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Abstract: The understanding of magnetohydrodynamic (MHD) instabilities is quite essen-
tial for the optimization of magnetically confined plasmas, a subject raising increasing interest as
tokamak reactor design advances and projects such as ITER (International Thermonuclear Exper-
imental Reactor) develop. Given the need and importance of numerically simulating and studying
these instabilities, in this paper we report our effort in developing a stabilized full MHD numerical
model to study tokamak plasmas in the frame of the Variational Multi-Scale formulation (VMS).
Special attention is given to the plasma equilibrium calculation in limiter and x-point configura-
tions. Several properties of the internal kink instability for a circular geometry were studied, e.g.,
dependence of the growth rate and mode sizes on the Reynolds Magnetic number and magnetic
reconnection. The test cases were compared to other results numerically obtained before, as well
as analytical developments. The effects of the VMS stabilization were rigorously verified in order
to ensure a numerical stability without supressing the physical instabilities. The validation of this
model gives rise to the possibility of simulating Edge-localized modes instabilities in the frame of
full MHD equations.

Key-words: Magnetohydrodynamics, Stabilized finite elements, Variational multi-scale stabi-
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Résumé : La compréhension des instabilités Magnétohydrodynamiques (MHD) est essentielle
pour l’optimisation des plasmas de fusion par confinement magnétique. Ce sujet attire de plus
en plus l’intérêt scientifique grâce au progrès des réacteurs tokamaks et le développement des
projects tels que ITER (International thermonuclear reactor). Au vu de l’importance d’étudier
et de simuler numériquement ces instabilités, dans ce papier nous reportons nos efforts pour
développer un modèle numérique de la MHD complète avec stabilisation pour l’étude des plasmas
de tokamak dans le cadre de la formulation variationnelle multi-échelles (VMS). Une attention
spéciale est donnée au calcul de l’équilibre du plasma pour les configurations dites limiter et
point-x. Plusieurs propriétés de l’instabilité de kink interne dans une géométrie circulaire ont
été étudiées, par exemple, la dépendance du taux de croissance et de la taille des modes par
rapport au nombre de Reynolds Magnétique et la re-connexion magnétique. Les cas-test ont été
comparés à d’autres résultats numériques ainsi qu’à des développements analytiques. Les effets
de la stabilisation VMS ont été rigoureusement vérifiés pour assurer une stabilité numérique
sans supprimer les instabilités physiques. La validation de ce modèle ouvre le chemin pour la
possibilité de simuler les instabilités appelées Edge-localized modes (ELMs) dans le contexte de
la MHD complète.

Mots-clés : Magnétohydrodynamique, Éléments finis stabilisés, Stabilisation variationnelle
multi-échelles, Intégration temporelle implicite, Potentiel vecteur megnétique, Kink interne, Plas-
mas avec point-X



VMS Stabilization for MHD 3

1 Introduction

It is now commonly accepted that for flows dominated by convection, numerical schemes must
take into account the effects of unresolved scales in order to insure stability of the numerical
approach. In the context of compressible hydrodynamics, the pioneering work of von Neumann
and Richtmyer[40] and its two-dimensional extension by Wilkins [43, 44], unresolved scale effects
on large scales are formulated as artificial viscosity. Godunov[19] was the first to introduce an
explicit evaluation of sub-scale effects on the resolved scales via the resolution of the so-called
Riemann problems. However, these popular formulations are mainly associated to staggered and
centered finite volumes (FV) as well as to Discontinous Galerkin (DG) formulations. Moreover,
as Riemann problems are defined in the directions normal to the mesh faces, the associated nu-
merical stabilization is highly dependent on the mesh topology. This can be very damaging for
flows involving strongly anisotropic processes, as in the high temperature magnetized plasmas.
In this context, the high-order Galerkin finite element method (FEM) can provide a useful frame-
work for the numerical approximation as it gives rise to centered approximations of differential
operators. This is suitable for elliptic like operators but can lead to unphysical behaviors when
flows are dominated by the effect of the hyperbolic operators (convection). Indeed, the Galerkin
method does not provide a mechanism for the control of sub-scales effects on the resolved scales,
i.e., stabilization.

We are concerned by the numerical modeling of strongly magnetized plasmas in tokamaks ge-
ometries, particularly the Magnetohydrodynamic (MHD) instabilities at the edge of the plasma.
We assume that the characteristic time scales of the simulations under concern, the interaction
of the charged gas with the magnetic field, can be described by the compressible MHD equations.
The most popular Galerkin finite element codes for simulation of MHD instabilities on the edge
of the tokamak plasma are NIMROD[37], M3D-C1[17] and JOREK[13, 28]. The stabilization
process in these codes is achieved either by the use of artificial viscosity or by the introduction
of additional self-adjoint operators, sometimes presented as preconditioning, semi-implicit or im-
plicit strategies [22, 32, 30]. The goal is to parabolize the MHD system through an appropriate
decomposition of the hyperbolic operator.

The variational multi-scale (VMS) formulation[8, 25, 26] provides attractive guidelines for the
development of stabilized schemes that take into account the hyperbolic nature of the considered
systems. Within the VMS framework, stabilization of waves is achieved by an additional con-
tribution in the weak formulation. This contribution mimics the effect of the unresolved scales
over the resolved scales. The VMS strategy is residual-based and designed to achieve a numerical
stability without compromising overall stability and accuracy. By this way, an upwinding process
is introduced which leads to numerical diffusion essentially in the flow direction, so as to avoid
crosswind diffusion effects for multidimensional flows over non-aligned meshes. The critical point
of this strategy is the design of a scaling matrix used to adjust the numerical dissipation such
as to preserve the order of accuracy of the Galerkin method. VMS-stabilization is very efficient
when dealing with smooth solutions. Nevertheless, this is a linear process and, according to
the Godunov’s theorem, it can allow oscillatory approximations of discontinuities. Indeed, low-
dissipation schemes might result in spurious Gibbs oscillations associated to spectral truncation
in the wavenumber space. Thus, although discontinuity capturing is a nonlinear dissipation it is
often used to enforce the total variation stability where the solution develops sharp gradients.

Another issue that must be taken into account is related to the solenoidal constraint on
the magnetic field. In fact, the divergence free constraint is formulated strongly whereas Finite
element methods are based on the weak formulation. In the present case, we will be concerned
by MHD instabilities where the initial condition is usually the solution of the so-called Grad-
Shafranov (GS) equation on the toroidal component of the potential vector (poloidal magnetic
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4 B. Nkonga & al.

flux). Therefore, if for the MHD system we use the potential vector formulation, the same
variable will be interpolated for the GS equilibrium and the evolution of the perturbed system.
However, the magnetic field is not uniquely defined in term of a magnetic vector potential and we
need an additional constraint such as the Coulomb gauge. Moreover, the potential formulation
can lead to systems with third order derivatives and it can be useful to design finite element
functions with continuous gradients over elements (C1-continuity).

In the present paper, the tokamak geometry (3D) is always the tensor product of a 2D poloidal
domain and a periodic 1D toroidal domain i.e., a cylindrical one. Test and trial functions
of the finite element strategy are the product of a function of the poloidal coordinates and a
function of the toroidal coordinate (the toroidal angle). In the poloidal plane (2D domain) we
consider isoparametric C1-bicubic splines defined on a curved quadrangulation[13]. The bicubic
splines have an isoparametric formulation and the elements in the physical space can be curved
quadrangles with four degree of freedom per vertex and per physical variable. This strategy
is very close to the Hermite approach but with more flexibility of the mesh structuration[13].
The degrees of freedom are associated to the mesh vertices so that we can use compressed
numerical graph and block formulation to speed-up computations. In the toroidal direction we
need periodical representation functions. Most of the computations are performed with sine-
cosine expansions and the use of Hermite cubic splines is also an explored option for the poloidal
interpolation.

In the current context, we will propose a VMS stabilization strategy specific for time evolving
problems and based on time fluctuations. This approach has some similarities with the Taylor-
Galerkin (TG) formulation [15, 16, 3] and can be simplified to recover the parabolizations that
are often used for MHD simulations in tokamaks [22, 37, 17, 32, 30]. We will discuss the effect of
the potential vector representation of the magnetic field on the weak formulation. The Coulomb
gauge conditions as well as the boundary conditions are achieved by penalization, added as con-
tributions to the weak formulation. The time step discretization is mainly the Crank-Nicolson
scheme so that the global approximation is implicit and its resolution is achieved by a linearized
approximation. The linearized system is solved by the Generalized Minimal RESidual (GMRES)
iterative method, preconditioned by direct solvers based on PASTIX software [24] and applied to
the sparse sub-systems describing self interaction of Fourier modes. In the context of the reduced
MHD, the potential vector is oriented in the toroidal direction and can be defined by a single
scalar. Therefore, simplified equations can be derived with the elimination of fast magnetoacous-
tic waves. In this simplified context, the VMS stabilization is associated to material and slow
acoustic waves. These strategies have been included in a tool jorek dedicated to simulations of
MHD instabilities on the edge of tokamak plasmas. The proposed numerical strategy is applied
to the simulation of the internal kink mode and the effect of the Bohm boundary conditions on a
X-point configuration. The remainder of the paper is organized as follows. Section 2 presents the
single fluid model for a magnetized plasma. The numerical approximations and VMS stabiliza-
tion are the subject of the Section 3. Section 4 proposes simplified stabilizations when reduced
MHD models are used. Numerical validations are presented in the section 5 and, finally, section
6 resumes the achievement of the paper and open future perspectives.

2 Single fluid MHD model for tokamak plasmas
The straightforward fluid model that can be derived from the Vlasov equation is obtained by
retaining the first three velocity moments of the kinetic equation and the derivation can be
performed under the assumption that the distribution function is close to the Maxwellian dis-
tribution. This assumption is reasonable when the plasma is dominated by Coulomb collisions
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VMS Stabilization for MHD 5

[7]. Unfortunately, most of the tokamak plasmas are strongly magnetized and weakly collisional.
Therefore, fluid modeling is sometimes used by default, for its attractiveness in terms of compu-
tational resources needed, particularly, for long time simulations in large computational domains,
such as simulations of magnetohydrodynamic (MHD) instabilities in tokamaks. In the scrape
of layer (SOL) where “Edge-localized mode (ELMs) instabilities” take place, it is acceptable to
apply fluid models for numerical computations. Additional assumptions are then used to justify
the quasi neutrality and gyro-viscous cancellation. The resulting model is a single fluid system
written here in conservative form:

∂tρ+∇ · (mmm) = ∇ · (DDD∇ρ) ,

∂tmmm+∇ ·
(
mmm⊗mmm
ρ − bbb⊗ bbb

)
+∇

(
p+ bbb·bbb

2
)

= ∇ · τττ ,

∂tE +∇ ·
((
E + p+ bbb·bbb

2
)
mmm
ρ −

bbb·mmm
ρ bbb

)
= ∇ · (qqq) +∇ ·

(
τττmmmρ

)
,

∂tbbb +∇ ·
(
mmm⊗bbb−bbb⊗mmm

ρ

)
= −∇× (eee + vvv × bbb) ,

(2.1)

where ρ is the density, mmm ≡ ρvvv is the momentum vector, E is the total energy (hydrody-
namic+electromagnetic), bbb is the magnetic field vector, p is the hydrodynamic pressure and
eee is the electric field. The right-hand sides of the previous equations are related to transport
processes: viscosity, conductivity, resistivity. The general closure relations for the transport
terms can be found in [7]. The equations of state and the Ohm’s law used are

E = ρε+ 1
2ρm
mm ·mmm+ 1

2bbb · bbb, p = (γ − 1) ρε = ρT, eee + vvv × bbb = ηηηjjj,

where ε is the internal energy, T the temperature, jjj ≡ ∇×bbb the current vector, ηηη the resistivity
(later assumed scalar for simplicity) and γ = 5/3 the ratio of specific heats. The model described
by system (2.1) is essentially driven by the ideal-MHD sub-system found on the left-hand side.
This is a conservative system associated to the conservative variables www and the flux tensor fff

www =


ρ
mmm
E
bbb

 , fff =


mmmt

vvv ⊗mmm+ pIII− bbb⊗ bbb
Hmmmt − (bbb · vvv)bbbt

vvv ⊗ bbb− bbb⊗ vvv

 ,

p = p + bbb·bbb
2 is the total pressure and H = E + p

ρ
the enthalpy. The superscript (.t) is used for

the transpose of a vector. The ideal-MHD system (when transport is set to zero) is

