Y. Achdou, C. Japhet, P. Le-tallec, F. Nataf, F. Rogier et al., Domain decomposition methods for nonsymmetric problems, Eleventh International Conference on Domain Decomposition Methods DDM.org, pp.3-17, 1998.

Y. Achdou, P. Le-tallec, F. Nataf, and M. Vidrascu, A domain decomposition preconditioner for an advection???diffusion problem, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.145-70, 2000.
DOI : 10.1016/S0045-7825(99)00227-3

T. Arbogast, S. Bryant, C. Dawson, F. Saaf, C. Wang et al., Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation, Journal of Computational and Applied Mathematics, vol.74, issue.1-2, pp.19-3210, 1995.
DOI : 10.1016/0377-0427(96)00015-5

D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Mathematics of Computation, vol.78, issue.265, pp.185-223, 2009.
DOI : 10.1090/S0025-5718-08-02145-5

URL : https://hal.archives-ouvertes.fr/hal-00111643

P. Berthe, Méthodes de décomposition de domaine de type relaxation d'ondes pour l'équation de convectiondiffusion instationnaire discrétisée par volumes finis, 2013.

P. Berthe, C. Japhet, and P. Omnes, Space-time domain decomposition with finite volumes for porous media applications Domain decomposition methods in science and engineering XXI, Lect. Notes Comput. Sci. Eng, vol.98, pp.483-90, 2014.

E. Blayo, L. Debreu, and F. Lemarié, Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients. Part 1: the constant coefficients case, Elec. Trans. Num. Anal, pp.40-170, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00661978

E. Blayo, L. Halpern, and C. Japhet, Optimized Schwarz Waveform Relaxation Algorithms with Nonconforming Time Discretization for Coupling Convection-diffusion Problems with Discontinuous Coefficients, Lect. Notes Comput. Sci. Eng, vol.55, pp.267-74, 2007.
DOI : 10.1007/978-3-540-34469-8_31

URL : https://hal.archives-ouvertes.fr/inria-00187555

J. F. Bourgat, R. Glowinski, P. L. Tallec, and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in: Domain Decomposition Methods, SIAM, pp.3-16, 1988.

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Elements Methods, 1991.
DOI : 10.1007/978-1-4612-3172-1

A. Chertock and A. Kurganov, On splitting-based numerical methods for convection-diffusion equations, in: Numerical methods for balance laws, Quad. Mat., Dept. Math, vol.24, pp.303-346, 2009.

L. C. Cowsar, J. Mandel, and M. F. Wheeler, Balancing domain decomposition for mixed finite elements, Mathematics of Computation, vol.64, issue.211, pp.989-1015, 1995.
DOI : 10.1090/S0025-5718-1995-1297465-9

C. Dawson, Godunov-Mixed Methods for Advection-Diffusion Equations in Multidimensions, SIAM Journal on Numerical Analysis, vol.30, issue.5, pp.1315-1347, 1993.
DOI : 10.1137/0730068

M. Gander, F. Kwok, and B. , Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems, 2013.

M. J. Gander, Optimized Schwarz Methods, SIAM Journal on Numerical Analysis, vol.44, issue.2, pp.699-731, 2006.
DOI : 10.1137/S0036142903425409

URL : https://hal.archives-ouvertes.fr/hal-00107263

M. J. Gander, L. Halpern, and M. Kern, A Schwarz Waveform Relaxation Method for Advection???Diffusion???Reaction Problems with Discontinuous Coefficients and Non-matching Grids, Lect. Notes Comput. Sci. Eng, vol.55, pp.283-90, 2007.
DOI : 10.1007/978-3-540-34469-8_33

URL : https://hal.archives-ouvertes.fr/hal-01111940

M. J. Gander, L. Halpern, and F. Nataf, Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.41, issue.5, pp.1643-81, 2003.
DOI : 10.1137/S003614290139559X

M. J. Gander and C. Japhet, Algorithm 932, ACM Transactions on Mathematical Software, vol.40, issue.1, 2013.
DOI : 10.1145/2513109.2513115

URL : https://hal.archives-ouvertes.fr/hal-00933643

M. J. Gander, C. Japhet, Y. Maday, and F. Nataf, A New Cement to Glue Nonconforming Grids with Robin Interface Conditions: The Finite Element Case, Lect. Notes Comput. Sci. Eng, vol.40, pp.259-66, 2005.
DOI : 10.1007/3-540-26825-1_24

URL : https://hal.archives-ouvertes.fr/hal-00112937

A. Genty, G. Mathieu, and E. Weetjens, PAMINA: Performance assessment methodologies in application to guide the development of the safety case. Final report on benchmark calculation in clay, Deliverable D-N o : 4.2.4 of the European Contract Number FP6-036404, 2009.

