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On Adaptive PARAFAC Decomposition of

Three-Way Tensors

Viet-Dung Nguyen, Karim Abed-Meraim, and Nguyen Linh-Trung

Abstract

We propose a fast adaptive PARAFAC algorithm for a class of third-order tensors which have

one dimension growing linearly with time. The proposed method is based on alternating least squares

approach used in conjunction with a Newton-type optimization technique. By exploiting the Khatri-Rao

product and the reduced rank structure at each time instant, our algorithm has the advantages of both

linear complexity and superior convergence performance. A modified version of the algorithm is also

proposed to tackle the nonnegative adaptive PARAFAC problem. Parallel implementation issues and

algorithm performance are finally investigated. The latter is achieved through simulation comparison

with the state-of-the-art algorithms to better highlight the effectiveness of the proposed method.

Index Terms

Fast adaptive PARAFAC, big data, parallel computing, non-negative constraint.

I. INTRODUCTION

With the recent advances on sensor and streaming technologies, processing massive volume

data or big data with time constraints or even real-time is not only crucial but also challenging [1],

in a wide range of applications including MIMO radars [2], biomedical imaging [3], and signal

processing [4].

A typical situation in those cases is that the data are acquired in multidimensional form with

time as one dimension. Such data can be presented naturally by multi-way arrays, also called
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tensors. Tensor decomposition, thereby, can be used as an important tool to analyze, understand or

eventually compress data. Tucker decomposition and PARAFAC (Parallel Factor) decomposition

are widely-used and can be considered as generalization of the singular value decomposition

(SVD) for multi-way arrays. While the Tucker decomposition lacks of uniqueness and often

requires to deal with imposed constraints such as orthogonality, non-negativity, sparseness [5],

the PARAFAC decomposition is unique up to scale and permutation indeterminacy under a mild

condition. For recent surveys on tensor decomposition, we refer the reader to [4], [6], [7], and

references therein for more details. In this paper, the PARAFAC decomposition is the method

of interest.

It is observed that applying the batch (offline) PARAFAC decomposition directly to streaming

tensors is infeasible because of its high computational cost. Thus, an adaptive (incremental)

approach is more suitable and provides a good trade-off between quality and efficiency. In

contrast to adaptive filtering [8] or subspace tracking [9], [10] which have a long standing history

and are well-understood, there exist only few works dedicated for adaptive tensor decomposition.

In [2], Nion and Sidiropoulos proposed adaptive models and corresponding adaptive algorithms

for third-order tensors having one dimension growing with time, namely recursive least-squares

tracking (PARAFAC-RLST) and simultaneous diagonalization tracking (PARAFAC-SDT). In

another recent work [3], Mardani, Mateos and Giannakis also proposed an adaptive PARAFAC

for incomplete streaming data. In these works, one common basis is that they use first-order

methods (i.e., using gradients) to optimize an exponentially-weighted least-squares cost function.

In this paper, we provide an alternative way to tackle the challenging problem of adaptive

PARAFAC decomposition. In particular, we propose a new adaptive algorithm for a class of third-

order tensors having the dimensions as I × J(t) ×K; the dimension J varies with time. This

algorithm is called second-order optimization based adaptive PARAFAC decomposition (SOAP).

Three main contributions of the proposed algorithm are presented below.

The first contribution of SOAP is that its complexity is linear with respect to the tensor rank

R, i.e. O(IKR) flops per iteration, as compared to the quadratic cost, i.e. O(IKR2), required by

PARAFAC-RLST and PARARAC-SDT, and its convergence performance is comparable or even

superior. To achieve this, we first exploit a second-order stochastic gradient algorithm, in lieu

of the first-order gradient algorithm as in [2], to improve the estimation accuracy. In addition,

at each step in the algorithm, we force a column of the estimated subspace to have a Kronecker
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product structure. As a result, the overall subspace approximately preserves a Khatri-Rao product

structure. When possible, we also exploit a rank-1 update to obtain a linear complexity in general.