∂www

∂t
+∇ · fff = 0. (2.2)

It is useful to reformulate this system in quasi-linear form as

∂www

∂t
+ lll (www,∂∂∂)www = 0, (2.3)

where the operator lll (www,∂∂∂) is defined by

lll (www,∂∂∂) =



0 ∂∂∂t 0 000t

−mmmρ2mmm · ∂∂∂ + ∂p
∂ρ∂∂∂

1
ρmmm⊗ ∂∂∂ + 1

ρmmm · ∂∂∂
+
(
∂p
∂mmm ⊗ ∂∂∂

)t
∂p
∂E∂∂∂

(bbb⊗ ∂∂∂)t − bbb · ∂∂∂
+
(
∂p
∂bbb ⊗ ∂∂∂

)t

∂H
∂ρmmm · ∂∂∂

+bbb·mmm
ρ2 bbb · ∂∂∂

(
∂H
∂mmm

)t
mmm · ∂∂∂ +H∂∂∂t

−bbbt

ρ bbb · ∂∂∂
∂H
∂Emmm · ∂∂∂

∂H
∂bbb

t
mmm · ∂∂∂

−bbb·mmm
ρ ∂∂∂t − mmmtbbb·∂∂∂

ρ

−bbbmmm·∂∂∂−mmmbbb·∂∂∂
ρ2

bbb⊗∂∂∂−bbb·∂∂∂
ρ 000 mmm·∂∂∂−mmm∂∂∂t

ρ


.
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6 B. Nkonga & al.

For any direction nnn, lll (www,nnn) is a matrix with eigenvalues associated to advection (vvv · nnn ), to
Alfven (vvv ·nnn± ca ) , to fast acoustic (vvv ·nnn± cf ) and to slow acoustic (vvv ·nnn± cs) waves, where

c2a = (bbb ·nnn)2

ρ
, c2f = 1

2

c2 + bbb · bbb
ρ

+

√(
c2 + bbb · bbb

ρ

)2
− 4c2 (bbb ·nnn)2

ρ

 ,

c2 = γp

ρ
, c2s = 1

2

c2 + bbb · bbb
ρ
−

√(
c2 + bbb · bbb

ρ

)2
− 4c2 (bbb ·nnn)2

ρ

 .

Hence, the ideal-MHD is, in general, a weakly hyperbolic system. Therefore, any finite element
approximation of this system needs additional treatment to control the spurious wave effects of
the unresolved scales on the resolved ones [27, 18, 39, 11, 34].

3 VMS-Stabilization and numerical strategy.
We can use the residual to reformulate the system (2.1) as rrr (www) = 0, where the residual rrr (www)
is defined as

rrr (www) := ∂www

∂t
+∇ · fff−∇ · ggg, (3.1)

with ggg the tensor modeling the transport process. Therefore, the weak formulation for a space
domain ΩΩΩx,h, can be written as∫

ΩΩΩx,h
rrr (www) ·www? = 0, ∀www? ∈

−→
Wh
−→
Wh
−→
Wh (ΩΩΩx,h) . (3.2)

The construction of the finite element space −→Wh
−→
Wh
−→
Wh (ΩΩΩx,h) will be investigated later. The simple

formulation (3.2) is not satisfactory in the present context, for at least two reasons. First the
MHD system is subjected to a divergence free constraint on the magnetic field and this is not
directly included in the previous formulation, even if the construction of the approximation space
can be achieved such as to include this constraint. The second reason is that the considered
plasma flows are convection dominated and as the formulation (3.2) is in general not upwinded,
it will develop spurious waves.

Potential vector formulation. One of the solutions for the first point above could be
the construction of an appropriate finite element space. However, it is not the option explored
here, the main reason being that, beyond the practical issues related to divergence and curl-
conforming elements, simulations of MHD instabilities inside tokamaks start from a so called
Grad-Shafranov equilibrium [21, 35] which is an equation for the magnetic flux. This variable
is the toroidal component of the potential vector. Hence, it is natural to introduce a potential
vector aaa and derive the magnetic field by the curl bbb = ∇× aaa so that, in principle, there are no
magnetic monopoles, in other words, so that ∇ · bbb = 0 is satisfied. Note that the formulation of
the magnetic field with the potential vector does not change if we add a gradient of any function
to the potential. Indeed, the curl of a gradient is always zero i.e, the magnetic field is invariant
under the so-called “Gauge transformation”. Therefore, the potential vector is not uniquely
defined and this is a tricky situation in computations subjected to numerical overflow. Indeed,
according to the Helmholtz theorem, the uniqueness of the potential vector field will be achieved
if both the curl and the divergence are fixed. The curl of the potential vector is the magnetic field,
thus we also need to fix the divergence in order to enforce the uniqueness. The Coulomb gauge

Inria



VMS Stabilization for MHD 7

condition simply sets the divergence to zero ∇ · aaa = 0. This condition is applied here under a
penalized weak form (over the computational domain) defined with (∇ ·aaa)·(∇ ·aaa?). This penalty
is activated when the approximated space for aaa is not divergence free. This approximation space
is spanned by the test functions aaa?.

VMS-Stabilization. The solution to the second problem related to the formulation (3.2) is
to use one of the VMS-stabilization strategies proposed by Hughes and collaborators [26, 27, 33].
In this framework of the variational multiscale formulation, scales decompositions are used to
derive a modified weak form including the contributions of the unresolved scales. Assuming that
the main operator to be stabilized is lll (www,∂∂∂), the stabilized weak formulation can be simply
written as ∫

ΩΩΩx,h
rrr (www) ·www? +

∫
ΩΩΩx,h
www′ · (lllt (www,∂∂∂)www?) = 0, ∀www? ∈

−→
Wh
−→
Wh
−→
Wh (ΩΩΩx,h) , (3.3)

where www′ is the vector of the sub-scales and lllt (www,∂∂∂) is the adjoint of lll (www,∂∂∂). Notice that the
streamline-upwind/Petrov-Galerkin (SUPG) strategy uses the operator lll in the place where the
VMS approach uses the adjoint.

lllt (www,∂∂∂) =


0 −mmm

t

ρ2 mmm · ∂∂∂ + ∂p
∂ρ∂∂∂

t ∂H
∂ρmmm · ∂∂∂ + bbb·mmm

ρ2 bbb · ∂∂∂ −bbbtmmm·∂∂∂−mmmtbbb·∂∂∂
ρ2

∂∂∂
1
ρ (mmm⊗ ∂∂∂)t + 1

ρmmm · ∂∂∂
+ ∂p
∂mmm ⊗ ∂∂∂

∂H
∂mmmmmm · ∂∂∂ +H∂∂∂ − bbb

ρbbb · ∂∂∂ (bbb⊗∂∂∂)t−bbb·∂∂∂
ρ

0 ∂p
∂E∂∂∂

t ∂H
∂Emmm · ∂∂∂ 000t

000 ∂p
∂bbb ⊗ ∂∂∂ + bbb⊗ ∂∂∂ − bbb · ∂∂∂ ∂H

∂bbb mmm · ∂∂∂ −
bbb·mmm
ρ ∂∂∂ − mmmbbb·∂∂∂

ρ
mmm·∂∂∂−(mmm⊗∂∂∂)t

ρ

 .

Formally, the small scales problem gives www′ = − (lll (www,∂∂∂) )−1 rrr (www) which is not always sim-
ple to invert and algebraic formulations are often used via the introduction of the “intrinsic
time-scale” stabilization matrix TTT . The applications under concern are MHD instabilities (insta-
tionary). Hence, we propose to use a modified algebraic closure where the subscales are related
to the advection of time fluctuations of the state www:

www′ ' TTT (lll (www,∂∂∂) δwww) . (3.4)

We will later make some connections between the stabilization associated to this closure and
preconditioning strategies very often used in the fusion plasma community. A very simple analysis
shows, for usual VMS approaches, that the matrix TTT satisfies the scaling estimation in matrix
norm:

‖lll (www,∂∂∂) ‖∞‖TTT ‖∞ ' 1,

so that we can set the stabilization matrix to TTT ' (lll (www,∂∂∂) )−1. However, this is only a formal
definition that is difficult to use in practice. This is why the derivation of the stabilization matrix
TTT has been a subject of extensive research over the last decades.

Options for the stabilization matrix TTT . Up to now, the definitions of TTT mostly rely
on heuristic arguments. An optimal way to choose TTT is still an open question and problem
dependent. For instance, when the one-dimensional advection-diffusion steady case is considered,
the following definition of TTT yields a nodally exact solution [10]:

TTT = he
2||a||

(
cothPe− 1

Pe

)
, P e = ||a||he2κ , (3.5)
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8 B. Nkonga & al.

where he is a measure of the local length scale, also known as “element length”, a is the flow
velocity, κ is the diffusivity and Pe the Péclet number. Many definitions of he can be used; in the
literature, it is common to use the element length aligned with the flow velocity. By analogy with
formula (3.5), when dealing with convection-dominated systems of equations and isoparametric
finite elements, the stabilization tensor is defined as

TTT ≡ TTT ad =
‖∂xxx∂ζζζ ‖2
‖Λ‖∞

III, (3.6)

where Λ is the diagonal matrix of the system’s eigenvalues and ζζζ the local parameter coordinates
that scale as unity, so that ‖∂xxx∂ζζζ ‖2 is a local length. This derivation assumes the isotropy of
wave propagation and does not take into account eventual anisotropies of the grid for large
aspect ratios. This choice affects both the smoothness of the results in regions containing large
variations of the solution and the conditioning of the discrete system. To overcome this limitation,
a recovery technique is proposed by [29] and [42].

A different definition of the TTT parameter has been proposed by [38] to take into account
eventual anisotropies related to the density gradient. In the MHD context, anisotropies are
driven by the magnetic field; thus, sharing some similarities with the formulation [38], we propose
the following estimation of the stabilization parameter

TTT ≡ TTT tz =

 ∑
iii∈ϑ(e)

cf

∣∣∣∣bbb · ∇Niii‖bbb‖

∣∣∣∣+ |vvv · ∇Niii|

−1

III, (3.7)

where cf is the fast acoustic speed. More general strategies were proposed and used in the
context of space-time GLS[4], SUPG formulations[36, 2, 5, 41] and the residual distribution
scheme ([1]). These approaches use the fact that, for any nonzero vector nnn, the matrix lll? (www,nnn)
is diagonalizable: lll? (www,nnn) ≡ PPPΛΛΛPPP−1. Therefore, the stabilization matrix is estimated as

TTT ≡ TTT gls =

 ∑
iii∈ϑ(e)

PPP (www,∇Niii) |ΛΛΛ (www,∇Niii)|PPP−1 (www,∇Niii)

−1

. (3.8)

This option requires a set of matrix inversions at each time step. Unfortunately, the MHD system
can produce a non-diagonalizable matrix, so that this option is generally not retained.

A more interesting way to consider the magnetic field anisotropy is to use the following
decomposition

lllt (www,∂∂∂) = lllt
bbb (www,∂∂∂) + lllt

? (www,∂∂∂) ,
where

lllt
bbb (www,∂∂∂) = lllt

(
www,

bbbbbb · ∂∂∂
bbb · bbb

)
and lllt

? (www,∂∂∂) = lllt
(
www,∂∂∂ − bbbbbb · ∂∂∂

bbb · bbb

)
.

A similar decomposition is used for lll (www,∂∂∂) and it is assumed that this is a decomposition in
orthogonal spaces. Therefore, the stabilization is reformulated as∫

ΩΩΩx,h
TTT lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www? '

∫
ΩΩΩx,h
T bbblllbbb (www,∂∂∂) δwww · lllt

bbb (www,∂∂∂)www?

