
�>���G �A�/�, �?���H�@�y�R�k�N�9�d�j�e

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�k�N�9�d�j�e

�a�m�#�K�B�i�i�2�/ �Q�M �k�N �J���` �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�1�{�+�B�2�M�i �G���`�;�2�@�a�+���H�2 �a�B�K�B�H���`�B�i�v �a�2���`�+�? �l�b�B�M�; �J���i�`�B�t
�6���+�i�Q�`�B�x���i�B�Q�M

���?�K�2�i �A�b�+�2�M�- �J�B�+�?���2�H �_���#�#���i�- �h�2�/�/�v �6�m�`�Q�M

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���?�K�2�i �A�b�+�2�M�- �J�B�+�?���2�H �_���#�#���i�- �h�2�/�/�v �6�m�`�Q�M�X �1�{�+�B�2�M�i �G���`�;�2�@�a�+���H�2 �a�B�K�B�H���`�B�i�v �a�2���`�+�? �l�b�B�M�; �J���i�`�B�t
�6���+�i�Q�`�B�x���i�B�Q�M�X �k�y�R�e �A�1�1�1 �*�Q�M�7�2�`�2�M�+�2 �Q�M �*�Q�K�T�m�i�2�` �o�B�b�B�Q�M ���M�/ �S���i�i�2�`�M �_�2�+�Q�;�M�B�i�B�Q�M �U�*�o�S�_�V�- �C�m�M
�k�y�R�e�- �G���b �o�2�;���b�- �l�M�B�i�2�/ �a�i���i�2�b�X ���?���H�@�y�R�k�N�9�d�j�e��

https://hal.inria.fr/hal-01294736
https://hal.archives-ouvertes.fr

Ef�cient Large-Scale Similarity Search Using Matrix Factorization

Ahmet Iscen
Inria

Rennes, France
ahmet.iscen@inria.fr

Michael Rabbat
McGill University
Montréal, Canada

michael.rabbat@mcgill.ca

Teddy Furon
Inria

Rennes, France
teddy.furon@inria.fr

Abstract

We consider the image retrieval problem of �nding the
images in a dataset that are most similar to a query im-
age. Our goal is to reduce the number of vector operations
and memory for performing a search without sacri�cing ac-
curacy of the returned images. We adopt a group testing
formulation and design the decoding architecture using ei-
ther dictionary learning or eigendecomposition. The latter
is a plausible option for small-to-medium sized problems
with high-dimensional global image descriptors, whereas
dictionary learning is applicable in large-scale scenar-
ios. We evaluate our approach for global descriptors ob-
tained from both SIFT and CNN features. Experiments
with standard image search benchmarks, including the Ya-
hoo100M dataset comprising 100 million images, show that
our method gives comparable (and sometimes superior) ac-
curacy compared to exhaustive search while requiring only
10% of the vector operations and memory. Moreover, for
the same search complexity, our method gives signi�cantly
better accuracy compared to approaches based on dimen-
sionality reduction or locality sensitive hashing.

1. Introduction

This paper is about image retrieval and similarity search
for large datasets. Image retrieval aims to �nd the images
in a large scale dataset that are most similar to a given
query image. Recent approaches [16, 24] aggregate local
SIFT [17] features or use deep-learning networks [4] to cre-
ate a global descriptor vector for each image. Visual simi-
larity is then quanti�ed by measuring the similarity of these
vectors (e.g., cosine similarity). If the dataset hasN images
each represented by ad-dimensional feature vector, then an
exhaustive search for each query requiresdN operations.

A common approach to accelerate image search is in-
dexing, which operates in sub-linear time [20]. Indexing
partitions the feature spaceRd into clusters and computes
similarities between the query and dataset vectors that fall
in the same or neighboring clusters. Yet, as the dimension

d grows, the chance that similar images are assigned to dif-
ferent clusters increases, and the ef�ciency of these methods
collapses [20, 31]. This is problematic in computer vision
since most state-of-the-art image descriptors have high in-
trinsic dimensionality. A recent work tries to solve this by
indexing descriptors based on sparse approximation [5].

Another popular approach to ef�cient image search per-
forms a linear scan over the dataset, computing approximate
similarities using compact codes [2, 3, 6, 8, 14, 32]. These
techniques have a complexity ofd0N whered0 < d is the
reduced dimensionality of the compact code. The similar-
ity between vectors inRd is approximated by the distance
between their compact codes. State-of-the-art large scale
search algorithms combine indexing strategies with approx-
imated similarities [14].

Recently, a complementary approach inspired by group
testing has emerged [11, 27]. Here the goal is to reduce
the number of vectors against which the query is com-
pared. The full dataset ofN vectors is �rst summarized
by M � N group vectors, where each group vector is also
d-dimensional. As the name suggests, each group vector
represents a small subset of images in the original dataset.
These groups are composed by a random partition of the
dataset. Computation of the group vectors is performed
of�ine under a speci�c construction such that a compari-
son group vectorvs query vector measures how likely the
group contains query matching vectors. Then, when pre-
sented with a query, the system compares the query with
the group vectors instead of individual image vectors. This
reduces the complexity fromdN to dM .