The second contribution is a proposal of an adaptive version of SOAP in order to handle the

constraint of non-negativity. It is known that, imposing a non-negativity constraint on PARAFAC,

when applicable, not only improves the physical interpretation [11] but also helps to avoid

diverging components [12]. We thereby develop an adaptive non-negative PARAFAC algorithm

based on appropriate modifications of SOAP. To the best of our knowledge, adaptive non-negative

PARAFAC algorithms have not been addressed in the literature.

The third contribution of SOAP is its readiness to be implemented in the form of par-

allel/decentralized computing, which has not been considered in [2], [3]. This is especially

important when performing online large-scale processing tasks. In particular, SOAP allows us to

reduce both the algorithm complexity and the storage usage when we have several computing

units (DSP) available in a parallel architecture.

Notations: We follow the notations used in [7]. Calligraphic letters are used for tensors (A,B,

. . . ). Matrices, vectors (both row and column), and scalars are denoted by boldface uppercase,

boldface lowercase, and lowercase respectively; for example A, a, and a. Element (i, j, k) of a

tensor A ∈ CI×J×K is symbolized as aijk, element (i, j) of a matrix A ∈ CI×J as aij , and i-th

entry of a vector a ∈ CI as ai. Moreover, A ⊗B defines the Kronecker product of A and B,

A�B the Khatri-Rao (column-wise Kronecker) product, A∗B the Hadamard product which is

the element-wise matrix product, a ◦ b the outer product of a and b, and [A]+ = max{0, aij},

for all i, j, is a positive orthant projection of a real-valued matrix A. The transpose, complex

conjugate, complex conjugate transpose and pseudo-inverse of A are denoted by AT , A∗, AH

and A#, respectively. A non-negative A is denoted by A > 0, where its entries aij ≥ 0 for all

i, j.

II. BATCH AND ADAPTIVE PARAFAC DECOMPOSITIONS

A. Batch PARAFAC

Consider a tensor X ∈ CI×J×K . The PARAFAC decomposition of X can be written as follows:

X =
R∑
r=1

ar ◦ br ◦ cr, (1)
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which is the sum of R rank-one tensors; R is the rank of the tensor. The set of vectors,

{ar}, {br}, {cr} can be grouped into the so-called loading matrices A = [a1 . . . aR] ∈ CI×R,

B = [b1 . . .bR] ∈ CJ×R, and C = [c1 . . . cR] ∈ CK×R.

In practice, (1) is only an approximate tensor. In other words, in a noisy environment we

should have

X =
R∑
r=1

ar ◦ br ◦ cr +N , (2)

where N is a noise tensor. Thus, given a data tensor X , PARAFAC tries to achieve an R-rank

best least squares approximation. Equation (1) also can be formulated in matrix form as

X(1) = (A�C)BT , (3)

where X(1) ∈ RIK×J whose entry X
(1)
(i−1)K+k,j = xijk. We can write analogous expressions for

X(2) and X(3) [2]. PARAFAC is generically unique if it satisfies the following condition [13]:

2R(R− 1) ≤ I(I − 1)K(K − 1), R ≤ J. (4)

B. Adaptive PARAFAC

In batch PARAFAC, the dimensions of X are fixed. In contrast, in adaptive PARAFAC, the

dimensions grow with time, that is X (t) ∈ CI(t)×J(t)×K(t) in general case. In this paper, we only

consider the case where only one dimension grows with time, for example J(t).

For the ease of later comparison, we follow the basic model and assumptions in [2]. In

particular, the matrix representation of the adaptive PARAFAC model is presented as

X(1)(t) ' H(t)BT (t), (5)

where H(t) = A(t)�C(t) ∈ CIK×R, B(t) ∈ CJ(t)×R. Considering two successive times, t− 1

and t, we have

X(1)(t) = [X(1)(t− 1),x(t)], (6)

where x(t) ∈ CIK is a vectorized representation of new data concatenated to X(t−1) as shown

in Figure 1.

If we further assume that the loading matrices A and C follow an unknown but slowly time-

varying model (i.e., A(t) ' A(t − 1) and C(t) ' C(t − 1)), it leads to H(t) ' H(t − 1).

