailing the experimental protocol, we report re-
trieval performance results together with a comparison with
other image retrieval approaches.

@a+) Hzrgnlﬂnka YH kg :

Typically, C has many fewer columns thafi, thereby
summarizing the whole dataset with just a few representa-
tives. The main advantage of this approach is its speed.Datasets. We evaluate our retrieval system using the Ox-
Finding a coreset for a large-scale dataset takes a short timeford5k [25] and Paris6k [26] datasets, which contain 5,063
only a few seconds in our experiments. Then, running dic- and 6,412 images respectively. For large-scale experiments
tionary learning on the coreset is signi cantly faster than on we add 100,000 Flickr distractor imagés [25], resulting in
the original dataset. We empirically evaluate the speedupdatasets referred as to Oxford105k and Paris106k. Addi-
and the effect on accuracy in the experimental section. tionally, we use the Yahoo Flickr Creative Commons 100M

5.1. Experimental setup
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Figure 1. Comparison of eigendecomposition, dictionary learning (DL), and LSH [6]. DL gives better performance, all the more so as
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the dataset is large. We only evaluate DL upMeN = 1 =10 for Oxford105k and Paris106k. Performance eventually converges to the

baseline after this point.

dataset|[209] (referred as to Yahoo100M), which comprises This is expected because we must Betto a very small

about 100 million image vectors. For comparison with other
works, we also run experiments on the Holiddys| [13] and
UKB [22] datasets.

value to obtain a low complexity ratio since the decoding
matrix H is not sparse in this solution. On the other hand,
we can seM to a much higher value for a given complexity

For each dataset, we follow its standard procedure toratio using dictionary learning sin¢¢ is sparse.

evaluate performances. Thean Average PrecisigmAP)

measures the retrieval quality in all datasets except forter than the baseline on all datasets.

UKB, where the performance is gaugeddyrecall@4.

Features. For most of our experiments, we use the state-
of-the-art R-MAC features [30]. Depending on the network
used, these features have dimensionality of either512
ord = 256[Y In section[5.B, we use T-embedding fea-
tures [16] withd = 8;064 to allow a more direct com-
parison with the most similar concurrent methods. For Ya-
hoo100M, we use VLAD [15] witld = 1; 024 as in [28].

Complexity analysis. We report the complexity ratio, =
(Md + s)=dN, wheres = nnzZH) is the number of non-
zero elements of matrid . For the eigendecomposition, we
sets = MN , whereas for dictionary learning (Sectjon]3.2),
m controls the sparsity dff making the complexity ratio
M=N + m=d. Unless otherwise specied, we set
m = 10 for R-MAC features; whem = 512 then decod-
ing contributes only 0.02 to (i.e., 2% of the complexity

Our variant based on dictionary learning performs bet-
One would expect
the performance to be worse than baselineNbr N

due to loss of information, but this is surprisingly not the
case. A possible explanation is that dictionary learning “de-
noises” similarities between vectors. In computer vision,
each image is represented by a global vector, which is usu-
ally obtained by aggregating local features, such as SIFT,
or response maps from convolutional neural networks (in
the case of R-MAC). These local features are obtained from
both useful structure of the scene and also from clutter.

Our interpretation is that dictionary learning decreases
the impact of features extracted from clutter patches be-
cause they are not common across the image collection; i.e.,
it favors the frequent visual patterns in the image collec-
tion. To explore this phenomenon further, we plot the dis-
tribution of matching and non-matching vector similarities
from Oxford5k using the original global descriptors. We
repeat the same process using the reconstructed similarities

of exhaustive. search). The memory ratio, thg ratio of thg from dictionary leaming. As we see in Figiife 2, both recon-
memory required compared to that of exhaustive search, iSgy cted similarity distributions have a lower variance than

equal to for non-sparséd. WhenH is sparse, we need
to storemN scalars and their indices, making the memory
ratioM=N + m=d+ mlog,(M )=d

5.2. Retrieval performance

We rst evaluate our system for differe using ei-
ther eigendecomposition or dictionary learning solutions.
We also include the popular sketching technique LSH [6],
which approximates similarity by comparing binary com-
pact codes of lengtd® = d. We measure the retrieval

performance in terms of mAP and complexity ratio as men-

tioned in Sectiofi 511.
Figure[] shows the retrieval performance for different

the original distributions. This is especially true for the non-
matching distribution. This variance reduction increases the
separation between the distributions, which translates to the
better performance of our dictionary learning method.