Initial attempts [11, 27] considered anadaptivegroup
testing approach.M groups are composed from the dataset,
and querying proceeds in two stages. In the �rst stage,
the scores between group vectors and the query are com-
puted. They measure how likely their group contains some
matching images. Then, in the second stage, the query
is compared with individual image vectors for only the
mostly likely positive groups. If the groups are roughly bal-
anced in size and the query only matches a small number
of group vectors, then the complexity is reduced fromdN

to d(M + N=M). Although this results in ef�cient image
retrieval, it has one major drawback: memory usage is in-
creased since the group vectors and mapping from images to
groups are stored in addition to the dataset feature vectors.
In other words, these works trade complexity for memory.
This is not a tractable option for large-N datasets.

In this work, we pursue the idea of deducing which vec-
tors are matching in a database of sizeN from onlyM < N
measurements. We re-examine the group testing formu-
lation. Rather than a random partition of the dataset into
groups followed by a speci�c construction of the group vec-
tors, we formulate the problem of �nding an optimal group
testing design for a given image dataset. Removing the re-
striction to binary designs, the continuous version of this
optimization problem turns out to be equivalent to dictio-
nary learning. For small and medium sized datasets, with
N < d , one can remove the requirement of a sparse design
matrix, and then the problem simpli�es further to that of a
matrix factorization whose solution is given by the SVD.

The paper is organized as follows. Section 2 introduces
the problem formulation and notation. Section 3 proposes
different techniques to solve the problem depending on the
parametersN andd. Section 4 shows the compatibility of
our approach with an existing coding method in the litera-
ture. Section 5 presents the evaluation of proposed method
using real image datasets.

2. Problem statement

The dataset is composed ofN d-dimensional vectors
f x i gN

i =1 such thatkx i k = 1 , for all i , and eachx i is the
global feature vector of one image in the dataset. The sim-
ilarity between two vectorsx i andx j is the scalar product
x>

i x j . Denote byX thed � N matrix [x1; : : : ; xN].
As mentioned in Section 1, we aim to �ndM group vec-

tors of dimensiond, f y i gM
i =1 , stored ind � M matrix Y .

Unlike the previous group testing approaches, we do not
randomly assign dataset vectors to groups and we do not
compute the group vectors according to a speci�c construc-
tion. Our goal is to directly �nd the bestM group vectors
globally summarizing the dataset. We call this process the
encoding, and we restrict our scope to a linear encoding:

Y = enc(X) = XG > : (1)

Given a query image, represented by its global descriptor
vectorq, we compute the group scores,

s = q> Y : (2)

Finally, we estimate the similarities between query and
database vectorsc = q> X from the measurementss.
Again, we assume a linear estimator:

ĉ = dec(s) = sH: (3)

Our aim is to designG 2 RM � N andH 2 RM � N to
allow for a fast and accurate search. Note that this setup is
similar to the pioneering work of Shiet al. [27]: in their pa-
per,G is indeed a randomly generated binary matrix where
G(i; j) = 1 if x j belongs to thei -th group andG(i; j) = 0
otherwise. Hence, in the previous group testing approach,
G captures both how groups are made and how the group
vectors are computed (a simple sum in [27]). On the con-
trary, we look for the best matrix representing the dataset,
which will heavily depend onX .
Complexity. Exhaustive search involves computingq> X ,
which has a complexity ofdN . Computing the group mea-
surements (2) takesdM operations, and the decoding (3)
takesMN . This gives a complexity ofdM + NM for
group-testing search, compared todN operations for ex-
haustive search. The complexity ratio is thus� = M=N +
M=d, implying thatM must be smaller than bothN andd
to yield ef�cient queries.

Previous work based on group testing [11, 27] designs
groups so that every column ofG has exactlym � M
ones; i.e., each dataset vector belongs tom groups. This
produces a sparse decoding matrixH which, in turn, yields
the better complexity ratio� = M=N + m=d. However,
none of the approaches [11, 27] attempt to optimizeG and
H . They either createG randomly or use a clustering algo-
rithm to coarsely group similar dataset vectors [11]. In the
following sections, we discuss two techniques that optimize
the matricesG andH for a particular datasetX .

We focus on the complexity of performing a query. De-
termining the optimal encoding and decoding matricesG
and H requires additional computation applied of�ine or
periodically. We assume that the corresponding complexity
is not as critical as in the query stage. Our only require-
ment is that the complexity of this of�ine computation be
polynomial inN andd to ensure that it is tractable.

3. Proposed solutions

We now provide two alternative solutions for the setup
described in Section 2. As we will show in the experimen-
tal section, both solutions have advantages and drawbacks,
and can be chosen depending on the feature vectors and the
number of items in the dataset.

3.1. First solution: Eigendecomposition

In the �rst approach, we consider �nding matricesG 2
RM � N andH 2 RM � N so that the approximate scoresĉ
and exact scoresc are as close as possible. Based on (1),
(2) and (3), this amounts to:

minimize
G ;H

X

q2Q

kc � ĉk2
2 =

minimize
G ;H

X

q2Q

kqT X � qT XG > H k2
2;

whereQ is assumed to be representative of typical queries.
Of course, this distance cannot be zero for allq 2 Rd since
the N � N matrix G > H has rank at mostM < N . We
focus on providing accurate scores for typical queries. We
use the dataset of vectors itself as a proxy of the typical
ensemble of queries. This amounts to replacingq by X and
to consider the Frobenius matrix norm:

minimize
G ;H

 X > X � X > XG > H

 2

F : (4)

This problem is commonly solved by eigendecomposi-
tion. Let A = X > X be the Gramian symmetric matrix
associated toX . As a real symmetric matrix,A is diago-
nalizable:A = U � U > , whereU is an orthogonal matrix
(U > U = UU > = I N). This means that we can simply as-
signG > = U M andH = U >

M , whereU M are the eigen-
vectors associated with theM largest eigenvalues.