Therefore, we have

BT (t) ' [BT (t− 1),bT (t)]. (7)
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It means that, at each time, we only need to estimate the row vector b(t) and append it to

B(t− 1) instead of updating the whole B(t).

Two other assumptions also imposed here are: the tensor rank R is known and constant such

that at each time when new data is added to the old tensor, the uniqueness of the new tensor

fulfills (4). Now we have enough materials to present our algorithm.

III. ALGORITHM DERIVATION

We consider the following exponentially-weighted least- squares cost function:

Φ(t) =
1

2

t∑
τ=1

λt−τφ(τ) (8)

where

φ(τ) =‖ x(τ)−H(t)bT (τ) ‖22 (9)

and λ ∈ (0, 1] is referred to as the forgetting factor. Now, finding the loading matrices of the

adaptive PARAFAC model of (5) corresponds to minimizing (8), that is,

min
H(t),B(t)

Φ(t), s.t. H(t) = A(t)�C(t). (10)

This cost function is well-known in adaptive filter theory [8] and can be solved by a recursive

least-square method as used in [2]. Here, we provide an alternative way to not only reduce the

complexity but also improve the performance of the algorithm.

Fig. 1: Adaptive third-order tensor model and its equivalent matrix form.
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In this section, given the estimates of A(t− 1),B(t− 1) and C(t− 1), we use the alternating

minimization approach to construct the recursive update expressions for A(t),B(t) and C(t).

Our algorithm can be summarized into the following four steps:

1) Given H#(t− 1) and x(t), estimate bT (t)

2) Given b(t), estimate H(t)

3) Extract A(t) and C(t), and estimate one column of H(t)

4) Calculate H#(t) and update b(t)

We now explain these steps in detail.

Step 1: Estimate bT (t)

Vector bT (t) can be obtained as the least-square solution of (9), according to

b̂T (t) = argmin
bT

‖ x(t)−H(t− 1)bT (t) ‖22

= H#(t− 1)x(t), (11)

where H#(t− 1) has been calculated in the previous iteration.

Step 2: Estimate H(t)

Unlike [2], we use here a Newton-type method to find H(t). Let h = vec(H). Function φ(τ)

can be rewritten as

φ(τ) =‖ x(τ)−H(t)bT (τ) ‖22

=‖ x(τ)− (b(τ)⊗ IIK)h(t) ‖22, (12)

wherein we have exploited the fact that vec(ABCT ) = (C⊗A) vec(B).

As mentioned in [14], the direction at the maximum rate of change to h of a function Φ

is given by [Dh∗Φ(h,h∗)]T , where [Dh∗Φ(h,h∗)]T is the derivative of Φ with respect to h∗.

Consequently, we have

[Dh∗Φ(h,h∗)]T
∣∣∣
h=h(t−1)

= −
t∑

τ=1

λt−τ [(bH(τ)⊗ IIK)x(τ) + (bH(τ)bT (τ)⊗ IIK)h(t− 1)].

(13)
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Thus, its Hessian is computed as

H = Dh([Dh∗Φ(h,h∗)]T )
∣∣∣
h=h(t−1)

=
t∑

τ=1

λt−τ [(bH(τ)bT (τ))⊗ IIK ] = R(t)⊗ IIK ,

where

R(t) =
t∑

τ=1

λt−τbH(τ)b(τ) (14)

= λR(t− 1) + bH(t)b(t) (15)

To achieve linear complexity, we replace (13) by instant gradient estimation (i.e., stochastic

gradient)

[Dh∗φ(h,h∗, t)]T
∣∣∣
h=h(t−1)

= −
[
(bH(t)⊗ IIK)x(t)− (bH(t)bT (t))⊗ IIKh(t− 1)

]
. (16)

The update rule of h is thus given by

h(t) = h(t− 1) + ηH−1[Dh∗φ(h,h∗, t)]T , (17)

where η is a step size. By substituting (14) and (16) into (17), we obtain

h(t) = h(t− 1) + η[R−1(t)b(t)⊗ IIKx(t)−R−1(bH(t)bT (t))⊗ IIKh(t− 1)]. (18)

We can stack (i.e., unvec) (18) in matrix form as follows:

H(t) = H(t− 1) + η[x(t)−H(t− 1)bT (t)]b∗(t)R−1(t). (19)

Here, we can see that calculating and storing the Hessian explicitly as in (14) is not necessary.