+
∫

ΩΩΩx,h
T ?lll? (www,∂∂∂) δwww · lllt

? (www,∂∂∂)www?
, (3.9)

havig T bbb and T ? constructed as usual, although different strategies could be used, taking into
account the global anisotropy of the magnetized plasmas.
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VMS Stabilization for MHD 9

Set of interpolated variables. In tokamak plasmas, we have to deal with a very low density
and pressure in the SOL. In order to avoid critical issues during the inversion of the equation of
state, interpolations are often applied to the following physical variables yyy :

yyy =


ρ
vvv
T
aaa

 so that www =


ρ
mmm = ρvvv

E = ρT
γ−1 + 1

2ρvvv · vvv + 1
2bbb · bbb

bbb

 .

Let us point out that even though the interpolation is applied to physical variables, we are still
using the formulation derived from the conservative equations. Therefore, we need to reformulate
derivatives of www in terms of the derivatives of yyy :

∂∂∂www = mmm (yyy)RotRotRot (∂∂∂yyy) , (3.10)

where

mmm (yyy) =


1 0 0 0
vvv ρIII 0 0

T

γ − 1 + vvv · vvv
2 ρvvvt ρ

γ − 1 bbbt

0 0 0 III

 and RotRotRot (∂∂∂yyy) =


∂∂∂ρ
∂∂∂vvv
∂∂∂T
∇×aaa

 .

When the numerical approximation uses yyy for interpolation, the integrals should be reformulated
according to the associated change of variable. The time derivative becomes∫

ΩΩΩx,h

∂www

∂t
·www? =

∫
ΩΩΩx,h

(
mmm (yyy)RotRotRot

(
∂yyy
∂t

))
·www? =

∫
ΩΩΩx,h

(
RotRotRot

(
mmm (yyy) ∂yyy

∂t

))
·www?

=
∫

ΩΩΩx,h

(
mmm (yyy) ∂yyy

∂t

)
·RotRotRot (www?) +

∫
∂ΩΩΩx,h

dddnnn ·www?

=
∫

ΩΩΩx,h

(
mmm (yyy) ∂yyy

∂t

)
· w̃ww? +

∫
∂ΩΩΩx,h

(
nnn× ∂aaa

∂t

)
· bbb?

,

where the test vector functions are defined as

www? =


ρ?

mmm?

E?
bbb?

 and w̃ww
? =


ρ?

mmm?

E?
jjj?

 with jjj? = ∇× bbb?.

Stabilized weak formulation. Integration by parts is performed on the residual integral
and additional contributions are added to take into account the Dirichlet boundary conditions
as penalty boundary integrals. Therefore, the VMS-stabilized finite element takes the following
compact form:'

&

$

%

∫
ΩΩΩx,h

(
mmm (yyy) ∂yyy

∂t

)
· w̃ww? −

∫
ΩΩΩx,h
fff : (∂∂∂ �www?) +

∫
ΩΩΩx,h
ddd : (∂∂∂ �www?)− 1

ε

∫
ΩΩΩx,h

(∇ ·aaa) · (∇ ·aaa?)

+
∫
∂ΩΩΩx,h

fff : (nnn�www?)−
∫
∂ΩΩΩx,h

ddd : (nnn�www?)− 1
ε

∫
∂ΩΩΩx,h

(nnn× ∂taaa) · bbb? + 1
ε

∫
∂ΩΩΩx,h

sss (www,wwwb,www?)

= −
∫

ΩΩΩx,h
(lll (www,∂∂∂) δwww) · TTT (lllt (www,∂∂∂)www?) .

, (3.11)
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10 B. Nkonga & al.

The operator �, acting between a vector (size d) and a state vector of size Nv, has as result a
Nv × d tensor, where Nv is the total number of scalar variables (it is also the size of www) and d
the space dimension assumed to be also the dimension of considered vectors (as vvv and bbb). The
resulting tensors are defined as follows:

(∂∂∂ �www?) =


∂∂∂ρ?

∂∂∂ ⊗mmm?

∂∂∂E?
∂∂∂ × bbb?

 , (nnn�www?) =


nnnρ?

nnn⊗mmm?

nnnE?
nnn× bbb?

 ,

with

∂∂∂ ⊗mmm =

 ∂∂∂1mmm1 ∂∂∂1mmm2 ∂∂∂1mmm3
∂∂∂2mmm1 ∂∂∂2mmm2 ∂∂∂2mmm3
∂∂∂3mmm1 ∂∂∂3mmm2 ∂∂∂3mmm3

 .

Also note that

(mmm⊗ ∂∂∂)t =

 mmm1∂∂∂1 mmm2∂∂∂1 mmm3∂∂∂1
mmm1∂∂∂2 mmm2∂∂∂2 mmm3∂∂∂2
mmm1∂∂∂3 mmm2∂∂∂3 mmm3∂∂∂3

 ,

then

(mmm⊗ ∂∂∂)t
mmm? =

 mmm1∂∂∂1mmm
?

1 +mmm2∂∂∂1mmm
?

2 +mmm3∂∂∂1mmm
?

3
mmm1∂∂∂2mmm

?
1 +mmm2∂∂∂2mmm

?
2 +mmm3∂∂∂2mmm

?
3

mmm1∂∂∂3mmm
?

1 +mmm2∂∂∂3mmm
?

2 +mmm3∂∂∂3mmm
?

3

 = (∂∂∂mmm?)mmm.

The hyperbolic (convection) flux tensor fff and the elliptic (diffusion) flux tensor ddd have the shape
size of Nv × d. The contribution having ∂taaa is associated to the integration by parts in the time
derivative integral, when the magnetic field bbb is formulated as the curl of the potential vector aaa.
These tensors are written as follows

fff =


ρvvv

ρvvv ⊗ vvv + pIII− bbb⊗ bbb
ρHvvv − bbb · vvvbbb
−vvv × bbb

 , ddd =


DDD∂∂∂ρ′

τττ
τττvvv

−(eee + vvv × bbb)

 .

Dirichlet boundary conditions are considered as penalty defined with boundary integrals. The
vector sss to be integrated is a function of the local state www and the state to be enforced wwwb. In
the current context, this vector is defined as:

sss (www,wwwb,www?) =


(ρ− ρb) ρ?XXX

(
∂ΩΩΩρx,h

)
ρ (vvv − vvvb) ·mmm?XXX

(
∂ΩΩΩvvvx,h

)
+ (ρvvv −mmmb) ·mmm?XXX

(
∂ΩΩΩmmmx,h

)
ρ (T − Tb) E?XXX

(
∂ΩΩΩTx,h

)
+ (p− pb) E?XXX

(
∂ΩΩΩpx,h

)
(aaa−aaab) · jjj?XXX

(
∂ΩΩΩaaa

x,h

)
+ (bbb− bbbb) · bbb?XXX

(
∂ΩΩΩbbb

x,h

)

 ,

where, for any subset YYY of the boundary ∂ΩΩΩx,h, XXX (YYY) is the characteristic function of YYY. It
is also assumed that the boundaries do not overlap so that, for example, the pressure and the
temperature are always penalized over different subsets.

The stabilization is associated to the vectors lll (www,∂∂∂) δwww, lllt (www,∂∂∂)www? and the scaling tensor
TTT . For any direction nnn, lll (www,nnn) is an exact or approximated Jacobian of fffnnn with respect to www.
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VMS Stabilization for MHD 11

When the exact Jacobian is used, we have

lll (www,∂∂∂) δwww =



∂∂∂ · δmmm
−vvvvvv · ∂∂∂δρ+ ∂p

∂ρ∂∂∂δρ+ vvv∂∂∂ · (δmmm) + vvv · ∂∂∂δmmm+ (∂∂∂δmmm) ∂p
∂mmm

+ ∂p
∂E∂∂∂δE + (∂∂∂δbbb) ∂p

∂bbb + (∂∂∂δbbb)bbb− bbb · ∂∂∂δbbb
∂H
∂ρmmm · ∂∂∂δρ+ bbb·mmm

ρ2 bbb · ∂∂∂δρ+
(
∂H
∂mmm

)t
mmm · ∂∂∂δmmm+H∂∂∂ · δmmm− bbbt

ρ bbb · ∂∂∂δmmm
+∂H
∂Emmm · ∂∂∂δE + ∂H

∂bbb
t
mmm · ∂∂∂δbbb− bbb·mmm

ρ ∂∂∂ · δbbb− mmmtbbb·∂∂∂δbbb
ρ

−bbbmmm·∂∂∂δρ−mmmbbb·∂∂∂δρ
ρ2 + bbb∂∂∂·δmmm−bbb·∂∂∂δmmm

ρ + mmm·∂∂∂δbbb−(∂∂∂δbbb)mmm
ρ


and

lllt (www,∂∂∂)www? =



−mmm
t

ρ2 mmm · ∂∂∂mmm? + ∂p
∂ρ∂∂∂ ·mmm

? + ∂H
∂ρmmm · ∂∂∂E

? + bbb·mmm
ρ2 bbb · ∂∂∂E? − bbbtmmm·∂∂∂bbb?−mmmtbbb·∂∂∂bbb?

ρ2

∂∂∂ρ? + (∂∂∂mmm?)vvv + vvv · ∂∂∂mmm? + ∂p
∂mmm∂∂∂ ·mmm

?

+ ∂H
∂mmmmmm · ∂∂∂E

? +H∂∂∂E? − bbb
ρbbb · ∂∂∂E? + (∂∂∂bbb?)bbb−bbb·∂∂∂bbb?

ρ
∂p
∂E∂∂∂ ·mmm

? + ∂H
∂Emmm · ∂∂∂E

?

∂p
∂bbb∂∂∂ ·mmm

? + bbb (∂∂∂ ·mmm?)− bbb · ∂∂∂mmm?

+∂H
∂bbb mmm · ∂∂∂E

? − bbb·mmm
ρ ∂∂∂E? − mmmbbb·∂∂∂E?

ρ + mmm·∂∂∂bbb?−(∂∂∂bbb?)mmm
ρ


.

In practice, as we are using an interpolation of the primitive variables yyy, the previous vector
lll (www,∂∂∂) δwww is reformulated in order to get out an explicit dependency to δyyy.

Finite element approximated space. Going back to the system (3.11), we now need to
derive an approximated space for the test functions. First of all, let us consider a scalar function
defined over a domain ΩΩΩx. This function will be then interpolated in an approximated finite
element space VVVh ≡ VVVh (ΩΩΩx,h) spanned by the test functions Niii. As we will focus on toroidal
geometries with cylindrical symmetry the approximated space is obtained as a tensor product of
a 2D and a 1D function space:

VVVh (ΩΩΩx,h) ≡ VVVh (ΩΩΩ2d)×VVVh ([0, 2π[) .

At this point, it is useful to introduce the cylindrical coordinates (r, φ, z) that contain the
poloidal coordinate ξξξ = (r, z)t with ξξξ ∈ ΩΩΩ2d and the toroidal coordinate φ ∈ [0, 2π[. There
is a nonsingular mapping between the Cartesian coordinate xxx and the cylindrical coordinates:
xxx ≡ xxx (r, φ, z) ≡ xxx (ξξξ, φ). Therefore, according to the mapping xxx (ξξξ, φ), volume and surface
integrals are reformulated as∫

ΩΩΩx
(· · · ) dxxx =

∫ 2π

0
dφ

∫
ΩΩΩ2d

(· · · ) rdξξξ and
∫
∂ΩΩΩx

(· · · ) dsx =
∫ 2π

0
dφ

∫
∂ΩΩΩ2d

(· · · ) rdsξξξ, (3.12)

where r is the Jacobian of the mapping. For applications to tokamak geometries, the position
r = 0 is almost always out of the domain ΩΩΩx and we do not have to face any problem of
singularity. Then it is desirable and even advantageous to express the interpolation functions
according to cylindrical variables (ξξξ, z). The representing of vectors (vvv, mmm, bbb, aaa,mmm?,aaa?,bbb? · · · )
is also related to the three unit directions vectors (r̂rr, φ̂φφ, ẑzz) (orthogonal). For example

mmm? (ξξξ, φ) := mmm?
r (ξξξ, φ) r̂rr +mmm?