In practice, we do not need to compute the Gram matrix
A = X > X . The singular value decomposition (SVD) of
X is de�ned asX = S� U > , whereS are the eigenvectors
of XX > , andU are the eigenvectors ofX > X . Hence, this
SVD gives us the desired output without having to calcu-
lateA . It is worth noting that this solution resembles a well
known dimension reduction method: Principal Component
Analysis (PCA). However, while PCA is usually employed
to reduce the dimensionality of the vectors fromd to d0

components, in our approach we use it to reduce the num-
ber of vectors fromN to M . Alternatively, more ef�cient
dimensionality reduction methods, such as sparse projec-
tors [21], can be used to constructH .

The major drawback of this approach is thatH is not
sparse. Therefore, the complexity of the decoding (3) is
in O(MN). Hence, this solution is ef�cient for scenarios
whered is larger thanN .

3.2. Second solution: Dictionary learning

Dictionary learning has been widely applied in imaging
problems, e.g., to obtain ef�cient representations and dis-
cover structure using local patches; see [18] for a survey.
Our second solution applies dictionary learning to �nd a
sparse description of the dataset enabling ef�cient image
search. For any queryq, we expect the score vectorc to
be sparse; the few high-amplitude coef�cients correspond
to the matching images, and remaining low-amplitude coef-
�cients correspond to non-matching images. Moreover, we
do not need the estimatêc to be very close toc, per se, as
long as the matching images receive a substantially higher
score than the non-matching ones.

Because the three steps (1), (2) and (3) of our method
are linear, this reconstruction of the similarities through
a sparse matrixH implies a sparse representation of the
dataset vectors, which leads to the connection with dictio-
nary learning. Speci�cally, we aim to approximateX by

YH whereH 2 RM � N stores the sparse representations
of the dataset vectors in terms of columns (so-called atoms)
of the dictionaryY 2 Rd� M . This leads to the following
optimization problem:

minimize
Y ;H

1
2

kX � YH k2
F + � kH k1

subject to ky k k2 � 1 for all 0 � k < M:

The `1-norm penalty onH (sum of the magnitude of
its elements) encourages a solution where each column of
X can be represented as a sparse combination of columns
of the dictionaryY . The level of sparsity depends on� .
Unlike the previous solution of Section 3.1, this scheme
is competitive whenN is larger thand since we bene�t
from the reduced complexity of sparse matrix multiplica-
tion. An algorithm such as Orthogonal Matching Pursuit
(OMP) [7,23] allows us to strictly control the sparsity ofH .
For a given dictionaryY , OMP �nds H = [h1; � � � ; hN] by
sequentially solving

minimize
h i

1
2

kx i � Yh i k
2
2

subject to kh i k0 � m:

Adopting this algorithm, we control the sparsity of the
matrix H by settingm to a desired value. Note that this
solution is directly related with the problem statement in
Section 2, even ifG is not directly a part of the solution.
The reconstruction of the vectorsX is linear up to an ap-
proximation,X � YH . Since this is a linear process , we
haveY = XG > (1) whereG > = H + (pseudo-inverse).
Therefore, the connection is obvious. Furthermore,G is
not needed during the search; what matters isY andH .

This solution is similar to the recently proposed indexing
strategy based on sparse approximation [5], which also in-
volves training a dictionaryY and a sparse matrixH . How-
ever, the way these matrices are used in [5] is completely
different from the approach proposed here. Their frame-
work adheres to a space partitioning approach; it indexes
each descriptor in buckets using an inverted �le based on
the non-zero entries ofH . For a given query, their system
runs orthogonal matching pursuit (OMP) to �nd a sparse
approximation, and then it calculates distances between the
query and the dataset vectors that share the same buckets.
In contrast, the method proposed here involves no indexing
and makes no direct distance calculations between the query
and the dataset vectors. Indeed, this allows us to completely
avoid touching dataset vectors at query time.

Similarly, clustering can be used to make groups, as in
traditional indexing approaches [20], but the decoding does
not perform well for the following reason. The decoding
matrix is too sparse: a single non-zero component in each
column (this vector belongs to that cluster). This requires

an additional veri�cation step after the decoding step for
the vectors in the leading cluster. This is not needed in our
method, hence we obtain huge savings in complexity and
memory. Our approach can be seen as performing a sort-
of soft clustering, where each vector belongs to multiple
clusters with different weights.

3.3. Large­scale dictionary learning

When designing an image search system, one must con-
sider large-scale problems consisting of millions to billions
of images. As explained in Section 1, our primary goal is an
ef�cient image search system whose query time complex-
ity (computational, and memory) is reduced. Although we
have been ignoring the complexity of the encoding phase,
by assuming that the complexity of this stage is less critical
application-wise, it should remain tractable.