Sparsity of H is controlled by parametan in dictionary
learning (see Sectign 3.2). This is an important factor in the
complexity ratio . The ratio betweem andd contributes
to independently fronM . It is possible to set this ratio to
a small value to eliminate its in uence.

We compute a dictionary dfl atoms and we calculate
several matricesl by applying OMP with differenin. We
plot the retrieval performance for differemtandM in Fig-
ure[3. In most cases, the performance does not vary much

complexity ratios. It is clearly seen that eigendecomposi- w.r.t. m. The biggest difference is observed for Oxford105k

tion suffers at low complexity ratio in large-scale datasets.

lFeatures available online: ftp://ftp.irisa.fr/locall
texmex/corpus/memvec/cvprié/rmac/

where largem leads to better performance for snisll.

The dimensionality of the vectors is an important factor
affecting the overall complexity. Lower dimensionality im-
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Figure 2. Distributions of matching and non-matching vector similarities from Oxford5k dataset. Red (blue) curves represent distributions
of true (resp. reconstructed) similarities. The main improvement comes from the reduction of variance under the negative distribution.
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Figure 3. Retrieval performance with differdvit andm. Varyingm does not affect the performance in most cases, except for Oxford105k,
where increasingn improves performance for sméil .

plies lower complexity and less memory usage. Although Oxford105k Paris106k
our experiments up to now are done in what can be con- mAP | Time | mAP___ [ Time
sidered as a low-dimensional feature spate: (512), we jCj=N=10 | 60.1 1.1 | 146 | 783 1.0 | 1.8
evaluate our system with even smaller featucks; 256, jCj=N=5 | 621 12| 169 | 79.2 0.8 | 2.3
jCj = N=2 62.7 0.4 | 239 | 795 04| 3.3

in Figure[4. The results are similar to those ébr 512,

although the accuracy of eigendecomposition increases at a X 65.5 | 45.5 8,1-2 i 5-3,
slower rate for largé\ . Table 1. Performance and training time (in minutes) using coresets

to train the dictionaryM is set t05; 257 and532 for Oxford105k
and Paris105k respectively, and = 50. Each experiment is run
5 times, and we report the mean and the standard deviation.

The training stage compute¥ andH and is performed
only once and ofine. However, it is important that this
stage is scalable for updating the dictionary if needed. Ex-
perimentally, a small number of iterations (100) is suf- s thatH is less sparsem = 50. This results in the same
cient for dictionary learning. This does not require much performance but slightly higher complexity.

training time. Using Mairabt al. s algorithm [13], we re The search timeis the average number of seconds to re-

port the duration of the of ine training on Figufe 5. All ex- . . :
periments are done on a server with Ihteleor] E5-2650 spond to a query. Although comparing vector operations is
reliable in general, we also include the actual timings. Ex-

2.00GHz CPU and 32 cores. The training time is reasonablehaustive search takes 0.G26n Oxford105k and 0.GSon

s o L0k (verage por query, Our method takes 8003
' gp Y19%n oxford105k M = 5;257), and 0.00% on Paris106k

handling largéM andN . (M =532), with higher mAP than exhaustive search.