φ (ξξξ, φ) φ̂φφ+mmm?
z (ξξξ, φ) ẑzz.

The tricky point is that the vectors r̂rr and φ̂φφ are also functions of the plane polar coordinates
(r, φ). We can formally describe the space for representing vectors as

−→
V h
−→
V h
−→
V h (ΩΩΩx,h) := VVVh (ΩΩΩx,h) r̂rr (r, φ)

⊕
VVVh (ΩΩΩx,h) φ̂φφ (r, φ)

⊕
VVVh (ΩΩΩx,h) ẑzz.
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12 B. Nkonga & al.

However, for the potential vector, the approximation space is slightly different. Indeed, in the
context of MHD instabilities, the initial condition is computed as the solution of the Grad-
Shafranov equation which is a nonlinear elliptic equation for the toroidal component ψ of the
vector potential, associated to the vector ∇φ that is not unitary: ∇φ 1

rφ̂φφ. Thus, in order to avoid
numerical perturbations related to the projection in a normalized basis, the vector variable aaa
(only this variable and not the associated test function), is represented in the space

−→
V h
−→
V h
−→
V h (ΩΩΩx,h) := VVVh (ΩΩΩx,h) r̂rr (r, φ)

⊕
VVVh (ΩΩΩx,h) φ̂

φφ (r, φ)
r

⊕
VVVh (ΩΩΩx,h) ẑzz.

Therefore
aaa (t, ξξξ, φ) := aaar (t, ξξξ, φ) r̂rr + ψ (t, ξξξ, φ)∇φ+ aaaz (t, ξξξ, φ) ẑzz,

with ψ (t, ξξξ, φ) = raaaφ (t, ξξξ, φ). The dependence on polar coordinates (for r̂rr and φ̂φφ or ∇φ) must
be taken into account when estimating the gradients of vectors (for example ∂∂∂mmm?). We will use
the following explicit relations for the gradient of r̂rr and φ̂φφ :

∂∂∂r̂rr = 1
rφ̂
φφ⊗ φ̂φφ and ∂∂∂φ̂φφ = − 1

rr̂rr⊗ φ̂φφ.

Then, for any vector YYY = YYY rr̂rr + YYY φφ̂φφ+ YYY zẑzz, the gradient is given by

∂∂∂YYY = r̂rr⊗ ∂∂∂YYY r + φ̂φφ⊗ ∂∂∂YYY φ + ẑzz⊗ ∂∂∂YYY z + YYY r

r φ̂φφ⊗ φ̂φφ− YYY φ
r r̂rr⊗ φ̂φφ,

where each component ∂∂∂YYY m is also defined in the cylindrical basis:

∂∂∂YYY m = r̂rr∂rYYY m + φ̂φφ
1
r∂φY

YY m + ẑzz∂zYYY m.

The components YYY m and of vector functions belong to the finite element space VVVh (ΩΩΩx,h). This
space, for a scalar function and in the context of cylindrical geometries, is formulated as a
tensor product of poloidal (2D) and toroidal functions(1D). The approximated poloidal space is
spanned by functions ψi2d and the approximated toroidal space is spanned by functions Ciφ (φ)
where i2d = 1, · · · , Ni2d and iφ = 1, · · · , Nitor :

VVVh (ΩΩΩ2d) ≡ span (ψi2d (ξξξ) ) and VVVh ([0, 2π[) ≡ span
(
Ciφ (φ)

)
.

Ni2d and Nitor are the dimensions of the poloidal and the toroidal spaces, respectively. We will
consider for ψi2d the 2D Beziers finite element construction, proposed in [13] over quadrangular
meshes. This is an isoparametric construction that globally enforces the C1 continuity of test
functions in the physical space. Moreover, there are four degrees of freedom associated to each
vertex of the mesh and this makes easy the construction of the compressed graph that is used to
speed-up the resolution of the numerical scheme. According to its periodic nature, the toroidal
space is decomposed in the Fourier space spanned by the cosine and sine functions. This is
also a hierarchical basis and this helps to design efficient preconditioning. The drawback is that
all the modes are coupled and the linearized discrete system is dense in the toroidal direction.
Nevertheless, this strategy is attractive for research of MHD instabilities in tokamaks.

The global approximation space is then defined as follows

VVVh (ΩΩΩx,h) = span
(
Niii (ξξξ, φ) = ψi2d (ξξξ) Ciφ (φ)

)
where iii ≡ iii (i2d, iφ) = 1, · · · , Ni2dNiφ .
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In the present paper, the variables yyy and the test functions www? and w̃ww? belong to the same
space −→Wh

−→
Wh
−→
Wh (ΩΩΩx,h):

−→
Wh
−→
Wh
−→
Wh (ΩΩΩx,h) := VVVh (ΩΩΩx,h)×−→V h

−→
V h
−→
V h (ΩΩΩx,h)×VVVh (ΩΩΩx,h)×−→V h

−→
V h
−→
V h (ΩΩΩx,h) . (3.13)

This space is spanned by the vector test functions

www?ρ,iii =


Niii
0
0
0

 , www?vvvr,iii =


0
Niiir̂rr

0
0

 ,www?vvvφ,iii =


0
Niiiφ̂φφ

0
0

 ,www?vvvz,iii =


0
Niiiẑzz

0
0

 ,

www?E,iii =


0
0
Niii
0

 , www?aaar,iii
=


0
0
0
Niiir̂rr

 ,www?aaaφ,iii =


0
0
0
Niiiφ̂φφ

 ,www?aaaz,iii
=


0
0
0
Niiiẑzz

 ,

(3.14)

with Niii ∈ VVVh (ΩΩΩx,h). Interpolation of the primitive variable yyy (t, ξξξ, φ) can be formulated as

yyy (t, ξξξ, φ) =
Ni2dNiφ∑
jjj=1

yyyjjj (t)Njjj (ξξξ, φ) , (3.15)

where yyyjjj (t) is the unknown vector associated to the test function Njjj (ξξξ, φ)

yyyjjj (t) =


ρjjj (t)

vvvr,jjj (t) r̂rr + vvvφ,jjj (t) φ̂φφ+ vvvz,jjj (t) ẑzz
Tjjj (t)

aaar,jjj (t) r̂rr + ψjjj (t)∇φ+ aaaz,jjj (t) ẑzz

 .

The presentation will be simpler if the vector is identified to its components

yyyjjj ≡ (ρjjj , vvvr,jjj , vvvφ,jjj , vvvz,jjj , Tjjj , aaar,jjj , ψjjj , aaaz,jjj)t
.

Semi-discrete system. The evolution of yyyjjj is obtained through projections formulated in
equation (3.11), according to the vector test functions defined in (3.14). The system of discrete
equations is written as∑

jjj

∫
ΩΩΩx,h
mmmiiijjj (yyyyyyyyy) ∂yyyjjj

∂t
−
∫

ΩΩΩx,h
ΦΦΦfff
iii (yyyyyyyyy) +

∫
ΩΩΩx,h
ΦΦΦddd
iii (yyyyyyyyy) +

∫
ΩΩΩx,h
ΦΦΦfff,rφ
iii (yyyyyyyyy)−

∫
ΩΩΩx,h
ΦΦΦddd,rφ
iii (yyyyyyyyy) + 1

ε

∫
ΩΩΩx,h
ΦΦΦaaa
iii (yyyyyyyyy)

+
∫
∂ΩΩΩx,h

ΨΨΨfff
iii (yyyyyyyyy)−

∫
∂ΩΩΩx,h

ΨΨΨddd
iii (yyyyyyyyy) + 1

ε

∫
∂ΩΩΩx,h

ΨΨΨ∂taaa
iii (yyyyyyyyy) + 1

ε

∫
∂ΩΩΩx,h

ΨΨΨsss
iii (yyyyyyyyy) = −

∫
ΩΩΩx,h
ΦΦΦvms
iii (yyyyyyyyy, δyyyyyyyyy) ,

(3.16)

where the non-integrated mass matrix mmmiiijjj (yyyyyyyyy) = NiiiNjjjmmm (yyyyyyyyy) is not diagonal and varies with the
interpolated variable yyy. The large vector yyyyyyyyy contains all the unknowns vectors yyyjjj defining the
interpolation. The fluxes are

ΦΦΦfff
iii (yyyyyyyyy) =


ρ (vvv · ∇Niii)

ρvvv (vvv · ∇Niii) + p∇Niii − bbb (bbb · ∇Niii)
ρH (vvv · ∇Niii)− bbb · vvv (bbb · ∇Niii)

− (vvv × bbb)Niii

 , ΦΦΦddd
iii (yyyyyyyyy) =


(DDD∂∂∂ρ′) · ∇Niii

τττ∇Niii
(τττvvv) · ∇Niii

− (eee + vvv × bbb)Niii

 .
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14 B. Nkonga & al.

For resistive MHD we have eee + vvv × bbb = ηηηjjj = ηηη∇×bbb. Then, as bbb = ∇×aaa with aaa the interpolated
variable, the computation of jjj involves second order derivatives. This can be avoided by using
integration by parts with an additional contribution at the boundary. The contribution associated
to ΦΦΦfff

iii and ΦΦΦddd
iii does not take into account the fact that r̂rr and φ̂φφ vary in the polar plane. The

spatial variation of r̂rr and φ̂φφ contributes to the fluxes ΦΦΦfff,rφ
iii and ΦΦΦddd,rφ

iii :

ΦΦΦfff,rφ
iii (yyyyyyyyy) = Niiir


0(

ρvvv2
φ + p− bbb2

φ

)
r̂rr− (ρvvvrvvvφ − bbbrbbbφ) φ̂φφ

0
0

 ,

ΦΦΦddd,rφ
iii (yyyyyyyyy) = Niiir


0(

τττ :
(
φ̂φφ⊗ φ̂φφ

))
r̂rr−

(
τττ :
(
r̂rr⊗ φ̂φφ

))
φ̂φφ

0
0

 .

Enforcing the Coulomb gauge condition by penalization, when the approximation space for
the vector potential is not divergence free, leads to

ΦΦΦaaa
iii (yyyyyyyyy) =


0
0
0

∇ ·aaa
((
∂rNiii + Niii

r
)

r̂rr + ∂φNiii
r φ̂φφ+ ∂zNiiiẑzz

)
 ,

where we have used the relations ∇ · r̂rr = 1
r and ∇ · φ̂φφ = 0. In order to get simple formulations

for the boundary fluxes, the fluxes ΦΦΦfff
iii (yyyyyyyyy) and ΦΦΦddd

iii (yyyyyyyyy) are reformulated as functions of the state
yyyyyyyyy, the gradient vector ∇Niii and the scalar Niii

ΦΦΦfff
iii (yyyyyyyyy) = ΦΦΦfff (yyyyyyyyy,∇Niii,Niii) and ΦΦΦddd

iii (yyyyyyyyy) = ΦΦΦddd (yyyyyyyyy,∇Niii,Niii) .

Therefore, the associated boundary fluxes use the same functions where the gradient of the test
function is replaced by a vector times the test function, which translates to

ΨΨΨfff
iii (yyyyyyyyy) = ΦΦΦfff (yyyyyyyyy,Niiinnn,Niii) and ΨΨΨddd

iii (yyyyyyyyy) = ΦΦΦddd (yyyyyyyyy,Niiinnn,Niii) ,

nnn being the outward unit normal at the boundary. The penalized Dirichlet conditions are asso-
ciated to the boundary integral on ΨΨΨsss

iii , where

ΨΨΨsss
iii =


(ρ− ρb)NiiiXXX

(
∂ΩΩΩρx,h

)
ρ (vvv − vvvb)NiiiXXX

(
∂ΩΩΩvvvx,h

)
+ (ρvvv −mmmb)NiiiXXX

(
∂ΩΩΩmmmx,h

)
ρ (T − Tb)NiiiXXX

(
∂ΩΩΩTx,h

)
+ (p− pb)NiiiXXX

(
∂ΩΩΩpx,h

)
(aaa−aaab)NiiiXXX

(
∂ΩΩΩaaa

x,h

)
+ (bbb− bbbb)NiiiXXX

(
∂ΩΩΩbbb

x,h

)

 .