One of the most widely-known dictionary learning algo-
rithms is that proposed by Mairalet al. [19]. This algorithm
provides a fast implementation and allows other possibili-
ties such as mini-batch learning and online dictionary up-
dates. These features make it an attractive algorithm for
large-scale problems. However, the training time increases
dramatically withM for large-N datasets, as reported in
Section 5. Even though this calculation needs to be done
only once in the of�ine stage, we still need a scalable train-
ing approach to index all dataset vectors easily.

One solution is to use a subset of dataset vectors as a
surrogate for the entire dataset. Once the dictionaryY is
trained on the subset, a less expensive sparse decoding al-
gorithm, such as OMP, can be used to compute the matrix
H for the entire dataset.

Elhamifaret al. [9] propose a solution similar to dictio-
nary learning, with the sole aim of �nding representatives
from the data. A related approach is to usecoresets[1].
A coresetC is a problem-dependent approximation of a
datasetX . Feldmanet al. [10] show that for everyX and
� > 0 there exists a coresetC 2 Rd� N 0

, N 0 < N , for
which the following inequality holds:

(1 � �)� min
H 2 RM � N

kX � YH k2
F � min

eH 2 RM � N 0

 C � Y eH

2

F

� (1 + �) � min
H 2 RM � N

kX � YH k2
F :

Typically, C has many fewer columns thanX , thereby
summarizing the whole dataset with just a few representa-
tives. The main advantage of this approach is its speed.
Finding a coreset for a large-scale dataset takes a short time,
only a few seconds in our experiments. Then, running dic-
tionary learning on the coreset is signi�cantly faster than on
the original dataset. We empirically evaluate the speedup
and the effect on accuracy in the experimental section.

4. Compressed dictionaries

Instead of dealing with a database ofN image vectors of
lengthd, our novel approach now manages a database ofM
group vectors of the same dimension. Compared to a linear
scan, we reduce the number of comparisons fromN to M ,
and yet, rankN items based on their estimated score.

Nevertheless, our scheme remains compatible with the
traditional coding methods brie�y introduced in the intro-
duction. Instead of a linear scan browsing group vectors,
we can add on top of our method an approximate search.
This can take the form of either an embedding producing
compact representations of the group vectors, or an index-
ing structure �nding the closest group vectors w.r.t. a query.
This improves even further the overall ef�ciency.

Case study: Combination with PQ-codes. An embed-
ding offers a compact representation of group vectors al-
lowing a fast approximation of their dot products with the
query. PQ-codes [14], for instance, area priori not compli-
ant since they operate on Euclidean distances. We convert
Euclidean distance to cosine similarity in the following way.
Each group vectory is split into ` subvectors~yu , where
1 � u � `. Each subvector~yu is quantized using the code-
book Cu = f ci;u gQ

i =1 : vu = arg min 1� i � Q k~yu � ci;u k.
The compact representation ofy is the list of codeword in-
dices(v1; : : : ; v`) 2 f 1; : : : ; Qg` . This is exactly the same
encoding stage as the original PQ-codes [14].

The dot product queryvs group vector is approximated
by the dot product queryvsquantized group vector:

q> y =
X̀

u=1

~q>
u ~yu �

X̀

u=1

~q>
u cvu ;u ; (5)

where~qu is theu-th subvector of the query. As in the orig-
inal application of PQ-codes, the quantitiesf ~q>

u ci;u g are
computed at query time and stored in a lookup table for
evaluating (5) ef�ciently over a large number of group vec-
tors. Using approximate dot products is an additional source
of error, but experiments in the next section show that the
decoding schemes described above gracefully handle this.

5. Experiments

After detailing the experimental protocol, we report re-
trieval performance results together with a comparison with
other image retrieval approaches.

5.1. Experimental setup

Datasets. We evaluate our retrieval system using the Ox-
ford5k [25] and Paris6k [26] datasets, which contain 5,063
and 6,412 images respectively. For large-scale experiments
we add 100,000 Flickr distractor images [25], resulting in
datasets referred as to Oxford105k and Paris106k. Addi-
tionally, we use the Yahoo Flickr Creative Commons 100M

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Oxford5k

Base
Eig
DL

LSH
0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0 0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Oxford105k

Base
Eig
DL

LSH

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Paris6k

Base
Eig
DL

LSH
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

 0 0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Paris106k

Base
Eig
DL

LSH

Figure 1. Comparison of eigendecomposition, dictionary learning (DL), and LSH [6]. DL gives better performance, all the more so as
the dataset is large. We only evaluate DL up toM=N = 1 =10 for Oxford105k and Paris106k. Performance eventually converges to the
baseline after this point.

dataset [29] (referred as to Yahoo100M), which comprises
about 100 million image vectors. For comparison with other
works, we also run experiments on the Holidays [13] and
UKB [22] datasets.

For each dataset, we follow its standard procedure to
evaluate performances. Themean Average Precision(mAP)
measures the retrieval quality in all datasets except for
UKB, where the performance is gauged by4� recall@4.