Instead, we only need to calculate the pseudo-inverse of R(t). Since R(t) has a rank-1 update

structure, its pseudo-inverse can be efficiently updated using the inversion lemma as

R−1(t) = [λR(t− 1) + bT (t)b∗(t)]−1 = λ−1R−1(t− 1)− β−1(t)u(t)uH(t). (20)

where

β(t) = 1 + λ−1b∗(t)R−1(t− 1)bT (t), (21)

u(t) = λ−1R−1(t− 1)bT (t), (22)

Substituting (20) into (19) yields

H(t) = H(t− 1) + d(t)uH(t), (23)
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where

d(t) = γ(t)[x(t)−H(t− 1)bT (t)], (24)

γ(t) = η(1− β−1(t)b∗(t)u(t)). (25)

Step 3: Extract A(t) and C(t) & update of one column of H(t)

The purpose of this step is three-fold: 1) to preserve an approximate Khatri-Rao product struc-

ture of H(t) in order to improve the estimation accuracy and ensure the algorithm’s convergence,

2) to provide a reduced rank update structure which allows the calculation of H#(t) with a linear

complexity in the next step, and 3) to extract from H(t) the loading matrices A(t) and C(t).

A solution to this problem can be implemented efficiently as follows. Before proceeding

further, we first consider the way to extract A(t) and C(t) from H(t) [15], [2], based on

H(t) ' A(t)�C(t) (26)

' [a1(t)⊗ c1(t) · · · aR(t)⊗ cR(t)]

' [vec(c1(t)a
T
1 (t)) · · · vec(cR(t)aTR(t))].

First, we observe that each column is a vectorized representation of rank-1 matrix. The loading

vectors ci(t) and ai(t) are, thus, the principal left and right singular vectors respectively of

matrix Hi(t) = unvec(ai(t)⊗ci(t)). Since using batch SVD is not suitable in adaptive tracking,

a single Bi-SVD iteration [16] can be used to update ai(t) and ci(t) recursively according to

for i = 1, . . . , R

ai(t) = HT
i (t)ci(t− 1) (27)

ci(t) =
Hi(t)ai(t)

‖ Hi(t)ai(t) ‖
. (28)

Then, having obtained A(t) and C(t), H(t) can be re-estimated according to (26).

However, to achieve the linear complexity of our algorithm, we choose to re-update only one

column of H(t) at each iteration. In other words, at time instant t, we select the j-th column of

H(t) in a cyclic way (i.e., j = (t mod R) + 1 ) and update it as

ĥj(t) = aj(t)⊗ cj(t). (29)
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Because of the best rank-1 approximation property of the SVD, we take advantage of the denoised

loading vectors aj(t) and cj(t) and, thereby, improve the accuracy of H(t) estimation. The other

columns of H(t) are left unchanged to preserve the reduced rank structure of the updated matrix.

The updated version of H(t) can be expressed as

Ĥ(t) = H(t) + z(t)eTj (t), (30)

where

z(t) = ĥj(t)− hj(t), (31)

and ej(t) is the unit vector whose j-th entry is one. It is straightforward to see that Ĥ(t) has a

rank-2 update structure by substituting (23) into (30).

Step 4: Calculate H#(t) and update b(t)

As mentioned in Step 3, we can compute the pseudo-inverse of Ĥ(t) efficiently thanks to its

rank-2 update structure. Our case corresponds to the fifth one in [17]. Now we can re-estimate

b(t) as

bT (t) = Ĥ(t)#x(t), (32)

and hence obtain B(t) from (7).

