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Physically plausible K -space trajectories for Compressed Sensing In MRI:
From simulations to real acquisitions
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Abstract

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to image the anatomy and function of the body in both health and disease. MRI is probably one
of the most successful application fields of compressed sensing (CS). Despite recent advances, there is still a large discrepancy between theories and actual applications. Overall,
many important questions related to sampling theory remain open. In this work, we address one of them: given a set of hardware constraints (e.g. sampling Fourier coefficients along
smooth curves), how to optimally design a sampling pattern? We first derive three key aspects that should be carefully designed by inspecting the literature, namely admissibility, limit
of the empirical measure and coverage speed. To fulfill them jointly, we then propose an original approach which consists of projecting a probability distribution onto a set of admissible
measures. The proposed algorithm allows to handle arbitrary hardware constraints (gradient magnitude, slew rate) and then automatically generates efficient sampling patterns. The
MR Images reconstructed using the proposed approach have a significantly higher SNR (2-3 dB) than those reconstructed using more standard sampling patterns (e.g. radial, spiral),
both for medium and very high resolution imaging. Likewise, reconstructions from highly undersampled data acquired in experiments performed on a 7T SIEMENS MR scanner show
the superiority of our sampling schemes over traditional MR samplings and proved that very large acceleration factor (up to 40-fold) are practically achievable with CS-MRI.

Sampling In Magnetic Resonance Imaging

Displacement in k-space is performed via magnetic field gradients. ¢
At time t, the k-space position QP and gradient waveform g(t) are related by: KOOI N=NVE(E)NEC)
where Udenotes the gyromagnetic ratio. 4

¢ (k-space)

Application to Design of k-space Trajectory

Numerical resolution on 32 core

Simulated MR image  Insert in the gray matter

GHz (RAM 192 Gb)

¥, 20-fold acceleration compared to whole  k-space acquisition

Image size: 2048x2048 (resolution: 100um

iid edrawings Radial Isolated points  Projection on i g£¢

* L

Multi Resolution Strategy:
48h of computation

Sampling/Hardware constraints in MRI

The constraints on Cread: || C:B[| Q) a H Q B’H Q X v

The values of the bounds ) ,and 5  ,are specified by the gradient system manufacturer. Then, the set
of admissible sampling curves is defined by:

eed {OBCY([ra) 4 0PIl QU _ @ OBl Q U, &EPD[ r &}

4.000 iterations

Objective : Minimize the acquisition time 6 such that there
exists Cqréb] \ 9™satisfying the constraints by collecting
the samples '(Q L{&'QG P} og4m4 g along curve
O- S ff-Z Z ‘rétenstructing ésuchthat||éF & QY

1. How to choose the
measurements q: ™?
2. How to find optimal ™

Compressed Sensing In MRI

® o is sparse in a given basis (e.g. wavelets), p = Wx, where x € C” is s-sparse.
e Acquisition matrix: A= F*WV.

Let x € C" denote an s-sparse representation of the image.

Let ' € {1,--- ,n} and Ar = (& )ier- We acquire a measurement vector:

(a) SNR=26.7 dB (b) SNR=20.6dB (c) SNR=21.0dB

(d) SNR=27.0dB (e) SNR=23.5dB

— Arx. . o : . :
4 r ¥, Projection on measures brought by curves in i g g qutperforms radial and spiral imaging

E¥\ise-— Ax by 2to 3dB

Image reconstructions from undersampled MR data

% Very high resolution CS-MRI images: 0.120 x 0.120 x5 |1 ’ *Matrix size: 2048x2048
¥, Pointwise acquisition inspired by spectroscopic MRI (T1W), perfomed on 7T SIEMENS MR scanner
% Non-linear reconstruction performed with FISTA algorithm (&L sr’9

Variable Density Sampling (VDS) Full k -space R=20 - iid R=20 - projection

¥, Sample more frequently the low frequencies (center of K-space)

i Frree | Enforces
AT P S sparsity

Radial VDS VL 8T+e’ freti "t
- A+"1T% —Zf "¢
This is not feasible! ax"t% —2Zf

Design of feasible gradient waveforms :
A Projection Problem on Measure set

The general construction (a discretized problem )

Approximate M(P) by a subset N, C 2P of n-point measures:

1 o
Np = M(Qp) = {H =5 > bq;,  for a = (ai)1<i<p € Qp} ,
i—1

¥4 Extremely large acceleration factors (up to 40-fold) are achievable in CS-MRI for high
resolution imaging
¥ MR acquisitions show superiority of projection sampling schemes over radial or iid drawings

where Qp is the discretized version of P.

Use a projected gradient descent to obtain an approximate projection /]
on Np: 1 o =
v* € Argmin = ||h* (v — 7)||2 . Z o R :
p € AT I : ﬂ&g _ - Conclusions e _

In this work, we have proposed an original computer-intensive approach to design efficient sampling schemes
Reconstruct an approximation v € M(P) from v. complying with the hardware constraints of MRI gradient systems. On the reconstructed images we have
1 ) e shown significant improvements in terms of image quality (pSNR) in very high resolution anatomical imaging,
y?i?p 5 |h* (v —m)|5 = e e : which makes sense for in-vivo exams at ultra-high magnetic field (ISEULT Project@NeuroSpin). MR
b p 5 , teeni acquisitions on 7T MR scanner showed superiority of developed sampling schemes and suggest the feasibility

JQS J(q) = % Z Z H(qi — q;) — Z [ﬂ H(x — q;)dm(x), of very high acceleration factor at very high resolution in CS-MRI.

o i=1 j=1 i=1

Mg

T

Repulsion potential Attraction potential lllustration :

Approximating Mona Lisa by a
spaghetti i.e. by projecting onto
theset igegGLL srrdrr)
after 10,000 iterations

¥, Specific projection algorithm: 2, [Chauffert et al, 2016b]
¥, Gradient computation by fast summation using the NFFT library [Potts & Steidl, 2003]
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