Features. For most of our experiments, we use the state-
of-the-art R-MAC features [30]. Depending on the network
used, these features have dimensionality of eitherd = 512
or d = 256.1 In section 5.3, we use T-embedding fea-
tures [16] withd = 8 ; 064 to allow a more direct com-
parison with the most similar concurrent methods. For Ya-
hoo100M, we use VLAD [15] withd = 1 ; 024as in [28].

Complexity analysis.We report the complexity ratio,� =
(Md + s)=dN, wheres = nnz(H) is the number of non-
zero elements of matrixH . For the eigendecomposition, we
sets = MN , whereas for dictionary learning (Section 3.2),
m controls the sparsity ofH making the complexity ratio
� = M=N + m=d. Unless otherwise speci�ed, we set
m = 10 for R-MAC features; whend = 512 then decod-
ing contributes only 0.02 to� (i.e., 2% of the complexity
of exhaustive search). The memory ratio, the ratio of the
memory required compared to that of exhaustive search, is
equal to� for non-sparseH . WhenH is sparse, we need
to storemN scalars and their indices, making the memory
ratioM=N + m=d + m log2(M)=d � � .

5.2. Retrieval performance

We �rst evaluate our system for differentM using ei-
ther eigendecomposition or dictionary learning solutions.
We also include the popular sketching technique LSH [6],
which approximates similarity by comparing binary com-
pact codes of lengthd0 = �d . We measure the retrieval
performance in terms of mAP and complexity ratio as men-
tioned in Section 5.1.

Figure 1 shows the retrieval performance for different
complexity ratios. It is clearly seen that eigendecomposi-
tion suffers at low complexity ratio in large-scale datasets.

1Features available online: ftp://ftp.irisa.fr/local/
texmex/corpus/memvec/cvpr16/rmac/

This is expected because we must setM to a very small
value to obtain a low complexity ratio since the decoding
matrix H is not sparse in this solution. On the other hand,
we can setM to a much higher value for a given complexity
ratio using dictionary learning sinceH is sparse.

Our variant based on dictionary learning performs bet-
ter than the baseline on all datasets. One would expect
the performance to be worse than baseline forM � N
due to loss of information, but this is surprisingly not the
case. A possible explanation is that dictionary learning “de-
noises” similarities between vectors. In computer vision,
each image is represented by a global vector, which is usu-
ally obtained by aggregating local features, such as SIFT,
or response maps from convolutional neural networks (in
the case of R-MAC). These local features are obtained from
both useful structure of the scene and also from clutter.

Our interpretation is that dictionary learning decreases
the impact of features extracted from clutter patches be-
cause they are not common across the image collection; i.e.,
it favors the frequent visual patterns in the image collec-
tion. To explore this phenomenon further, we plot the dis-
tribution of matching and non-matching vector similarities
from Oxford5k using the original global descriptors. We
repeat the same process using the reconstructed similarities
from dictionary learning. As we see in Figure 2, both recon-
structed similarity distributions have a lower variance than
the original distributions. This is especially true for the non-
matching distribution. This variance reduction increases the
separation between the distributions, which translates to the
better performance of our dictionary learning method.
Sparsity of H is controlled by parameterm in dictionary
learning (see Section 3.2). This is an important factor in the
complexity ratio� . The ratio betweenm andd contributes
to � independently fromM . It is possible to set this ratio to
a small value to eliminate its in�uence.

We compute a dictionary ofM atoms and we calculate
several matricesH by applying OMP with differentm. We
plot the retrieval performance for differentm andM in Fig-
ure 3. In most cases, the performance does not vary much
w.r.t. m. The biggest difference is observed for Oxford105k
where largerm leads to better performance for smallM .
The dimensionality of the vectors is an important factor
affecting the overall complexity. Lower dimensionality im-

ftp://ftp.irisa.fr/local/texmex/corpus/memvec/cvpr16/rmac/
ftp://ftp.irisa.fr/local/texmex/corpus/memvec/cvpr16/rmac/

Original Dict. Learning
Pos.� 0.29 0.28
Pos.� 0.16 0.15
Neg. � 0.02 0.02
Neg. � 0.06 0.04

0.2 0.0 0.2
0

1

2

3

4

5

6

7

8

9 Negative distribution

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0 Positive distribution

Figure 2. Distributions of matching and non-matching vector similarities from Oxford5k dataset. Red (blue) curves represent distributions
of true (resp. reconstructed) similarities. The main improvement comes from the reduction of variance under the negative distribution.

m

25

10
5
2

M/N
0.10 0.20 0.30 0.40 0.50

mAP

0.2

0.3

0.4

0.5

0.6

0.7

0.8

oxford5k

m

25

10
5
2

M/N
0.02 0.04 0.06 0.08

mAP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

oxford105k

m

25

10
5
2

M/N
0.10 0.20 0.30 0.40

mAP

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

paris6k

m

25

10
5
2

M/N
0.02 0.04 0.06 0.08

mAP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

paris106k

Figure 3. Retrieval performance with differentM andm. Varyingm does not affect the performance in most cases, except for Oxford105k,
where increasingm improves performance for smallM .

plies lower complexity and less memory usage. Although
our experiments up to now are done in what can be con-
sidered as a low-dimensional feature space (d = 512), we
evaluate our system with even smaller features,d = 256,
in Figure 4. The results are similar to those ford = 512,
although the accuracy of eigendecomposition increases at a
slower rate for largeN .