Algorithm initialization

To initialize A(0), B(0), C(0), H#(0) and R−1(0) before tracking, we can capture J0 slices

(J0 is chosen to satisfy the uniqueness condition of (4)), and then run a batch PARAFAC

algorithm to obtain A(0), B(0), and C(0). After that, we compute H#(0) = (A(0) �C(0))#

and R−1(0) = (BT (0)B(0))−1.

The above steps are summarized in Table I.

IV. ADAPTIVE NON-NEGATIVE PARAFAC

Now, we consider the case where the constraint of non-negativity is imposed, and modify

the proposed SOAP algorithm accordingly. Given the non-negative estimates of A(t − 1) > 0,

B(t− 1) > 0, and C(t− 1) > 0, we want to find recursive updates of A(t) > 0, B(t) > 0, and

C(t) > 0, which are the loading matrices of the PARAFAC decomposition. Before describing
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TABLE I: Summary of SOAP

Inputs:

A(t− 1), B(t− 1), C(t− 1),H(t− 1), H#(t− 1), R−1(t− 1)

Step 1: Estimate bT (t)

bT (t) = H#(t− 1)x(t) (11)

Step 2: Estimate H(t)

β(t) = 1 + b(t)R−1(t− 1)b(t)T (21)

u(t) = λ−1R−1(t− 1)bT (t) (22)

R−1(t) = λ−1R(t− 1)−1 − β−1(t)u(t)uH(t) (20)

γ(t) = η(1− β−1(t)b∗(t)u(t)) (25)

d(t) = γ(t)[x(t)−H(t− 1)bT (t)] (24)

H(t) = H(t− 1) + d(t)uT (t) (23)

Step 3: Extract A(t) and C(t) and update one column of H(t)

- Extract A(t) and C(t)

for i = 1, . . . , R

Hi(t) = unvec(hi(t))

ai(t) = HT
i (t)ci(t− 1)

ci(t) =
Hi(t)ai(t)

‖ Hi(t)ai(t) ‖
- Select j-th column of H(t) in a cyclic way

ĥj(t) = aj(t)⊗ cj(t) (29)

z(t) = ĥj(t)− hj(t) (31)

H(:, j)(t) = ĥj(t)

Step 4: Calculate H#(t) and re-update b(t)

- Calculate H#(t) using fast matrix inversion lemma

bT (t) = H(t)#x(t) (32)

BT (t) = [BT (t− 1),bT (t)] (7)

Outputs:

A(t), B(t), C(t),H(t), H#(t), R−1(t)

our method, we note that SOAP works with the general case of complex values, while in the

section we only consider real non-negative ones.

A simple approach is to use the positive orthant projection. That is, at each step of SOAP, we

project the result on the positive orthant, for example, in Step 1, set bT (t) = [bT (t)]+. However,

this naive combination does not work for Step 2 (the so-called projected Newton-type method),
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as indicated in the context of constrained optimization [18] or least-squares non-negative matrix

approximation [19].

In practice, for batch processing, the projected Newton-type method requires a combination

of restrictions on the Hessian (e.g., diagonal or partly diagonal [20]) and the Armijo-like step

rule [18] to guarantee a quadratic rate of convergence. In spite of their advantage, computing

the Armijo-like step rule is expensive and not suitable for adaptive algorithms. It is even more

difficult in our case because the global optimum value can be changed continuously, depending

on new data.

Therefore, we propose to use a simpler strategy. Particularly, because of the slowly time-

varying model assumption, we restrict ourselves to only calculating the diagonal of the Hessian

and using a fixed step rule. Even though the convergence proof is not available yet, this strategy

still gives an acceptable performance and represents a good trade-off between the performance

and the complexity, as indicated in Section VI.