The formulation with potential vector produces a boundary contribution associated to the time
derivative of aaa. When the degree of freedom associated to the index iii is on the boundary we
have

ΨΨΨ∂taaa
iii (yyyyyyyyy) =


0
0
0

nnn ·
(
∂taaa× r̂rr

)
Niiir̂rr +nnn ·

(
∂taaa× φ̂φφ

)
Niiiφ̂φφ+nnn ·

(
∂taaa× ẑzz

)
Niiiẑzz

 .
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VMS Stabilization for MHD 15

Finally, the stabilization is defined as

ΦΦΦvms
iii (yyyyyyyyy, δyyyyyyyyy) =



lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?ρ,iii(
lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?vvvr,iii

)
r̂rr +

(
lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?vvvφ,iii

)
φ̂φφ

+
(
lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?vvvz,iii

)
ẑzz

lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?E,iii(
lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?aaar,iii

)
r̂rr +

(
lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?aaaφ,iii

)
φ̂φφ

+
(
lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?aaaz,iii

)
ẑzz


,

where the fluctuation approximated by the variation in the current time step and the fluctuation
δwww linked to δyyyyyyyyy by the matrix mmm (yyyyyyyyy) evaluated at the beginning of the time step are

δyyyyyyyyy ' yyyyyyyyyn+1 −yyyyyyyyyn and δwww ' mmm (yyyyyyyyy) δyyyyyyyyy. (3.17)

Let us recall that we have used the following approximation of the residual rrr (www) ' lll (www,∂∂∂) δwww.

Discretization in the poloidal plane. The poloidal discretization is achieved by a 2D finite
element basis. We will use the 2D Bezier finite element basis, proposed in [13], defined on the
square with the local coordinates ζζζ = (s,t). Then, a nonlinear transformation is used to map
the square to any curved element of the physical space. For a given element eee the transformation
is defined as 

reee (ζζζ) =
∑

j2d∈ϑ(eee)

rj2d ψ̂meee(j2d) (ζζζ)

zeee (ζζζ) =
∑

j2d∈ϑ(eee)

zj2d ψ̂meee(j2d) (ζζζ)
.

The parameters rj2d and zj2d of this interpolation are inputs of the MHD computation. They are
designed by the meshing process to ensure that the transformation is nonsingular (injection) and
that the mapped element in the physical space can be curved. This allows the mesh to be aligned
either with the curved boundary or the flux surfaces given by the initial equilibrium. The function
meee(j2d) changes the global numbering (j2d) to a local numbering in the set

{
1, · · · , N̂dof

}
where

N̂dof is the number of unknowns associated to the reference element. In the present context of
the bi-cubic interpolation over square, we have N̂dof = 16. However, contrary to the classical
cubic Bezier, the unknowns of the current basis are located at the vertices of the square such as
to ensure the C1 continuity when crossing the edges of physical elements. This localization of the
unknowns also allows the derivation of the compressed numerical graph, useful for computational
efficiency.

Time stepping. The presentation of the time integrator will be easier with the introduction
of the following block matrix AAAδt, a block stabilization vector vmsvmsvms and a block right-hand side
rhsrhsrhs, with their corresponding components:

AAAδtiiijjj (yyyyyyyyy) =
∫

ΩΩΩx,h
mmmiiijjj (yyyyyyyyy) , vmsvmsvmsiii (yyyyyyyyy, δyyyyyyyyy) =

∫
ΩΩΩx,h
ΦΦΦvms
iii (yyyyyyyyy, δyyyyyyyyy)

and
rhsrhsrhsiii (yyyyyyyyy) =

∫
ΩΩΩx,h
ΦΦΦfff
iii (yyyyyyyyy)−

∫
ΩΩΩx,h
ΦΦΦddd
iii (yyyyyyyyy)−

∫
ΩΩΩx,h
ΦΦΦfff,rφ
iii (yyyyyyyyy) +

∫
ΩΩΩx,h
ΦΦΦddd,rφ
iii (yyyyyyyyy)− 1

ε

∫
ΩΩΩx,h
ΦΦΦaaa
iii (yyyyyyyyy)

−
∫
∂ΩΩΩx,h

ΨΨΨfff
iii (yyyyyyyyy) +

∫
∂ΩΩΩx,h

ΨΨΨddd
iii (yyyyyyyyy)− 1

ε

∫
∂ΩΩΩx,h

ΨΨΨ∂taaa
iii (yyyyyyyyy)− 1

ε

∫
∂ΩΩΩx,h

ΨΨΨsss
iii (yyyyyyyyy)
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16 B. Nkonga & al.

. The equation (3.16) is then a nonlinear system that can be written as

AAAδt (yyyyyyyyy) ∂y
yyyyyyyy
∂t

+ vmsvmsvms (yyyyyyyyy, δyyyyyyyyy) = rhsrhsrhs (yyyyyyyyy) . (3.18)

According to the stabilization process used, the fluctuation δyyyyyyyyy can be formulated in terms of the
time derivative ∂yyyyyyyyy

∂t . Therefore, the one-step and two-step schemes can be written in the following
general form

(1 + β)
AAAδt

(
yyyyyyyyyn+1)yyyyyyyyyn+1 −AAAδt (yyyyyyyyyn)yyyyyyyyyn

δt
+ vmsvmsvms (yyyyyyyyyn, δyyyyyyyyy)− θrhsrhsrhs (yyyyyyyyyn + δyyyyyyyyy)

= −β
AAAδt (yyyyyyyyyn)yyyyyyyyyn −AAAδt

(
yyyyyyyyyn−1)yyyyyyyyyn−1

δtn
+ (1− θ + ζ)rhsrhsrhs (yyyyyyyyyn)− ζrhsrhsrhs

(
yyyyyyyyyn−1) , (3.19)

where δt = tn+1−tn and δtn = tn−tn−1 are respectively the current and the previous time steps,
δyyyyyyyyy ≡ yyyyyyyyyn+1 −yyyyyyyyyn and δyyyyyyyyyn ≡ yyyyyyyyyn −yyyyyyyyyn−1 the fluctuations during, respectively, the current and the
previous time steps, respectively. The above scheme includes the θ-schemes for β = ζ = 0. The
θ-schemes are for θ = 0 the forward Euler, θ = 1 the backward Euler and θ = 1/2 the Crank-
Nicholson scheme. Different combinations can be used to recover some second order temporal
schemes (one- and two-step) that are A-stables. Note that, the proposed VMS-stabilization is
related to the Taylor-Galerkin formulation and always contains an implicit contribution. There-
fore, the forward Euler approximation is no more an explicit scheme. We can say that it is an
implicit stabilization of the forward Euler scheme. In the community of magnetically confined
plasma, “implicit schemes” are often used for implicit VMS-stabilization [30]; consequently, there
is confusion between implicit VMS-stabilization and implicit scheme for the other contributions.
For instance, the well known “Semi-implicit” schemes (see [30]) are Euler forward schemes where
it is assumed that only fluctuations of the velocity are important for the stabilization. Moreover,
we use in the equation (3.19) the approximation AAAδt

(
yyyyyyyyyn+1) ' AAAδt (yyyyyyyyyn). Then

MMMρ,ρ

δρρρ

δt
+ ṽmsvmsvmsρ (yyyyyyyyyn, δvvv) = rhsrhsrhsρ (yyyyyyyyyn) , (3.20)

MMMn
vvv,ρ

δρρρ

δt
+MMMn

vvv,vvv

δvvvvvvvvv

δt
+ ṽmsvmsvmsmmm (yyyyyyyyyn, δvvv) = rhsrhsrhsmmm (yyyyyyyyyn) , (3.21)

MMMn
T,ρ

δρρρ

δt
+MMMn

T,vvv

δvvvvvvvvv

δt
+MMMn

T,T

δTTT

δt
+MMMn

T,aaa
δaaaaaaaaa
δt

+ ṽmsvmsvmsE (yyyyyyyyyn, δvvv) = rhsrhsrhsE (yyyyyyyyyn) , (3.22)

MMMaaa,aaa
δaaaaaaaaa
δt

+ ṽmsvmsvmsaaa (yyyyyyyyyn, δvvv) = rhsrhsrhsaaa (yyyyyyyyyn) , (3.23)

where the MMM·,· are sub-matrices of the mass matrix AAAδt (yyyyyyyyyn). A superscript is used to point out
the dependency to yyyyyyyyyn. The first two equations are decoupled from the remaining equations.
This is a sub-system of size 4Ni2dNiφ , for the density and the velocity fluctuations. It is half the
size of the global system. Further assumptions can be used to neglect the influence of density
fluctuations on the velocity fluctuation and obtain, for δvvvvvvvvv, a reduced system of size 3Ni2dNiφ .
When δvvvvvvvvv is updated, the remaining equations can be solved individually. The resolution is simpler
if δρρρ and δaaaaaaaaa are updated before δTTT . When only the fluctuation of the velocity is considered we
have

lll (www,∂∂∂) δwww '


ρ∂∂∂ · δvvv

mmm∂∂∂ · δvvv +mmm · ∂∂∂δvvv + ρ
1−γ (∂∂∂δvvv)vvv

ρ (1− γ) (vvv ⊗ vvv) : ∂∂∂δvvv + ρH∂∂∂ · δvvv + (bbb⊗ bbb) : ∂∂∂δvvv
bbb∂∂∂ · δvvv − bbb · ∂∂∂δvvv


Inria



VMS Stabilization for MHD 17

and

lllt (www,∂∂∂)www?mmm =


− (vvv ⊗ vvv) : ∂∂∂mmm? + (γ−1)vvv·vvv

2 ∂∂∂ ·mmm?

(∂∂∂mmm?)vvv + vvv · ∂∂∂mmm? − (γ − 1)vvv∂∂∂ ·mmm?

(γ − 1)∂∂∂ ·mmm?

(2− γ)bbb∂∂∂ ·mmm? − (∂∂∂mmm?)bbb− bbb · ∂∂∂mmm?

 , lllt (www,∂∂∂)www?ρ =


O
∂∂∂ρ?

0
0

 .

In the sequel, we consider further simplifications by retaining only contributions that are in
divergence form. This can be viewed as retaining only some compressibility effects (acoustic
waves) for stabilization. Then, the VMS stabilization associated to the momentum equation
becomes

lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?mmm ' (γ − 1)
(
ρ
vvv · vvv

2 − ρvvv · vvv + ρH+ 2− γ
γ − 1bbb · bbb

)
(∂∂∂ · δvvv) (∂∂∂ ·mmm?) .

Thus, as H = γp
ρ(γ−1) + vvv·vvv

2 −
2−2γ

2ρ(γ−1)bbb · bbb = γp
ρ(γ−1) + vvv·vvv

2 + (γ−1)bbb·bbb
ρ(γ−1) , we obtain

lll (www,∂∂∂) δwww · lllt (www,∂∂∂)www?mmm ' (γp+ bbb · bbb) (∂∂∂ · δvvv) (∂∂∂ ·mmm?) , (3.24)

when divided by the density, we recover the weak form of the so called “Ideal MHD operator”
G (www,∂∂∂) :

G (www,∂∂∂) = ∂∂∂

(
γp

ρ
∂∂∂t
)

+ (bbb⊗ ∂∂∂)t
(

1
ρ

bbb⊗ ∂∂∂
)
.

However, when the time stepping uses θ 6= 0, the system is fully coupled and there is no
numerical advantage to use, in this case, reduced stabilization, except for the numerical imple-
mentation. In the general case with θ 6= 0, the numerical scheme (3.19) is a nonlinear system that
defined the fluctuation δyyyyyyyyy. The nonlinear dependency is associated to rhsrhsrhs (yyyyyyyyyn + δyyyyyyyyy). Indeed, the
contribution associated to the time derivative and the VMS-stabilization are, by construction,
linear. In any case, we need to compute block matrices AAAvms and AAArhs that are approximated
Jacobians of vmsvmsvms and rhsrhsrhs such that

vmsvmsvms (yyyyyyyyy, δyyyyyyyyy) = AAAvms (yyyyyyyyy)δyyyyyyyyy and rhsrhsrhs (yyyyyyyyy + δyyyyyyyyy) ' rhsrhsrhs (yyyyyyyyy) +AAArhs (yyyyyyyyy)δyyyyyyyyy.