The training stage computesY andH and is performed
only once and of�ine. However, it is important that this
stage is scalable for updating the dictionary if needed. Ex-
perimentally, a small number of iterations (� 100) is suf-
�cient for dictionary learning. This does not require much
training time. Using Mairalet al. 's algorithm [19], we re-
port the duration of the of�ine training on Figure 5. All ex-
periments are done on a server with Intelr Xeonr E5-2650
2.00GHz CPU and 32 cores. The training time is reasonable
for all datasets, but it increases dramatically withM in large
datasets. Other training procedures would be necessary for
handling largeM andN .

Coresets, as explained in Section 3.3, reduce the training
time even further for large datasets. Instead of using the
entire dataset, we �nd a coresetC which represents the data
with a few representatives vectors to train the dictionaries.
We report results for coresets of different sizes in Table 1.
Empirically, we achieve a similar performance by training
on coresets of vectors. This allows us to train the dictionary
for largerM in just a few minutes. Note that Paris106k has
fast training time even without coresets. This is because
the best performance for this dataset is obtained withM =
532, a rather small value. The drawback to using coresets

Oxford105k Paris106k
mAP Time mAP Time

jC j = N=10 60.1� 1.1 14.6 78.3� 1.0 1.8
jC j = N=5 62.1� 1.2 16.9 79.2� 0.8 2.3
jC j = N=2 62.7� 0.4 23.9 79.5� 0.4 3.3

X 65.5 45.5 81.2 5.3
Table 1. Performance and training time (in minutes) using coresets
to train the dictionary.M is set to5; 257and532for Oxford105k
and Paris105k respectively, andm = 50 . Each experiment is run
5 times, and we report the mean and the standard deviation.

is thatH is less sparse:m = 50. This results in the same
performance but slightly higher complexity.

The search timeis the average number of seconds to re-
spond to a query. Although comparing vector operations is
reliable in general, we also include the actual timings. Ex-
haustive search takes 0.029s on Oxford105k and 0.03s on
Paris106k (average per query). Our method takes 0.003s
on Oxford105k (M = 5 ; 257), and 0.001s on Paris106k
(M = 532), with higher mAP than exhaustive search.

5.3. Comparison with other methods

We compare our system with other image retrieval ap-
proaches. First we compare with the popular FLANN tool-
box [20] using Oxford105k and R-MAC features. We set
the target precision to 0.95 and use the “autotuned” setting
of FLANN, which optimizes the indexing structure based
on the data. We repeat this experiment 5 times. The aver-
age speed-up ratio provided by the algorithm is 1.05, which
corresponds to a complexity ratio of 0.95. In other words,
FLANN is ineffective for these R-MAC descriptors, most

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Oxford5k

Base
Eig
DL

LSH
0.1

0.2

0.3

0.4

0.5

0.6

 0 0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Oxford105k

Base
Eig
DL

LSH

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Paris6k

Base
Eig
DL

LSH
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 0 0.1 0.2 0.3 0.4 0.5

m
A

P

Complexity Ratio

Paris106k

Base
Eig
DL

LSH

Figure 4. Retrieval performance using smaller features:d = 256.

 0

 0.5

 1

 1.5

 2

 2.5

0.1 0.2 0.3 0.4 0.5

M
in

ut
es

Complexity Ratio

Oxford5k

DL 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 0.05 0.1 0.15 0.2

M
in

ut
es

Complexity Ratio

Oxford105k

DL 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

0.1 0.2 0.3 0.4 0.5

M
in

ut
es

Complexity Ratio

Paris6k

DL
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 0.05 0.1 0.15 0.2

M
in

ut
es

Complexity Ratio

Paris106k

DL

Figure 5. Of�ine training time needed for dictionary learning with 100 iterations.

Mem. Ratio Holidays Oxford5k UKB

Exhaustive 1.0 77.1 67.4 3.63

Iscenet al. [11]-Kmeans 1.4 76.9 67.3 3.63
Iscenet al. [11]-Rand 1.4 75.8 62.0 3.63
Shiet al. [27] w/ bp. 1.4 75.5 64.4 3.63
Borgeset al. [5] 1.0 59.2 59.9 3.43
LSH [6] 0.4 73.9 65.8 3.61
PCA 0.4 75.4 64.3 3.61
Shiet al. [27] w/o bp. 0.4 8.7 24.1 1.33
Ours - Eigen. 0.4 76.9 67.7 3.63
Ours - Dict. Learn. 0.4 55.2 68.8 3.59

Table 2. Comparison in image retrieval for a given complexity
ratio of 0:4. This experiment uses long t-embedding features
(d = 8 ; 096). Eigendecomposition and dictionary learning gen-
erally performs better at lower memory ratio.