Now, for the details, several modifications of SOAP for handling the non-negativity constraint

are as follows. At the end of Step 1, we add one minor step after obtaining bT (t), by setting

bT (t) = [bT (t)]+. (33)

In Step 2, after calculating R−1(t), we extract the diagonal matrix (which is non-negative since

R is positive Hermitian)

R̂−1(t) = diag(diag(R−1(t))), (34)

and then calculate

û(t) = R̂−1(t)bT (t). (35)

Thus, H(t) is updated, using d(t) and û(t) instead of d(t) and u(t), as

H(t) = H(t− 1) + d(t)ûT (t). (36)

Then, we project H(t) on the positive orthant to obtain

H̃(t) = [H(t)]+. (37)

As previously discussed in Step 3, ci(t) and ai(t) are respectively the principal left and right

singular vectors of the matrix Hi(t) = unvec(ai(t)⊗ ci(t)). The updated loading matrices A(t)
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TABLE II: Summary of NSOAP

Inputs:

A(t− 1) > 0, B(t− 1) > 0, C(t− 1) > 0,H(t− 1), H#(t− 1), R−1(t− 1)

Step 1: Estimate bT (t)

Perform Step 1 of SOAP

bT (t) = [bT (t)]+ (33)

Step 2: Estimate H(t)

β(t) = 1 + b(t)R#(t− 1)b(t)T (21)

u(t) = λ−1R−1(t− 1)b(t)T (22)

R−1(t) = λ−1R−1(t− 1)− β−1(t)u(t)u(t)T (20)

R̂−1(t) = diag(diag(R−1(t))) (34)

γ(t) = η(1− β−1(t)b∗(t)u(t)) (25)

d(t) = γ(t)(x(t)−H(t− 1)bT (t)) (24)

û(t) = R̂−1(t)bT (t) (35)

H(t) = H(t− 1) + d(t)ûT (t)

H̃(t) = [H(t)]+ (37)

Step 3: Same as Step 3 of SOAP but with H̃(t)

Step 4: Calculate H#(t) and re-update b(t)

Perform Step 4 of SOAP

bT (t) = [bT (t)]+ (33)

BT (t) = [BT (t− 1),bT (t)] (7)

Outputs:
A(t) > 0, B(t) > 0, C(t) > 0,H(t), H#(t), R−1(t)

and C(t), obtained by (27) and (28), are still non-negative since H̃i(t) is non-negative and so

are A(t− 1) and C(t− 1) (already obtained in the previous time instant). In Step 4, a positive

orthant projection like (33) is used.

We call this modification of SOAP as non-negative SOAP (NSOAP). A summary of all the

steps of the NSOAP algorithm is given in Table II. The initialization of NSOAP is similar to that

of SOAP, except that a batch non-negative PARAFAC is used instead of the standard PARAFAC.

V. DISCUSSIONS

In this section, we provide some important comments on the similarities and differences

between our algorithms and those developed in [2]. Discussions on parallel implementations are

also given.
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First, it is straightforward to realize that in all steps the main cost of SOAP comes from

the matrix-vector product. Thus, it has linear computational complexity of O(IKR). NSOAP is

slightly more expensive but has the same complexity order as SOAP.

Second, obviously, in Step 3 of SOAP, we can choose to update d > 1 columns of H(t)

instead of only 1 column. d can be chosen as a parameter to balance between the estimation

accuracy and the numerical cost.

Third, the main reason that helps maintain the linear complexity, while still having a compa-

rable or even superior performance (as shown in the next section) stems from Steps 2 and 3.

In Step 2, both the gradient (stochastic) and Hessian are used instead of only the gradient as

in PARAFAC-RLST. In Step 3, we exploit the Khatri-Rao product structure, which is not fully

exploited in both PARAFAC-RLST and PARAFAC-SDT, to enhance the performance. The fast

calculation of H#(t) using the pseudo-inverse lemma in Step 4 is a consequence of designing

H(t) to have a rank-2 update in Steps 2 and 3.

Finally, in Step 3, we can update all columns of H(t) using (27) and (28) for i = 1, . . . , R. It,
however, leads to calculate H#(t) without a rank-2 update structure as in SOAP. Hence, H#(t)

can be obtained by using the Khatri-Rao product structure leading to

H#(t) = [AT (t)A(t) ∗CT (t)C(t)]−1[A(t)�C(t)]T . (38)

The cost for this implementation is O(IKR2) and is thus disregarded in this paper.