These matrices will be used during the Newton iterations to obtain the solution of the nonlinear
equation. In many situations, the Newton step can be reduced to a single iteration. The single
Newton iteration gives the linearized implicit schemes, written as

AAA (yyyyyyyyyn,yyyyyyyyy) δyyyyyyyyy = −β
AAAδt (yyyyyyyyyn)yyyyyyyyyn −AAAδt

(
yyyyyyyyyn−1)yyyyyyyyyn−1

δtn
+ (1− θ + ζ)rhsrhsrhs (yyyyyyyyyn)− ζrhsrhsrhs

(
yyyyyyyyyn−1) , (3.25)

where the global matrix is defined as

AAA (yyyyyyyyyn,yyyyyyyyy) = 1 + β

δt
AAAδt (yyyyyyyyyn) +AAAvms (yyyyyyyyyn)− θAAArhs (yyyyyyyyyn) .

Evaluation of integrals by quadrature. Once more, as the target applications are tokamak
geometries, all the integrals to be evaluated in the equation (3.16) will be achieved according
to the cylindrical transformation (3.12) and the parametric mapping. For any function YYY , the
integral over the computational domain is approximated as a sum of integrals over poloidal
elements and the local mapping used. The 2D integrals are evaluated by the Gauss quadrature.
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18 B. Nkonga & al.

When Fourier modes are used as basis functions in the toroidal direction, the toroidal integrals
are evaluated by a Riemann sum with equidistant toroidal angles φgφ .∫ 2π

0

∑
eee2d

∫
eee2d

rYYY (ξξξ, φ) dξξξdφ =
∫ 2π

0

∑
eee2d

∫ 1

−1

∫ 1

−1
r (ζζζ)YYY (ξξξ (ζζζ) , φ)J eee2d (ζζζ) dζζζdφ

'
Ngφ∑
gφ=1

2π
Ngφ

∑
eee2d

Ngs∑
gs=1

Ngs∑
gt=1

ωgsωgtr (ζζζg2d)J eee2d (ζζζg2d)YYY
(
ζζζg2d , φgφ

)
,

where ωgs and ωgt are Gauss weights and ζζζg2d the associated sampling points. To make the
equations a little less dense, we have used the equivalence YYY

(
ζζζg2d , φgφ

)
≡ YYY

(
ξξξ (ζζζg2d) , φgφ

)
. The

Jacobian of the mapping J eee2d (ζζζ) is obtained with the local derivatives:

J eee2d (ζζζ) = ∂sr∂tz− ∂tr∂sz.

When the modal decomposition is applied to the toroidal direction, we can always reformulate
the functions to be integrated as follows:

YYY (ζζζ, φ) =
Nk∑
k=0

YYY ck (ζζζ) cos (kφ) +
Nk∑
k=0

YYY sk (ζζζ) sin (kφ) .

This decomposition derives from the fact that the test functions are constructed as a toroidal
function times a poloidal function. This property is preserved after the different spatial deriva-
tions. Therefore, we can speed-up the evaluation of integrals by the use of the fast Fourier
transform (FFT). Indeed, in the context of modal decomposition, we can write the previous
approximation as

∫ 2π

0

∑
eee2d

∫
eee2d

rYYY (ξξξ, φ) dξξξdφ =
Ngφ∑
gφ=1

2π
Ngφ

Nk∑
k=0

〈
YYY ck

〉
2d

cos (kφ) +
Ngφ∑
gφ=1

2π
Ngφ

Nk∑
k=1

〈
YYY sk

〉
2d

sin (kφ) ,

where
〈
YYY k

〉
2d

is the numerical integral, of the function YYY k (ξξξ), in the 2D poloidal plane. For
example, for the function YYY ck (ξξξ), we have

〈
YYY ck

〉
2d

=
∑
eee2d

Ngs∑
gs=1

Ngs∑
gt=1

ωgsωgtr (ζζζg2d)J eee2d (ζζζg2d)YYY ck (ζζζg2d) .

A similar decomposition holds for
〈
YYY sk

〉
2d
. This assembling based on FFT is carried out for the

computation of the right-hand side (explicit) as well as for the computation of the global matrix.
We just use, in the previous relations, the vector YYY by the appropriated tensor.

Finally∫ 2π

0

∫
ΩΩΩ2d

rYYY (ξξξ, φ) dξξξdφ =
∑
eeeφ

δφeeeφ

∫
êeeφ

∑
eee2d

∫
êee2d

r (ζζζ)YYY (ξξξ (ζζζ) , φ)J eee2d (ζζζ) dζζζdφ

'
∑
eeeφ

Ngφ∑
gφ=1

δφeeeφωgφ
∑
eee2d

Ng2d∑
g2d=1

ωg2dr (ζζζg2d)J eee2d (ζζζg2d)YYY
(
ζζζg2d , φgφ

)
,

where ωgs and ωgt are Gauss weights and ζζζg2d the associated sampling points.
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Boundary integrals can be associated to normal fluxes or Dirichlet penalty. In the first case
we need an estimation of the normal in the physical space. According to the nonlinear mapping,
this normal can vary at the boundary associated to a 2D mesh element. Such a boundary can
be parametrized either by the reference coordinate s or t. More explicitly, when the boundary
is parametrized with the reference coordinate s, we have

r`2d (s) =
∑

jjj∈ϑ(`2d)

rjjjNjjj (s,t?) and z`2d (s) =
∑

jjj∈ϑ(`2d)

zjjjNjjj (s,t?) ,

where `2d = ∂eee2d ∩ ∂ΩΩΩ2d 6= ∅, is used for any curved edge at the physical boundary associated to
the 2D element eee2d. The parametrization is, in this case, associated to t = t? where t? is either
zero or one. Any infinitesimal length d` of the physical boundary, will be written as

d` =
√

(dr (s) )2 + (dz (s) )2 =
(√

(∂sr)2 + (∂sz)2
)
ds.

Then the Jacobian of the boundary transformation is J` (s) =
√

(∂sr)2 + (∂sz)2. Therefore, for
any function ΨΨΨ, the boundary integral is written as∫

∂ΩΩΩx,h
ΨΨΨ (yyy) =

∫ 2π

0
rdφ

∫
∂ΩΩΩ2d

ΨΨΨ (yyy) d` =
∫ 2π

0
dφ
∑
`2d

∫ 1

0
r`2d (s)J`2d (s)ΨΨΨ (yyy) ds

'
Ngφ∑
gφ=1

2π
Ngφ

∑
`2d

Ngs∑
gs=1

ωgsr`2d (sgs)J`2d (sgs)ΨΨΨ (yyy (sgs) ) .
(3.26)

Most of the integrals to be computed are linear functions of the outward normal nnn. In the case
of a local boundary parametrized by s, the associated poloidal coordinate is given by

ξξξ (s) = r`2d (s) r̂rr + z`2d (s) ẑzz. (3.27)

Then the tangent vector ∂sξξξ and the unit normal nnn are orthogonal. Thus,

nnn = nnnrr̂rr +nnnzẑzz = ±∂sz`2dr̂rr− ∂sr`2dẑzz
J`

= 1
J`
ñnn.

The sign of this normal is fixed by the orientation of the reference axis used for the boundary
mapping. For instance, the sign is positive when the boundary, mapped with the reference
coordinate s, corresponds to t? = 0; it is negative for t? = 1. Therefore, any surface integral
that is linear to the outward normal can be reformulated as∫

∂ΩΩΩx,h
(lll (yyyyyyyyy)nnn) =

∫ 2π

0
dφ
∑
`2d

∫ 1

0
r`2d (s)J`2d (s) (lll (yyyyyyyyy)nnn) ds

=
Ngφ∑
gφ=1

2π
Ngφ

∑
`2d

Ngs∑
gs=1

ωgsr (sgs) (lll (yyyyyyyyy (sgs) ) ñnn (sgs) ) .
(3.28)

Similar formulas hold when the parametrization is defined with the reference coordinate t.

4 VMS-Stabilization for Reduced MHD
In the context of tokamak plasmas, some plasma flow regimes can be accurately approximated
by reduced equations. Ordering of the scaling parameters is used to define such a regime [31]. In
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these regimes, we can assume the following profiles for the magnetic field and the velocity field:{
bbb = F∇φ+∇ψ ×∇φ,
vvv = ϑbbb + r2∇φ×∇u,

where F
r and ψ

r are toroidal components of the magnetic field and the flux, respectively. The
function F (ξξξ) is an input of the model consistent with the initial Grad-Shafranov equilibrium,
so that the magnetic field is always divergence-free. u (t, ξξξ, φ) is the electric potential and ϑ|bbb|
the parallel velocity. These projections also have the effect of separating the compressible and
the incompressible waves and reduce the spectral pollution. The consequence is the elimination
of fast waves in the direction perpendicular to the magnetic field [31].

A projection of the induction equation is obtained by applying the operator bbb · (∇× )−1

and a single scalar equation is obtained. This equation gives the evolution of the magnetic
flux ψ (t, ξξξ, φ). According to the assumed ordering, this projection introduces a gradient of the
electrical potential. The resulting scalar equation writes as

∂tψ + vvv⊥ · ∇ψ = kkkψ (∂∂∂, ·) , (4.1)

where vvv⊥ = r2∇φ×∇u is the velocity component orthogonal to the magnetic field.
For the momentum equation, two projections are achieved. The first projection uses the

operator bbb · (∇× ) to get out an equation for the vorticity ω = ∇ · (∇∇∇⊥u). As ∇ × ∇ ≡ 0,
this projection will cancel the gradient of the total pressure p = p+ bbb·bbb

2 . The second projection
is parallel to the magnetic field bbb. This projection later assumes that the magnetic field is
principally toroidal to obtain a simplified evolution of the normalized parallel velocity ϑ. The
Lorentz force is in the kernel (null space) of this projection, parallel to the magnetic field. The
equations obtained are

∂tω + vvv⊥ · ∇ω = kkkω (∂∂∂, ·) , (4.2)

∂tϑ+ vvv · ∇ϑ+ bbb · ∇p
ρbbb · bbb = kkkϑ (∂∂∂, ·) . (4.3)

The equation of energy is written in the pressure formulation and, as the density equation,
written according to the assumed velocity profile:

∂tρ+ vvv · ∇ρ+ ρbbb · ∇ϑ = kkkρ (∂∂∂, ·) , (4.4)
∂tp+ vvv · ∇p+ γpbbb · ∇ϑ = kkkp (∂∂∂, ·) . (4.5)

We have introduced a vector operator kkk (∂∂∂, ·) whose components are kkkψ (∂∂∂, ·), kkkω (∂∂∂, ·), kkkϑ (∂∂∂, ·),
kkkρ (∂∂∂, ·) and kkkp (∂∂∂, ·). The definition of the operator kkk (∂∂∂, ·) depends on the details of the scaling.
It can contain first order derivatives associated to diamagnetic effects but in general derivatives
therein are of higher order. The derivation of kkk (∂∂∂, ·) should also be guided by the fact that it is
useful to have an energy balance associated to the reduced model [31, 14]. The reduced model,
in compact form, can be written in a quasi-linear form

∂www
∂t

+ l̃ll (www, ∂∂∂)www = kkk (∂∂∂, ·) , (4.6)

where www are the reduced variables

www =


ρ
p
ϑ
ω
ψ

 , l̃ll (www, ∂∂∂) =


vvv · ∂∂∂ 0 ρbbb · ∂∂∂ 0 0

0 vvv · ∂∂∂ γpbbb · ∂∂∂ 0 0
0 bbb·∂∂∂

ρ‖bbb‖2 vvv · ∂∂∂ 0 0
0 0 0 vvv⊥ · ∂∂∂ 0
0 0 0 0 vvv⊥ · ∂∂∂

 .
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Without loss of generality, we assume for the stabilization process that the system is essentially
driven by the left-hand side and the contribution of kkk (∂∂∂, ·) is lower order scale.