Mem. Ratio Oxf5k Oxf105k Paris6k Paris106k

Exhaustive 1.0 66.9 61.6 83.0 75.7

[11]-Kmeans 1.1 65.6 61.2 79.7 75.7
[11]-Rand 1.1 25.1 43.7 21.2 44.4
[27] w/ bp. 1.1 15.4 28.1 18.7 37.7
[5] 1.0 8.5 22.7 8.2 18.9
LSH [6] 0.1 48.6 40.5 70.1 58.2
PCA 0.1 58.1 8.0 86.1 38.9
Ours-Eigen. 0.1 56.8 8.0 86.3 40.9
Ours-D.L. 0.1 73.7 65.5 85.3 78.9

Table 3. Comparison with R-MAC features (d = 512) and 0:1
complexity ratio.

likely due to their high intrinsic dimensionality (d = 512):
as discussed by its authors [20], FLANN is not better than
exhaustive search when applied to truly high-dimensional
vectors. In contrast, our approach does not partition the
feature space and does not suffer as much the curse of di-
mensionality. Our descriptors are whitened for better per-
formance [12], which tends to reduce the effectiveness of
partitioning-based approaches.

Next we compare our method with other group testing

and indexing methods in the image retrieval literature. To
have a fair comparison, we report the performance using
the same high-dimensional features (d = 8 ; 064), same
datasets, and the same complexity ratio as the group test-
ing methods. Additionally, we also compare our scores to
a dictionary learning-based hashing method [5], LSH [6]
and PCA, where dimensionality of vectors is reduced such
that d0 = 0 :4d. Table 2 shows the comparison for a �xed
complexity ratio. We outline two observations. First, eigen-
decomposition works well in these experiments. This is es-
pecially true for the Holidays dataset whereN = 1 ; 491
and d = 8 ; 064; large M can be used while keeping the
complexity ratio low sinceN < d . This is clearly a sce-
nario where it is plausible to use the eigendecomposition
approach. Second, dictionary learning performs poorly for
Holidays. This dataset contains only1; 491 images, which
constrains the size of the dictionaryM to be small and pre-
vents sparsity: the best parameters (via cross-validation) are
found to beM = 519 and m = 409, giving � = 0 :4.
Note that this experiment uses long t-embedding descriptors
(d = 8 ; 096) in small and mid-scale datasets. Most likely,
these features have low intrinsic dimensionality, and PCA
and LSH are thus favored. Table 3 uses shorter R-MAC
features (d = 512) for comparison. The increase in perfor-
mance is more signi�cant, especially for large datasets.

Yahoo100Mis a recently released large-scale dataset con-
sisting of approximately 100M images. Since there is
no manually annotated ground-truth, we use the following
evaluation protocol: a dataset vector is considered to match
the query if its cosine similarity is at least0:5. There are 112
queries randomly selected from the dataset. Each query has
between 2 and 96 matches, and 11.4 matches on average.
Table 5.2 shows visual examples of queries and matches.

This dataset is split into chunks ofN 0 = 100k images.
We run dictionary learning and OMP independently to learn
matricesY andH for each chunk, settingM 0 = N 0=100
and m = 100. Overall, it results inM = N=100. We

Query Match Query Match Query Match

Query Match Match Match Match Match

Query Match Match Match Match Match

Table 4. Some examples of match and query in Yahoo100M dataset. Two vectors are considered a match if their similarity is above 0.5.

M = N=200 M = N=100 M = N=50
mAP � mAP � mAP �

m = 100 85.7 0.105 89.4 0.11 92.8 0.12
m = 50 81.0 0.055 84.7 0.06 87.4 0.07
m = 20 61.8 0.025 71.4 0.03 78.2 0.04

Table 5. Performance (mAP) and complexity ratio (�) in Ya-
hoo100M for differentM andm.

can perform this of�ine stage in parallel. At query time,
we pool scores from each chunk together and sort them to
determine a �nal ranking. When we evaluate the retrieval
performance, we obtain a mAP of 89.4 with� � 1=10. This
is a signi�cant increase compared to running the same setup
with LSH, which results in a mAP of70:9. Furthermore,
it is still possible for the dictionary learning approach to
obtain very good performance with� < 1=10 by settingM
andm to smaller values as shown in Table 5.3.

Similar to other datasets, we apply coresets for the Ya-
hoo100M dataset. We learn a coreset for each chunk sepa-
rately, which makes its calculation feasible. We setjCj =
N=2, m = 100 andM = N=100, and obtain a mAP of 87.9
compared to a mAP of 89.4 using the entire chunks.

Compatibility with coding methods. One of the main
strengths of our method is its complementarity with other
popular coding strategies in computer vision. We com-
bine our method with PQ-codes [14] as explained in Sec-
tion 4. We usè = d=bsubvectors for different values ofb
andQ = 256 codewords per each subquantizer (except for
Paris6k whereQ = 16 due to smallM). This reduces the
termO(M � d) by a factor ofb if we neglect the �xed cost
of complexity of building the lookup table.

Table 6 shows the difference of performance with and
without PQ-codes. Observe that the performance remains
almost the same forb = 8 . The compression factor by PQ-

Baseline Our Method b = 8 b = 64
Oxford5k 66.9 73.4 73.1 72.9
Paris6k 83.0 88.1 87.7 85.6
Oxford105k 61.6 65.5 63.1 30.4
Paris106k 75.7 81.2 80.9 76.8

Table 6. Combination of our method with PQ-codes. We use
M = 350 for Oxford5k, M = 30 for Paris6k,M = 5257 for
Oxford105k, andM = 532 for Paris106k.

code is signi�cant (8 �oats replaced by 1 byte).