Coresets as explained in Sectidn 3.3, reduce the training
time even further for large datasets. Instead of using the
entire dataset, we nd a coresétwhich represents the data We compare our system with other image retrieval ap-
with a few representatives vectors to train the dictionaries. proaches. First we compare with the popular FLANN tool-
We report results for coresets of different sizes in Table 1. box [2(] using Oxford105k and R-MAC features. We set
Empirically, we achieve a similar performance by training the target precision to 0.95 and use the “autotuned” setting
on coresets of vectors. This allows us to train the dictionary of FLANN, which optimizes the indexing structure based
for largerM in just a few minutes. Note that Paris106k has on the data. We repeat this experiment 5 times. The aver-
fast training time even without coresets. This is becauseage speed-up ratio provided by the algorithm is 1.05, which
the best performance for this dataset is obtained itk corresponds to a complexity ratio of 0.95. In other words,
532, a rather small value. The drawback to using coresetsFLANN is ineffective for these R-MAC descriptors, most

5.3. Comparison with other methods
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Figure 4. Retrieval performance using smaller featudes:256.
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Figure 5. Of ine training time needed for dictionary learning with 100 iterations.

Mem. Ratio | Holidays | OxfordSk | UKB and indexing methods in the image retrieval literature. To
Exhaustive 1.0 71 67.4] 3.63 have a fair comparison, we report the performance using
Iscenet al. [11]-Kmeans 14 76.9 67.3 | 3.63 the same high-dimensional featuras € 8;064), same
Iscenet al. [11]-Rand 14 75.8 62.0| 3.63 datasets, and the same complexity ratio as the group test-
Shiet al [27] w/ bp. 1.4 75.5 64.4 | 3.63 ing methods. Additionally, we also compare our scores to
Borgeset al [5] 1.0 59.2| 59.9] 343 a dictionary learning-based hashing method [5], LSH [6]
LSH el 0.4 73.9 65.8| 3.61 and PCA, where dimensionality of vectors is reduced such
: : : : : atd® = 0:4d. Table[2 shows the comparison for a xe
Shiet al. [27] w/o bp. 0.4 8.7 24.1| 1.33 . . . . . .
: complexity ratio. We outline two observations. First, eigen-
Ours - Eigen. 0.4 76.9 67.7 | 3.63 d " K i th . his i
ours - Dict. Learn. 04 552 6.8 | 359 ecomposition works well in these experiments. This is es-

Table 2. Comparison in image retrieval for a given complexity Pecially true for the Holidays dataset Whghde = 14901
ratio of 0:4. This experiment uses long t-embedding features andd = 8;064 largeM can be used while keeping the
(d = 8;096). Eigendecomposition and dictionary learning gen- complexity ratio low sinceN < d. This is clearly a sce-

erally performs better at lower memory ratio. nario where it is plausible to use the eigendecomposition
approach. Second, dictionary learning performs poorly for
Mem. Ratio | Oxf5k | Oxf105k | Parisék | Paris106k Holidays. This dataset contains orlly491images, which
Exhaustive 1.0 66.9 61.6 | 83.0 75.7 constrains the size of the dictionaw to be small and pre-
[ [11)-Kmeans 1.1 65.6 612 79.7 75.7 vents sparsity: the best parameters (via cross-validation) are
| [11)-Rand 1.1 25.1| 437 21.2 44.4 found to beM = 519 andm = 409, giving = 0:4.
| [27] Wi bp. 1.1 15.4 28.1| 18.7 37.7 Note that this experiment uses long t-embedding descriptors
[5) 1.0 8.5 22.7 8.2 18.9 (d = 8;096) in small and mid-scale datasets. Most likely,
LSH (6] 0.1 48.6 | 405 701 58.2 these features have low intrinsic dimensionality, and PCA
PCA 0.1 58.1 8.0 | 861 38.9 and LSH are thus favored. Tallé 3 uses shorter R-MAC
Ours-Eigen. 0.1 56.8 8.0 863 40.9 features @ = 512) for comparison. The increase in perfor-
Ours-D.L. 0.1 73.7] 655] 853 8.9 mance is more signi cant, especially for large datasets.