For any direction nnn, the matrix l̃ll (www,nnn) is diagonalizable and the eigenvalues are

vvv ·nnn, vvv⊥ ·nnn, vvv ·nnn− |b
bb ·nnn|
‖bbb‖ c and vvv ·nnn+ |b

bb ·nnn|
‖bbb‖ c,

where c2 = γp
ρ is the acoustic sound speed which is purely hydrodynamic, without any magnetic

field contribution. Moreover, acoustic waves do not propagate in the direction orthogonal to
the magnetic field (transverse direction). The operator vvv · ∂∂∂ can be decomposed as normal and
transverse derivatives that are weakly coupled. Consequently, we also derive a decomposition of
the differential operator l̃ll (www, ∂∂∂)

vvv · ∂∂∂ = ϑbbb · ∂∂∂ + vvv⊥ · ∂∂∂ and l̃ll (www, ∂∂∂) = l̃llbbb (www, ∂∂∂) + IIIvvv⊥ · ∂∂∂. (4.7)

Therefore, the associated VMS-stabilized weak form writes as∫
ΩΩΩx,h

∂www
∂t
·www? +

∫
ΩΩΩx,h

(
l̃ll (www, ∂∂∂)www

)
·www? +

∫
ΩΩΩx,h
kkk (∂∂∂,www) ·www? + 1

ε

∫
∂ΩΩΩx,h

sss (www,wwwb,www?)

= −
∫

ΩΩΩx,h

(
l̃llbbb (www, ∂∂∂) δwww

)
· TTT bbb

(
l̃llt

bbb (www, ∂∂∂)www?
)
−
∫

ΩΩΩx,h
(vvv⊥ · ∂∂∂δwww) · (TTT ?vvv⊥ · ∂∂∂www?) ,

(4.8)

where sss (www,wwwb,www?) is the contribution associated to the penalty of Dirichlet boundary conditions.
The computation of TTT bbb and TTT ? will use similar strategies as for the full MHD model adapted to
the wave structure of the Reduced MHD.

5 Numerical Validations
Grad-Shafranov equilibrium. In order to compute MHD instabilities in tokamak geome-
tries, we very often start with an initial condition that is a solution of the static MHD equilibrium
without flow vvv = 0. At this equilibrium, we can use a reduced axisymmetric magnetic field such
that the ideal MHD equations reduce to

∇p = jjj× bbb with jjj = ∇× bbb and bbb = F∇φ+∇ψ ×∇φ. (5.1)

The poloidal current flux is a function of the poloidal coordinates - F (ξξξ) - such that the re-
duced magnetic field, in the previous equation, is always divergence free ∇ · bbb = 0. Indeed, by
construction of the cylindrical coordinates, we have ∇ · ∇φ = 0 and it is easy to see that the
poloidal component (∇ψ×∇φ) of the magnetic field is also divergence free. The projection of the
equilibrium forces in the magnetic direction gives bbb · ∇p = 0 and, for axisymmetric solutions, we
have ∇φ · ∇p = 0, so that (∇ψ ×∇φ) · ∇p = 0. We finally obtain that the pressure is a function
of the magnetic flux. Similarly, with the projection in the current field direction it can be found
that the total poloidal current flux is also a function of the magnetic flux. Then, using these
results, the projection onto the toroidal direction gives an elliptic equation, very often nonlinear,
made famous by Grad[21] and Shafranov[35]

−∆?ψ = F (ψ) dF
dψ

(ψ) + r2 dp

dψ
(ψ) , (5.2)

where ∆?ψ = r2∇ ·
( 1

r2∇ψ
)
. The given functions F (ψ) and p (ψ) are, at this point, completely

arbitrary and should be defined from additional considerations associated to the device under
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concern. When F (ψ) and p (ψ) are nonlinear, there is no theoretical guarantee of the existence
and/or uniqueness of the previous equation, even when equipped with Dirichlet boundary condi-
tions. When the parametrization functions are designed by a fitting over experimental data, our
hope is that, at least, there exists a solution of (??). The fitting assumes polynomial profile for
the density, the temperature and for G̃ (ψ) = (F (ψ) )2 the square of the poloidal current flux:

ρ̃ (ψ,ψ?, ψ×) ' ρ̃(0)

(
1 +

sp∑
s=1

ρ̃(s) (ψ)s
)
,

T̃ (ψ,ψ?, ψ×) ' T̃ (0)

(
1 +

sp∑
s=1

T̃ (s) (ψ)s
)
,

G̃ (ψ,ψ?, ψ×) ' G̃
(0)

+ 2 (ψ× − ψ?)
sf∑

s=1
G̃

(s)
(
ψ
)s

s ,

(5.3)

where p(s), T̃ (s) and G̃
(s)

are fitting parameters. The profile of G̃ is defined in order to have a
simpler formula for the function that is usually fitted: F dF

dψ
. The normalized flux ψ is defined

as
ψ ≡ ψ (ψ) = ψ − ψ?

ψ× − ψ?
, (5.4)

ψ? and ψ× are either given constants or nonlinear functions defining the flux values at the
magnetic axis ψ? ≡ ψ? (ψ) and at a specific flux surface ψ× ≡ ψ× (ψ). This specific flux surface
can be a separatix (divertor configuration), the last surface or the first open surface (limiter
configuration). From the profile of G̃ (ψ) and the equation of state p = ρT , we can obtain the
following estimations

dp

dψ
(ψ) ' T̃

dρ̃

dψ
+ ρ̃

dT̃

dψ
' 1

ψ× − ψ?

(
T̃
∂ρ̃

∂ψ
+ ρ̃

∂T̃

∂ψ

)
,

F (ψ) dF
dψ

(ψ) ' 1
2
∂G̃

∂ψ
' 1

2 (ψ× − ψ?)
∂G̃

∂ψ
=

sf∑
s=1

G̃
(s) (

ψ
)s−1

,

(5.5)

where the partial derivative ∂

∂ψ
is for fixed ψ? and ψ×.

The Galerkin finite element method is used to approximate the Grad-Shafranov equation.
The nonlinear system is solved by Picard iterations, by inverting the following linear system for
ψk+1:∫

ΩΩΩ2d

1
r∇ψ

(k+1) · ∇ψ?drdz =
∫

ΩΩΩ2d

1
r

(
F
(
ψ(k)

) dF
dψ

(
ψk
)

+ r2 dp

dψ

(
ψ(k)

))
ψ?drdz, (5.6)

with homogeneous Dirichlet boundary conditions. Eventually, ψ(k+1)
? ≡ ψ?

(
ψ(k+1)) and ψ(k+1)

× ≡
ψ×
(
ψ(k+1)) are computed at each step. When the Picard iterations converge, always the case

in our applications, an approximated solution ψeq of the nonlinear system (5.2) is obtained. In
order to simplify the relation with the reduced MHD, it is useful to define the magnetic field
with a modified magnetic potential, abusively denoted by aaa :

bbb = F eq∇φ+∇×aaa where F eq =
√
G̃
(
ψeq, ψeq

? , ψ
eq
×
)
. (5.7)

As F eq and ∇φ are fixed in time, the equation for the new potential is the same as previously.
Therefore, the unperturbed initial data are:

ρeq = ρ̃
(
ψeq, ψeq

? , ψ
eq
×
)
, vvveq = 0, peq = ρeqT eq and aaaeq = ψeq∇φ, (5.8)
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where T eq = T̃
(
ψeq, ψeq

? , ψ
eq
×
)
.

Internal disruption : kink mode. The kink instability occurs in a current carrying plasma
when the current exceeds a critical value and it is due to the non-uniformity of the current. Even
though this is mainly a current driven instability, the pressure also plays a role. It was shown
that if the pressure is sufficiently low the plasma is stable and if it exceeds a threshold value it
becomes unstable (see [9]). This instability can be compared to the twisting of a rubber string, if
the twisting exceeds a threshold, the rubber string develops helical deformation. In a Tokamak,
the twisting of the magnetic field is provided by the poloidal magnetic field produced by the
current and similar plasma deformations occur. The internal kink instability is localized at the
magnetic mode rational surfaces (i.e, magnetic flux surfaces that are closed). This characteristic
is given by the safety factor q which determines the number of toroidal turns (m) of a field
line for each poloidal turn (n). The internal disruption (also called sawtooth instability) has a
poloidal mode number m = 1 and a toroidal mode number n = 1 and therefore resonant with
the magnetic flux topology at q = 1.

We consider a low-β plasma (where the magnetic pressure is larger than the hydrodynamic
pressure) at a toroidal symetric equilibrium. The Grad-Shafravov equilibrium is obtained with
the following inputs

ψ? = −0.4792, ψ× = 0
sp = 1 ρ̃(0) = 1 ρ̃(1) = − 9

10 ����

sp = 1 T̃ (0) = β?
2 = 2 10−3 T̃ (1) = − 8

10 ����

sf = 2 G̃
(0)

= 100 G̃
(1)

= −2 G̃
(2)

= 2

This equilibrium is computed by a cubic bezier isoparametric finite element on a polar quadran-
gular mesh with a geometrical singularity at the center (figure 1). The equilibrium profiles of
density and magnetic flux are plotted in the Figure 2. The resonant surface (q = 1) is associated
to the magnetic flux surface ψ = −0.229. Starting from the numerical equilibrium (figure 2 ) a
perturbation of the toroidal velocity is introduced (figure 3 ). Therefore, the initial data, for the
simulation of the kink mode, is given by

ρ (t = 0, ξξξ, φ) = ρeq (ξξξ) , peq (t = 0, ξξξ, φ) = peq (ξξξ) , aaa (t = 0, ξξξ, φ) = aaaeq (ξξξ)

and
vvveq = 10−12 sin (φ) φ̂φφ, (5.9)

with bbb (t, ξξξ, φ) = F eq (ξξξ)∇φ+∇×aaa (t, ξξξ, φ)
The simulation was then ran taking into account three toroidal Fourier Harmonics. It can

be seen in Figure 4 that during the linear growth of the instability the velocity profile develops
a thin layer structure around the resonant surface q = 1 (ψ ≈ −0.229) which is characteristic of
the internal kink instability. This structure is very fine and its width is related to the Reynolds
Magnetic number S. For smaller S the width is larger, becoming finer and finer as S grows
(refer to Figure 5). For S = 105 (left) it is around 1.10−1 wide, while for S = 108 (right) it is
approximately 3.10−2.

To test the effects of the numerical stabilization, two test-cases were taken into consideration.
In the first one, only a uniform numerical viscosity of 10−5 was applied in the whole domain to
play the stabilizing role, while for the second one the VMS-Stabilization was implemented. It
can be clearly seen in Figure 6 that only the presence of a numerical viscosity (right) is not
enough to stabilize the scheme. The velocity profile obtained (top right) for the Fourier mode
cos(φ) is very noisy and contains several oscillations compared to the one obtained with the VMS
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formulation (top left). For the density profile the scenario is even worse. Without the numerical
stabilization it is almost impossible to see the formation of the expected profile and the result
is mainlt composed of noise (bottom-right). With the VMS, on the other hand, the profile is
clear (bottom-left) containing only some oscillations on the border of the profile. This is due to
the fact that the stabilization operator used for this test case is a simplified version of the most
general operator lll.

From now on, only test cases with the VMS-Stabilization are taken into account. The objec-
tive of the study was to analyze the dynamics of the internal kink mode considering two different
configurations: a semi-linear one in which the Fourier mode cos(0) is assumed to be constant and
is then forced to be equal to its equilibrium value during the entire simulation, and a nonlinear
one, in which all modes are set to run and evolve freely. Figure 7 shows the evolution of the
z-component of the velocity (top) and the φ component of the potential vector (bottom) for the
first two Fourier modes - cos(0) and cos(φ). For the semi-linear modeling all the components of
the velocity in the mode cos(0) are set to be zero and that is the reason why it is not shown in the
semi-log plot (up left). It can be seen however that assuming a constant value for this mode is
not a bad approximation because it stays almost constant during the evolution for the non-linear
case. This is even more apparent for ψ (bottom-left) for which the value stays really constant
even if it is set to run freely. The figures on the right show that the dynamics of the other modes
can be divided into three parts: an oscillatory one in which the profiles shown before (Figures
4,5 and 6) are still forming; and, a linear phase in which the growth rate stays constant, followed
by a second oscillatory phase. Nonetheless, only the beginning of this last one is seen before the
divergence of the simulation. This is probably related to the large time-step used, although it
is reasonable for the linear growth phase it is too large for a non-linear regime. Also, it can be
related to the simplified form of the stabilization. During this phase the convective phenomena
arising in the simulation start to become important and then an extended version of the current
stabilization must be implemented.