6. Conclusion

This paper lowers the complexity of image search by re-
ducing the number of vector comparisons. We formulate
the image search problem as a matrix factorization prob-
lem, which can be solved using eigendecomposition or dic-
tionary learning. We show that the former is a plausible
option for small datasets, whereas the latter can be ap-
plied for large-scale problems in general. When applied
to real datasets comprising up to108 images, our frame-
work achieves a comparable, and sometimes better perfor-
mance, than exhaustive search within a fraction of complex-
ity. It is worth noting that this approach is complementary
to other indexing/approximated similarity approaches such
that it can be combined to further increase ef�ciency.

Acknowledgments

This work was supported, in part, by the Natural Sci-
ences and Engineering Research Council of Canada through
grant RGPAS 429296-12, and by the French National
Project IDFRAud (ANR-14-CE28-0012). Portions of this
work were completed while the �rst author was visiting
McGill University.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Ap-
proximating extent measures of points.Journal of the ACM,
51(4):606–635, 2004.

[2] R. Arandjelovíc and A. Zisserman. Extremely low bit-rate
nearest neighbor search using a set compression tree.IEEE
Trans. PAMI, 2014.

[3] A. Babenko and V. Lempitsky. The inverted multi-index. In
CVPR, June 2012.

[4] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky.
Neural codes for image retrieval. InECCV, 2014.

[5] P. Borges, A. Mour̃ao, and J. Magalh̃aes. High-dimensional
indexing by sparse approximation. InProceedings of the 5th
ACM on International Conference on Multimedia Retrieval,
2015.

[6] M. S. Charikar. Similarity estimation techniques from round-
ing algorithms. InSTOC, pages 380–388, May 2002.

[7] G. M. Davis, S. G. Mallat, and Z. Zhang. Adaptive time-
frequency decompositions with matching pursuit. InSPIE's
International Symposium on Optical Engineering and Pho-
tonics in Aerospace Sensing, pages 402–413, 1994.

[8] W. Dong, M. Charikar, and K. Li. Asymmetric dis-
tance estimation with sketches for similarity search in high-
dimensional spaces. InSIGIR, pages 123–130, July 2008.

[9] E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at
a few: Sparse modeling for �nding representative objects. In
CVPR, 2012.

[10] D. Feldman, M. Feigin, and N. Sochen. Learning big (image)
data via coresets for dictionaries.Journal of Mathematical
Imaging and Vision, 46(3):276–291, 2013.

[11] A. Iscen, T. Furon, V. Gripon, M. Rabbat, and H. Jégou.
Memory vectors for similarity search in high-dimensional
spaces.arXiv preprint arXiv:1412.3328, 2014.

[12] H. J́egou and O. Chum. Negative evidences and co-
occurrences in image retrieval: The bene�t of PCA and
whitening. InECCV, October 2012.

[13] H. J́egou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In ECCV, October 2008.

[14] H. J́egou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search.IEEE Trans. PAMI, 33(1):117–
128, January 2011.

[15] H. J́egou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, June 2010.

[16] H. J́egou and A. Zisserman. Triangulation embedding and
democratic kernels for image search. InCVPR, June 2014.

[17] D. G. Lowe. Distinctive image features from scale-invariant
keypoints.IJCV, 60(2):91–110, 2004.

[18] J. Mairal, F. Bach, and J. Ponce. Sparse modeling for im-
age and vision processing.arXiv preprint arXiv:1411.3230,
2014.

[19] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning
for matrix factorization and sparse coding.The Journal of
Machine Learning Research, 11:19–60, 2010.

[20] M. Muja and D. G. Lowe. Scalable nearest neighbor algo-
rithms for high dimensional data.IEEE Trans. PAMI, 36,
2014.

[21] R. Negrel, D. Picard, and P.-H. Gosselin. Dimensional-
ity reduction of visual features using sparse projectors for
content-based image retrieval. InICIP 2014, pages 2192–
2196, 2014.

[22] D. Nistér and H. Steẃenius. Scalable recognition with a vo-
cabulary tree. InCVPR, pages 2161–2168, June 2006.

[23] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthog-
onal matching pursuit: Recursive function approximation
with applications to wavelet decomposition. InASILOMAR,
pages 40–44, 1993.

[24] F. Perronnin and C. R. Dance. Fisher kernels on visual vo-
cabularies for image categorization. InCVPR, June 2007.

[25] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. InCVPR, June 2007.

[26] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Lost in quantization: Improving particular object retrieval in
large scale image databases. InCVPR, June 2008.

[27] M. Shi, T. Furon, and H. J́egou. A group testing framework
for similarity search in high-dimensional spaces. InACM
Multimedia, November 2014.

[28] E. Spyromitros-Xiou�s, S. Papadopoulos, I. Kompatsiaris,
G. Tsoumakas, and I. Vlahavas. A comprehensive study
over VLAD and product quantization in large-scale image
retrieval. IEEE Trans. on Multimedia, 2014.

[29] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. Yfcc100m: The new data
in multimedia research.Commun. ACM, 59(2), 2016.

[30] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval
with integral max-pooling of cnn activations.ICLR, 2016.

[31] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. InVLDB, pages 194–205, 1998.

[32] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, December 2009.