Now, we show that both SOAP and NSOAP are easy to realize in a parallel scheme. This

implementation is important when used for massive data (large dimensional systems). It can be

observed that the main computational cost comes from the matrix-vector product. Assume that

R computational units (DSPs) are available. Then, in Step 1, Equation (11) corresponds to

bTi (t) = h̃i(t− 1)x(t), i = 1, . . . , R, (39)

where h̃i(t − 1) is i-th row of H#(t − 1). It means that we have replaced the matrix-vector

product by the vector-vector product. This procedure can also be applied in Step 4. Steps 2

and 3 themselves have already a parallel structure and, again, note that each column of H(t)

can be estimated independently. By this way, the overall cost can be reduced, by approximately

a factor of R, to O(IK) flops per iteration.
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VI. SIMULATIONS

In this section, we illustrate the performance of proposed algorithms using both synthetic and

real data, from [24].

A. Performance comparison

First, we use the framework provided by the authors in [2] to verify and compare the

performance of the considered algorithms. A time-varying model is thereby constructed so that,

at time instant t, we generate the loading matrices A(t) and C(t) as

A(t) = (1− εA)A(t− 1) + εANA, (40)

C(t) = (1− εC)C(t− 1) + εCNC , (41)

where εA and εC control the speed of variation for A and C between two successive observations,

NA and NC are random matrices with identical sizes with A and C. Generate a vector b(t)

randomly and the noiseless input data x(t) is given by

x(t) = [A(t)�C(t)]bT (t).

Thus, this observation vector follows the model described in Section II-B and are constrained

by the assumptions therein. Then, the noisy observation is given by

x̃(t) = x(t) + σn(t), (42)

where n(t) is a zero mean, unit-variance noisy vector while parameter σ is introduced to control

the noise level. We set a default value of σ to 10−3. To have a fair comparison, we keep all

default parameters of the algorithms and the model as offered by the authors of [2]. A summary

of parameters used in our experiments is showed in Table III.

The performance measures for the loading matrices A(t) and C(t) are the standard deviations

(STD) between the true loading matrices, A(t) and C(t), and their estimates, Aes(t) and Ces(t),

up to a scale and permutation indeterminacy at each time

STDA(t) =‖ A(t)−Aes(t) ‖F , (43)

STDC(t) =‖ C(t)−Ces(t) ‖F , (44)
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TABLE III: Experimental set-up parameters

Fig. I J0 K R T εA, εC λ η

2 20 50 20 8 1000 10−3 0.8 NA

3 20 50 20 8 1000 10−3 0.8 0.02

4 5 70 61 3 201 NA 0.8 0.002

5 20 50 20 8 1000 10−2 0.8 0.02

10−3

10−5

6-7 5 50 61 3 1000 0 0.8 0.02

For the loading matrix B(t), because of its time-shift structure, we verify its performance through

x(t) by

STDB(t) =‖ x(t)− xes(t) ‖2 . (45)

To assess the convergence rate of algorithms, we set up the following scenario: always keep

the speed of variation of A and C constant except at a few specific time instants at which the

speed of variation arbitrarily increases. Thus, the algorithm which recovers faster yields a better

convergence rate. This scenario is similar to the convergence rate assessment in the context of

subspace tracking, see for example [21], [22].

The first experiment is to compare the performance of SOAP with that of PARAFAC-RLST,

PARAFAC-SDT (exponential window) and batch PARAFAC-ALS (Alternating Least-Squares).

Batch PARAFAC here serves as a “lower bound” for adaptive algorithms. As shown in Figure 2,

SOAP outperforms both PARAFAC-RLST and PARAFAC-SDT and is close to batch PARAFAC.

In addition, SOAP, PARAFAC-RLST, and PARAFAC-SDT approximately have the same conver-

gence rate. Again, we note that the computational complexity of SOAP is O(IKR) as compared

to O(IKR2) of PARAFAC-RLST and PARAFAC-SDT.