All the results shown were obtained for a Reynolds Magnetic number S = 108. However, as
the kink instability is driven mainly by a current, the resistivity and hence the Reynolds Magnetic
number (S ≡ V L/η, in which V is the typical velocity of the flow, L is the typical length scale
and η is the resistivity) must play an important role. As it was said before, the width of the
kink structure formed around the resonant surface will become finer as S grows. Nevertheless,
it is not the only resistive effect observed. The growth rate of the instability will also change (
see Figure 8). The resistive kink behavior is expected to have a growth rate γ ∝ S− 1

3 and it was
obtained for both - semi and non-linear - configurations for most of the values of S considered.
The non-linear simulations however became very unstable for small (S < 103) and very high
(S > 109) values of the magnetic number. Also, (figure 8) shows the transition from the resistive
kink behavior to a more slowly growing tearing γ ∝ S− 3

5 behavior at high values of S.

Equilibrium for X-point geometry The main goal of the test cases with divertor geometry
is the simulation of the Edge localized modes (ELMs) instability. For this, one must first obtain a
steady or at least a quasi-steady kinetic equilibrium and then, after, launch the Fourier harmonic
perturbations. To obtain the quasi-steady state one should run a simulation with only the n = 0
Fourier harmonic. The goal of this first test case is only to study this quasi-static equilibrium.

For this, we have run a simulation with the following parameters
ρ = 1− 0.2375ψn,
T = 1.2× 10−1 − 7.9867× 10−2ψn,

FF ′ = 4.8(1− ψn),
The Magnetic Reynolds number used is S = 107 and the timestep was fixed to δt = 1.
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Figure 6 shows the 3D configuration and a poloidal cut of the magnetic field lines the density
and velocity profiles after one timestep. In Figure 18 the red line represents the separatrix,
i.e. the last closed flux surface of the configuration. The velocity is expressed in terms of the
Mach number (ratio between the velocity and the sound speed in the medium). It is better to
use this representation because for the divertor configuration, Bohm boundary conditions must
be implemented since there may be contact between the plasma and a material wall. These
conditions are related to the fact that when a material wall gets in contact with the plasma,
which is the case for the divertor plates, a sheath region appears near the wall. The particles
entering these regions must a have a velocity superior to the sound speed.

The sound speed is imposed on the divertor plates and need some time (in a sonic time-scale)
to diffuse into the plasma. However, we can note from Figure 18, that it has considerably diffused
after ten timesteps. Figure 19 shows in more detail the velocity profile as well the direction of
the velocity field.

The simulation was let to run up to t ≈ 220 and the resulting profiles are shown in Figure
20. It can be clearly seen that the density and the velocity have diffused. In fact, there is a
density flow that is created following the separatrix up to the divertors in which it is evacuated.
This loss is compensated by particles sources added to the continuity equation. As before, more
details of the velocity field around the divertors can be seen in Figure 21. It is a reasonable
velocity field considering that it is perfectly aligned with the magnetic field and the diffusion of
the Mach condition can be clearly seen.

For this test case, a quasi-steady state has not been fully achieved, however it can be seen
in Figure 22 that the kinetic energy growth rate has decreased as the time passed, which means
that we are not far from reaching a steady state in which it might be constant.

6 Conclusions and perspectives
We have developed a stabilized finite element strategy for numerical approximation of compress-
ible MHD equations. The divergence free of the magnetic field is achieved under a potential
vector formulation. The finite element is designed to ensure global C1 smoothness of interpola-
tion functions. Moreover, boundary conditions were implemented as penalty line integrals over
the edge of the domain.

Some numerical studies were performed in order to validate the model, starting with the
plasma equilibrium. It was done taking into account the Grad-Shafranov equation without flow
(vvv = 0), to which the pressure and magnetic field profiles were given as input parameters. These
profiles were chosen to correspond to an experimental profile typically obtained in tokamaks.
This equilibrium was successfully calculated and it gives the initial plasma configuration that
will be perturbed for the study of the MHD instabilities.

The internal kink instability was reproduced by adding a perturbation to the velocity after
having the established equilibrium. As expected, the formation of a thin layer around the
resonant surface for the toroidal mode (m = 1) was observed. A dependence of this mode
width on the magnetic Reynolds number S was also verified. Since kink modes are current
driven instabilities and having in mind that S is related to the resistivity, this result comes
as expected. It is important to remark that, without the VMS stabilization implemented, these
results could not be obtained. In fact, the fast acoustic waves, whose are intrinsic to the full MHD
model, have a destabilizing effect. Moreover, as the flows here are dominated by convection, the
unresolved scales can grow to affect the resolved ones. During the kink simulations it was shown
that if the stabilization is not taken into account, the numerical noise will overcome the physical
phenomena and the results obtained are composed mostly of noise.
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Another important characteristic that helps in the identification of the internal kink instability
is its growth rate which is related to S. It has been verified here that the stabilization does not
affect it, restraining its effects to the numerical level and not killing physical perturbations. The
dependence on the magnetic Reynolds number obtained agrees with results obtained with the
linear MHD code PHOENIX [20, 6] and also with results obtained by Hastiel et al. [23]. For
S < 104 the mode width becomes comparable to the machine size and the scaling is lost entirely.
For higher S, a transition is observed and the growth rate shifts from S−

1
3 to S− 3

5 which has
been also observed by [23] and analytically described by Coppi et al [12] and extended by Bussac
et al [9]. In fact, the second growth rate obtained is a characteristic of another MHD disruption
known as tearing modes. Finally, the reconnection of the magnetic flux surfaces has been also
observed, validating one more characteristic of the internal kink disruption.

After successfully validating the model for a plasma in the circular configuration, the study
was extended for x-point plasmas. The model used was exactly the same and the main differences
were the geometry of the problem and the boundary conditions. For circular cases, it is assumed
that there is no contact between the plasma and the walls of the device. This assumption cannot
be extended to x-point plasmas because the open magnetic field lines will transport particles to
the targets located at the basis of the device, called divertors. Thus, at these boundaries the
velocity component that is parallel to the magnetic field is set to the local sound speed in the
outgoing direction. These conditions generate a great flow near the divertors, such that, before
triggering an instability, a second quasi-steady equilibrium in which the parallel and poloidal flows
would be well established, must be reached. For this, the axisymmetric equilibrium (obtained
with Grad-Shafranov) was let to evolve without any harmonics until the kinetic energy stayed
constant. The results obtained with the model are reasonable since the velocity field is well
aligned with the magnetic field lines and the kinetic energy has a growth rate that is lowering,
indicating that a quasi-steady state is near.

The stabilized full MHD model implemented and validated here opens up a scenario for more
powerful and detailed simulations for tokamak plasmas, specially in the context of ITER for
which a better understanding of the physics inside the device will be needed. The goal now is to
use this model to better describe the Edge-localized modes. In recent years a large number of
detailed measurements of these modes has become available allowing the validations of numerical
simulations.
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Figure 1: Grad-Shafranov equilibrium : Mesh aligned on magnetic flux surfaces (left) and Shifting
of the Magnetic flux surfaces(right). Dotted lines are isolines of the radius to the center of the
geometrical domain. Solid lines are iso magnetic fluxes. The second isoline from the boundary
is where the safety factor is nearly one. Magnetic flux isolines are for : ψ = −10−3, ψ = −0.229,
ψ = −0.35 and ψ = −0.45.
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Figure 2: Grad-Shafranov equilibrium. 2D plots and profiles for the density (left) and magnetic
flux (right).
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Figure 3: Initial data for the 3D computations, Density and magnetic streamlines (top), initial
perturbation of the first mode for velocity (bottom) of order 10−12
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Figure 4: Internal Kink mode : Velocity field and thin layer around the resonant surface (q = 1,
ψ ' −0.229), during the linear growth of the instability. The inertial effects are important in a
layer close to the resonant surface. This layer width is around 4 10−2 that is of order ε2 where
ε is the inverse aspect ratio. Magnetic flux isolines are given for : ψ = −10−3, ψ = −0.229,
ψ = −0.35 and ψ = −0.45.
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Figure 5: Kink structure comparison for S = 105 (left) and S = 108 (right). The width of the
structures depends on the Reynolds Magnetic number. Going from 10−1 (left) to 3 10−2 (right)
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Figure 6: Effect of the VMS-Stabilization on the spurious waves. For the fluctuations of the
toroidal velocity (top) and the fluctuations of density (bottom). Left figures are results obtained
with VMS-stabilization and right figures are obtained without numerical stabilization. Mesh
of 32 poloidal elements, 1280 poloidal vertices and 3 toroidal harmonics. The total number
of degrees of freedom is 122880. Implicit Crank-Nicholson scheme a normalized time step of
δt = 400, S = 108.
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Figure 7: Dynamic of the Kink Mode, for a magnetic Reynolds of S = 108, using Quasi-linear
modeling (where the mode zero is assumed constant) and fully nonlinear modeling. Evolution
of z-component of the velocity vvvz (top) and φ-component of the potential vector ψ (bottom) for
the mode zero (left) and the mode one (right).
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Figure 8: Computed Growth rate for the internal kink mode as function of the magnetic Reynolds
number (S). The expected growth rate is [23], asymptotically, S−1/3 for S smaller than a
threshold and S−3/5 for larger S.
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Figure 9: Mesh used for the first test case. The square part is constructed with nR = nZ = 36
and the external part nϑ = 144 and nR = 40 resulting in a total of 7056 elements
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Figure 10: Evolution of the kinetic energy for the velocity associated to the toroidal functions
cos(0 ∗ φ), cos(φ) and sin(φ), respectively associated to (n = 0), (n = 1) and (n = 2).
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t = 552τA t = 3900τA

t = 4200τA t = 4500τA

Figure 11: Evolution of the density profiles during the motion of the plasma column. 2D plot of
the poloidal plane located at φ = 0 for the times t = 552τA (top-left), t = 3900τA (top-right),
t = 4200τA (bottom-left) and t = 4500τA (bottom-right)
, where τA is the characteristic Alfvén time. Dotted lines, far from the boundary, are the position
of the rational mode surface q = 1.
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t = 552τA t = 3900τA

t = 4200τA t = 4500τA

Figure 12: Evolution of the Magnetic flux. Dotted lines, far from the boundary, are the position
of the rational mode surface q = 1.
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t = 3520τA t = 3920τA

Figure 13: Radial velocity vvvr contours associated to the sin(φ) mode (n = 2). Evolution during
the linear growth„ on the plane φ = 0: t = 3520τA and t = 3920τA.

t = 3520τA t = 3920τA

Figure 14: Vertical velocity vvvz contours associated to the sin(φ) mode (n = 2). Evolution during
the linear growth, on the plane φ = 0: t = 3520τA and t = 3920τA.
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t = 3520τA t = 3920τA

Figure 15: Velocity field associated to the sin(φ) mode (n = 2). Evolution, during the linear
growth, on the plane φ = 0: t = 3520τA and t = 3920τA.
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t = 4400τA t = 4460τA

t = 4464τA t = 4648τA

t = 5484τA t = 5796τA

Figure 16: Reconnection of the magnetic flux surfaces ψRR n° 8892
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Figure 17: 3D Magnetic field lines, plasma density and poloidal velocity field near the divertor.

Figure 18: Density (left) and velocity (right) profiles at t = 10
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Figure 19: Velocity profile close to the divertor plates at t = 10

Figure 20: Density (left) and velocity (right) profiles at t ≈ 220
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Figure 21: Velocity profile close to the divertor plates at t ≈ 220
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Figure 22: Evolution of the kinetic energy showing that, even though the steady-state has not
been reached yet, the energy growth rate is decreasing as the time passes
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