P. K. Agarwal, S. Har-peled, and K. R. Varadarajan, Approximating extent measures of points, Journal of the ACM, vol.51, issue.4, pp.606-635, 2004.
DOI : 10.1145/1008731.1008736

R. Arandjelovi´carandjelovi´c and A. Zisserman, Extremely low bit-rate nearest neighbor search using a set compression tree, IEEE Trans. PAMI, 2014.

A. Babenko and V. Lempitsky, The inverted multi-index, CVPR, 2012.

A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, Neural Codes for Image Retrieval, ECCV, 2014.
DOI : 10.1007/978-3-319-10590-1_38

P. Borges, A. Mourão, and J. Magalhães, High-Dimensional Indexing by Sparse Approximation, Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, ICMR '15, 2015.
DOI : 10.1145/2671188.2749371

M. S. Charikar, Similarity estimation techniques from rounding algorithms, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing , STOC '02, pp.380-388, 2002.
DOI : 10.1145/509907.509965

G. M. Davis, S. G. Mallat, and Z. Zhang, Adaptive timefrequency decompositions with matching pursuit, SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, pp.402-413, 1994.

W. Dong, M. Charikar, and K. Li, Asymmetric distance estimation with sketches for similarity search in highdimensional spaces, SIGIR, pp.123-130, 2008.

E. Elhamifar, G. Sapiro, and R. Vidal, See all by looking at a few: Sparse modeling for finding representative objects, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6247852

D. Feldman, M. Feigin, and N. Sochen, Learning Big (Image) Data via Coresets for Dictionaries, Journal of Mathematical Imaging and Vision, vol.44, issue.5, pp.276-291, 2013.
DOI : 10.1007/s10851-013-0431-x

A. Iscen, T. Furon, V. Gripon, M. Rabbat, and H. Jégou, Memory vectors for similarity search in high-dimensional spaces. arXiv preprint, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01481220

H. Jégou and O. Chum, Negative evidences and cooccurrences in image retrieval: The benefit of PCA and whitening, ECCV, 2012.

H. Jégou, M. Douze, and C. Schmid, Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search, ECCV, 2008.
DOI : 10.1007/978-3-540-88682-2_24

H. Jégou, M. Douze, and C. Schmid, Product Quantization for Nearest Neighbor Search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, pp.117-128, 2011.
DOI : 10.1109/TPAMI.2010.57

H. Jégou, M. Douze, C. Schmid, and P. Pérez, Aggregating local descriptors into a compact image representation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540039

H. Jégou and A. Zisserman, Triangulation embedding and democratic kernels for image search, CVPR, 2014.

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

J. Mairal, F. Bach, and J. Ponce, Sparse Modeling for Image and Vision Processing, Foundations and Trends?? in Computer Graphics and Vision, vol.8, issue.2-3, 2014.
DOI : 10.1561/0600000058

URL : https://hal.archives-ouvertes.fr/hal-01081139

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and D. G. Lowe, Online learning for matrix factorization and sparse coding Scalable nearest neighbor algorithms for high dimensional data, The Journal of Machine Learning Research IEEE Trans. PAMI, vol.11, issue.36, pp.19-60, 2010.

R. Negrel, D. Picard, and P. Gosselin, Dimensionality reduction of visual features using sparse projectors for content-based image retrieval, 2014 IEEE International Conference on Image Processing (ICIP), pp.2192-2196, 2014.
DOI : 10.1109/ICIP.2014.7025444

URL : https://hal.archives-ouvertes.fr/hal-01081770

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.2161-2168, 2006.
DOI : 10.1109/CVPR.2006.264

Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

F. Perronnin and C. R. Dance, Fisher Kernels on Visual Vocabularies for Image Categorization, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383266

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383172

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Lost in quantization: Improving particular object retrieval in large scale image databases, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587635

M. Shi, T. Furon, and H. Jégou, A Group Testing Framework for Similarity Search in High-dimensional Spaces, Proceedings of the ACM International Conference on Multimedia, MM '14, 2014.
DOI : 10.1145/2647868.2654895

URL : https://hal.archives-ouvertes.fr/hal-01062531

E. Spyromitros-xioufis, S. Papadopoulos, I. Kompatsiaris, and G. , Tsoumakas, and I. Vlahavas. A comprehensive study over VLAD and product quantization in large-scale image retrieval, IEEE Trans. on Multimedia, 2014.

B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni et al., YFCC100M, Communications of the ACM, vol.59, issue.2, p.2016
DOI : 10.1145/2812802

G. Tolias, R. Sicre, and H. Jégou, Particular object retrieval with integral max-pooling of cnn activations. ICLR, 2016.

R. Weber, H. Schek, and S. Blott, A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces, VLDB, pp.194-205, 1998.

Y. Weiss, A. Torralba, and R. Fergus, Spectral hashing, NIPS, 2009.