In the second experiment for non-negative data, we take absolute value of the previous model,
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i.e.,

A+(t) = |A(t)|, (46)

C+(t) = |C(t)|, (47)

x+(t) = |x(t)|, (48)

where (+) means non-negative. Since there exist no other adaptive non-negative PARAFAC

algorithms apart from our NSOAP, we compare NSOAP with the batch non-negative PARAFAC

(Batch N-PARAFAC) algorithm implemented in the N-way toolbox [23]. The results are shown

in Figure 3.

To further exemplify the performance of NSOAP, we apply it to a typical example using

a fluorescence dataset [24] which includes five samples of fluorescence excitation-emission of

size 5 samples × 201 emission wavelengths × 61 excitation wavelengths. It is showed that the

estimated loading matrices from PARAFAC with nonnegative constraint are similar to the pure

spectra. Here, we use an initialization tensor of size 5× 70× 61. Note that emission wavelength

is relatively short and during the interval [250, 300], one of three components is almost zero.

Figure 4 shows that NSOAP can recover the tensor components in this particular example.

B. Effect of the speed of variation

In this section, we consider different values of the speed of variation εA and εC to evaluate its

effect on the algorithm’s performance. Figure 5 shows that SOAP adapts better to fast variation

(εA = εC = 10−2) than PARAFAC-RLST and PARAFAC-SDT. In this case, SOAP still converges

while the others diverge. When the variation is smaller (εA = εC = 10−3 or 10−5), SOAP is

comparable to PARAFAC-RLST and PARAFAC-SDT.

C. Waveform-preserving character

The waveform-preserving character is important in communication and bio-medical applica-

tions, as for example in the blind receivers for direct-sequence code-division multiple access (DS-

CDMA) [25] and multi-subject Functional Magnetic Resonance Imaging (fMRI) analysis [15].

In this section, we illustrate this property of our algorithms via a synthetic example. We first

generate the loading matrix B(t) including three kinds of signals: a chirp, a rectangular wave
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and a sawtooth wave. The signal length is 1 s and the sample rate is 1 kHz. For the chirp, the

instantaneous frequency is 0 at t = 0 and crosses 300 Hz at t = 1 s. The rectangular wave has

a frequency of 50 Hz, and the symmetric sawtooth has a repetition frequency of 20 Hz with a

sawtooth width of 0.05 s. For A(t) and C(t), we use the loading matrices from the fluoresence

example where components of A(t) have a sharp change and components of C(t) have a smooth

change. The PARAFAC model is then disturbed by a Gaussian noise with signal-to-noise-ratio

(SNR) of 15 dB. The SNR (in dB) is defined by

SNR = 10 log10

E{‖ A(t)�C(t)b(t) ‖}2

σ2
. (49)

The simulation results when applying SOAP and NOSAP are shown in Figures 6 and 7, cor-

responding to the first 200 data samples (iterations). As we can see, both algorithms lead to a

good restoration of the original components.

VII. CONCLUSIONS

In this paper, we have proposed two efficient adaptive PARAFAC decomposition algorithms:

SOAP for a standard setup and NSOAP for the non-negative constraint case. To our best

knowledge, none adaptive non-negative PARAFAC has been addressed before. By exploiting

the data structure, the proposed algorithms have a linear computational complexity O(IKR) per

iteration while enjoying a good performance as compared to the state-of-the-art algorithms. These

algorithms can be considered as a starting point of real-time PARAFAC-based applications.
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Fig. 2: Performance comparison of four algorithms when loading matrices change relatively fast,

εA = εC = 10−3.
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Fig. 3: Performance comparison of NSOAP with batch non-negative PARAFAC when loading

matrices change relatively fast, εA = εC = 10−3.
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Fig. 4: Performance comparison of NSOAP with batch non-negative PARAFAC in fluorescence

data set. For B(t), we present only a part of recovered loading matrix; initialization part is

disregarded.
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Fig. 5: The effect of the speed of variation on the algorithm performance.
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Fig. 6: Illustration of waveform-preserving character of SOAP through synthetic example with

SNR = 15 dB. Solid line represents solution of SOAP while dash-dot line represents ground-truth.
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Fig. 7: Illustration of waveform-preserving character of NSOAP through synthetic example with

SNR = 15 dB.
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