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Abstract

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to image the anatomy and function of the body in both health and disease. MRI is probably one
of the most successful application fields of compressed sensing (CS). Despite recent advances, there is still a large discrepancy between theories and actual applications. Overall,
many important questions related to sampling theory remain open. In this work, we address one of them: given a set of hardware constraints (e.g. sampling Fourier coefficients along
smooth curves), how to optimally design a sampling pattern? We first derive three key aspects that should be carefully designed by inspecting the literature, namely admissibility, limit
of the empirical measure and coverage speed. To fulfill them jointly, we then propose an original approach which consists of projecting a probability distribution onto a set of admissible
measures. The proposed algorithm allows to handle arbitrary hardware constraints (gradient magnitude, slew rate) and then automatically generates efficient sampling patterns. The
MR Images reconstructed using the proposed approach have a significantly higher SNR (2-3 dB) than those reconstructed using more standard sampling patterns (e.g. radial, spiral),
both for medium and very high resolution imaging. Likewise, reconstructions from highly undersampled data acquired in experiments performed on a 7T SIEMENS MR scanner show
the superiority of our sampling schemes over traditional MR samplings and proved that very large acceleration factor (up to 40-fold) are practically achievable with CS-MRI.

Sampling in Magnetic Resonance Imaging Application to Design of k-space Trajectory

Displacement in k-space is performed via magnetic field gradients. t Numerical resolution on 32 core GHz (RAM 192 Gb)
At time t, the k-space position s(t) and gradient waveform g(t) are related by: FOERI() BN j g(t)drt
where y denotes the gyromagnetic ratio. 0
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The constraints on g read: ||g(t)|| < Gpax lg@®]| £ Smax s , _ S e BT PSR

The values of the bounds G,,,x and S,,,x are specified by the gradient system manufacturer. Then, the set
of admissible sampling curves is defined by:

CS‘MRI — {S € (62([0: T]))d; ”S(t)” = meax: ”S(t)” = VSmax: Vt € [O: T]}

Sampling/Hardware constraints in MRI

Objective: Minimize the acquisition time T, such that there

exists g:[0,T.] —» R% satisfying the constraints by collecting Lo Ll Choo?e z.he o
the samples E(s) = {p(s(kAt))}kefo,..T./ary along curve measurements E(s)"

s that allows reconstructing g such that ||p — p|| < e. 2. How to find optimal s?

Compressed Sensing in MRI

® o is sparse in a given basis (e.g. wavelets), p = Wx, where x € C” is s-sparse.
e Acquisition matrix: A= F*WV.

Let x € C" denote an s-sparse representation of the image.

— * \ . - .
Let ' C {1,---.n} and Ar = (&} )jer. We acquire a measurement vector: (a) SNR=26.7 dB (b) SNR=20.6dB (c) SNR=21.0dB (d) SNR=27.0dB () SNR=23.5dB

y = Arx. > Projection on measures brought by curves in §z; outperforms radial and spiral imaging

E¥\ise-— Ax by 2to 3dB

Image reconstructions from undersampled MR data

> Very high resolution CS-MRI images: 0.120 x 0.120 x 5 mm?3 — Matrix size: 2048x2048
» Pointwise acquisition inspired by spectroscopic MRI (T1W), perfomed on 7T SIEMENS MR scanner
> Non-linear reconstruction performed with FISTA algorithm (1 = 10™%)
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This is not feasible! A : regularization parameter

Design of feasible gradient waveforms:
A Projection Problem on Measure set

The general construction (a discretized problem)

Approximate M(P) by a subset N, C 2P of n-point measures:

P | ,
1 ] F = 0SNR=20.32 0SNR=21.14 0SNR=20.45 0SNR=19.22
Np = M(Qp) = {1—* = > " 8q;.  for g = (ai)1<i<p € Qp} : -
i—1

_ » Extremely large acceleration factors (up to 40-fold) are achievable in CS-MRI for high
where Q,, is the discretized version of P. h - resolution imaging

Use a projected gradient descent to obtain an approximate projection v/* » MR acquisitions show superiority of projection sampling schemes over radial or iid drawings

P
on Np: 1
vy € Argmin — ||h % (v — fr)||§ , Siioa = S ke :
P LeN, 2 \“’k.\\ : | - Conclusions . - .

In this work, we have proposed an original computer-intensive approach to design efficient sampling schemes

P complying with the hardware constraints of MRI gradient systems. On the reconstructed images we have

T et e Lo shown significant improvements in terms of image quality (pSNR) in very high resolution anatomical imaging,

which makes sense for in-vivo exams at ultra-high magnetic field (ISEULT Project@NeuroSpin). MR

L PP b acquisitions on 7T MR scanner showed superiority of developed sampling schemes and suggest the feasibility
min J(q) = = H(qg; — q;) — : : | ' of very high acceleration factor at very high resolution in CS-MRI.
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Reconstruct an approximation v € M(P) from v
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min — |lhx (v — —
min S llhx (v = )3
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