W. D. Gropp and D. E. Keyes, Complexity of Parallel Implementation of Domain Decomposition Techniques for Elliptic Partial Differential Equations, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.2, pp.312-338, 1988.
DOI : 10.1137/0909020

F. Haeberlein, Time space domain decomposition methods for reactive transport -Application to CO 2 geological storage, 2011.
DOI : 10.1016/j.procs.2010.04.081

URL : https://hal.archives-ouvertes.fr/tel-00634507

F. Haeberlein, L. Halpern, and A. Michel, Newton-Schwarz Optimised Waveform Relaxation Krylov Accelerators for Nonlinear Reactive Transport, Lect. Notes Comput. Sci. Eng, vol.91, pp.387-94978, 2013.
DOI : 10.1007/978-3-642-35275-1_45

L. Halpern, C. Japhet, and P. Omnes, Nonconforming in time domain decomposition method for porous media applications, Proceedings of the 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010

L. Halpern, C. Japhet, and J. Szeftel, Discontinuous Galerkin and Nonconforming in Time Optimized Schwarz Waveform Relaxation, Lect. Notes Comput. Sci. Eng, vol.78, pp.133-173, 2011.
DOI : 10.1007/978-3-642-11304-8_13

L. Halpern, C. Japhet, and J. Szeftel, Optimized Schwarz Waveform Relaxation and Discontinuous Galerkin Time Stepping for Heterogeneous Problems, SIAM Journal on Numerical Analysis, vol.50, issue.5, pp.2588-611, 2012.
DOI : 10.1137/120865033

URL : https://hal.archives-ouvertes.fr/hal-00479814

T. Hoang, Space-time domain decomposition methods for mixed formulations of flow and transport problems in porous media, p.34, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00922325

T. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, Space-Time Domain Decomposition Methods for Diffusion Problems in Mixed Formulations, SIAM Journal on Numerical Analysis, vol.51, issue.6, pp.51-3532, 2013.
DOI : 10.1137/130914401

URL : https://hal.archives-ouvertes.fr/hal-00803796

T. Hoang, C. Japhet, M. Kern, and J. E. Roberts, Space-time domain decomposition and mixed formulation for solving reduced fracture models, preprint, arXiv, pp.1502-02142, 2013.

T. Hoang, C. Japhet, M. Kern, and J. E. Roberts, Ventcell Conditions with Mixed Formulations for Flow in Porous Media, Proceedings of the 22th International Conference on Domain Decomposition Methods
DOI : 10.1007/978-3-319-18827-0_54

URL : https://hal.archives-ouvertes.fr/hal-01113964

W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, 2010.
DOI : 10.1007/978-3-662-09017-6

C. Japhet, Optimized Krylov-Ventcell method Application to convection-diffusion problems Domain Decomposition Methods in Science and Engineering IX, pp.382-391, 1998.

C. Japhet and F. Nataf, The best interface conditions for domain decomposition methods: absorbing boundary conditions , in: Absorbing Boundaries and Layers, Domain Decomposition Methods, pp.348-73, 2001.

C. Japhet, F. Nataf, and F. Rogier, The Optimized Order 2 method. application to convection-diffusion problems, Future Gener, Comp. Sy, vol.18, pp.17-30, 2001.

F. Kwok, Neumann???Neumann Waveform Relaxation for the Time-Dependent Heat Equation, Lecture Notes in Computational Science and Engineering, vol.98, pp.167-74, 2014.
DOI : 10.1007/978-3-319-05789-7_15

R. J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zürich, 1992.

J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients, Mathematics of Computation, vol.65, issue.216
DOI : 10.1090/S0025-5718-96-00757-0

V. Martin, An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Appl. Numer. Math, vol.52, 2005.

T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol.61, 2008.
DOI : 10.1007/978-3-540-77209-5

A. Mazzia, L. Bergamaschi, C. N. Dawson, and M. Putti, Godunov mixed methods on triangular grids for advectiondispersion equations, Computational Geosciences, vol.6, issue.2, pp.123-162, 2002.
DOI : 10.1023/A:1019963900511

A. Mazzia, L. Bergamaschi, and M. Putti, A Time-Splitting Technique for the Advection-Dispersion Equation in Groundwater, Journal of Computational Physics, vol.157, issue.1, pp.181-98, 2000.
DOI : 10.1006/jcph.1999.6370

O. Nevanlinna, Power bounded prolongations and Picard-Lindel???f iteration, Numerische Mathematik, vol.18, issue.1, pp.479-501, 1990.
DOI : 10.1007/BF01385637

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 2008.

J. E. Roberts and J. M. Thomas, Mixed and hybrid methods, pp.523-639, 1991.
DOI : 10.1016/S1570-8659(05)80041-9

URL : https://hal.archives-ouvertes.fr/inria-00075815

P. Siegel, R. Mosé, P. Ackerer, and J. Jaffré, SOLUTION OF THE ADVECTION-DIFFUSION EQUATION USING A COMBINATION OF DISCONTINUOUS AND MIXED FINITE ELEMENTS, International Journal for Numerical Methods in Fluids, vol.26, issue.6, pp.595-613, 1997.
DOI : 10.1002/(SICI)1097-0363(19970330)24:6<595::AID-FLD512>3.0.CO;2-I

A. Toselli and O. Widlund, Domain Decomposition Methods?Algorithms and Theory, 2005.
DOI : 10.1007/b137868

Y. V. Vasilevski?-i and I. V. Kapyrin, Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral grids, Zh. Vychisl. Mat. Mat. Fiz, vol.48, pp.1429-2447, 2008.

M. F. Wheeler and C. N. Dawson, An operator-splitting method for advection-diffusion-reaction problems, in: The Mathematics of Finite Elements and Applications, pp.463-82, 1987.