Table 3. Comparison with R-MAC featured & 512) and 0:1
complexity ratio. Yahool00Mis a recently released large-scale dataset con-

sisting of approximately 100M images. Since there is

no manually annotated ground-truth, we use the following
likely due to their high intrinsic dimensionalityl (= 512): evaluation protocol: a dataset vector is considered to match
as discussed by its authofs [20], FLANN is not better than the query if its cosine similarity is at lea&6. There are 112
exhaustive search when applied to truly high-dimensional queries randomly selected from the dataset. Each query has
vectors. In contrast, our approach does not partition thebetween 2 and 96 matches, and 11.4 matches on average.
feature space and does not suffer as much the curse of diTable[5.2 shows visual examples of queries and matches.
mensionality. Our descriptors are whitened for better per-  This dataset is split into chunks 8f° = 100k images.
formance [12], which tends to reduce the effectiveness of We run dictionary learning and OMP independently to learn
partitioning-based approaches. matricesY andH for each chunk, settinlyl © = N %100

Next we compare our method with other group testing andm = 100. Overall, it results inM = N=100. We



Query Match Query Match Query Match

Query Match Match Match Match Match
Query Match Match Match Match Match
SR e 24

Table 4. Some examples of match and query in Yahoo100M dataset. Two vectors are considered a match if their similarity is above 0.5.

M = N=200 | M = N=100 | M = N=50 Baseline| Our Method | b=8 | b=64
mAP mAP mAP Oxford5k 66.9 73.4 73.1 72.9
m=100 | 857 0.105] 89.4 0.11] 92.8 0.12 Paris6k 83.0 88.1| 87.7 85.6
m =50 81.0 0.055] 84.7 0.06] 87.4 0.07 Oxford105k 61.6 65.5| 63.1 30.4
m = 20 61.8 0.025| 71.4 0.03] 78.2 0.04 Paris106k | 757 81.2| 80.9 76.8
Table 5. Performance (mAP) and complexity ratig {n Ya- Table 6. Combination of our method with PQ-codes. We use
hoo100M for differenf andm. M = 350 for Oxford5k,M = 30 for Paris6k,M = 5257 for

Oxford105k, andV = 532 for Paris106Kk.

can perform this of ine stage in parallel. At query time, code is signi cant 8 oats replaced by 1 byte).
we pool scores from each chunk together and sort them to

determine a nal ranking. When we evaluate the retrieval 6. Conclusion

performance, we obtain a mAP of 89.4 with 1=10. This

is a signi cant increase compared to running the same setup 1S Paper lowers the complexity of image search by re-
with LSH, which results in a mAP 670:9. Furthermore,  ducing the number of vector comparisons. We formulate

it is still possible for the dictionary learning approach to the image search problem as a.matrix factorizg.tion prqb—

obtain very good performance withx 1=10 by settingM lem, which can be solved using eigendecomposition or dic-

andm to smaller values as shown in Tablel5.3. tionary learning. We show that the former is a plausible
Similar to other datasets, we apply coresets for the ya-option for small datasets, whereas the latter can be ap-

hoo100M dataset. We learn a coreset for each chunk sepaP!ied for large-scale problems in general. When applied
rately, which makes its calculation feasible. We j&&f = to real datasets comprising up 16° images, our frame-
N=2.m = 100 andM = N=100, and obtaina mAP of87.9  Work achieves a comparable, and sometimes better perfor-

compared to a mAP of 89.4 using the entire chunks. mance, than exhaustive search within a fraction of complex-
c tibility with codi thods. O f th . ity. It is worth noting that this approach is complementary

ompatibiiity with coding methods. ~ne of the Main =5 e indexing/approximated similarity approaches such
strengths of our method is its complementarity with other

. S . that it can be combined to further increase ef ciency.

popular coding strategies in computer vision. We com-
bine our method with PQ-codes [14] as explained in Sec-
tion@]. We use = d=bsubvectors for different values bf
andQ = 256 codewords per each subquantizer (except for  This work was supported, in part, by the Natural Sci-
Paris6k where) = 16 due to smalM ). This reduces the  ences and Engineering Research Council of Canada through
termO(M  d) by a factor ofbif we neglect the xed cost  grant RGPAS 429296-12, and by the French National
of complexity of building the lookup table. Project IDFRAud (ANR-14-CE28-0012). Portions of this

Table[§ shows the difference of performance with and work were completed while the rst author was visiting
without PQ-codes. Observe that the performance remaindMcGill University.
almost the same fdr= 8. The compression factor by PQ-
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