N

N
N

HAL

open science

A procedure for automatic proof nets construction

Didier Galmiche, Guy Perrier

» To cite this version:

Didier Galmiche, Guy Perrier. A procedure for automatic proof nets construction. Conference on
Logic Programming and Automated Reasoning, LPAR’92, 1992, St-Petersburg, Russia.

hal-01297750

HAL Id: hal-01297750
https://inria.hal.science/hal-01297750

Submitted on 4 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

pp.42-53.

https://inria.hal.science/hal-01297750
https://hal.archives-ouvertes.fr

A procedure for automatic proof nets construction

Didier GALMICHE and Guy PERRIER

CRIN - CNRS - INRIA Lorraine
Campus Scientifique - B.P. 239
54506 Vandeeuvre-les-Nancy Cedex
France
e-mail: galmiche{perrier}@loria.crin.fr

Abstract

In this paper, we consider multiplicative linear logic (MLL) from an automated deduction
point of view. Linear logic is more expressive than classical and intuitionistic logic and has
an undirectional character due to the particular treatment of negation and the absence
of structural rules. Considering this new logical framework to make logic programming
or programming with proofs (extracting programs from proofs), a better comprehension
of proofs in MLL (proof nets) is necessary and automated deduction has to be studied.
Knowing that the multiplicative part of linear logic is decidable, we propose a new algorithm
to construct automatically a proof net for a given sequent in MLL with proofs of termination,
correctness and completeness. It can be considered as a more direct and implementation
oriented way to consider automated deduction in linear logic.

1 Introduction

Computer scientists can consider logic with two points of view: it can be an external reference
to which they report during their activity, for example, to make correctness proofs of programs;
it can be integrated as an internal tool for programming. In this work, we consider the second
point of view. Intuitionism [17] has given at first a logical tool to approach programming in
this connection. Centered around a constructive vision of truth, it allows to consider proofs as
functions, lambda-calculus being a good framework to code them as programs. Considering the
Curry-Howard correspondence [12] for which a proof is a A-term or a program and a formula
is a type or a specification, the automatic program synthesis can be viewed as issued from
automatic deduction [7]: for a given specification, we construct a proof to extract a program
from it. Taking into account the unsymmetry of intuitionism that distinguishes hypotheses and
conclusion it can be difficult to consider concurrency and reactive systems in this framework.
The linear logic created by J.-Y. Girard [10, 11] appears as a potential good logical framework to
consider concurrency. Its principal characteristic is to be a logic for actions introducing notions
like controlled and strict management and resource consumption. It conserves a constructive
character without having the default of absence of symmetry. If we want to consider the proofs
as programs approach in linear logic we have to abord it from the (automatic) deduction point
of view. To consider linear logic from a computational interpretation (of the logic) can lead to a
process paradigm opening up a new approach of parallel implementation of functional languages
and of typed concurrent programming [1]. The point is to better understand what a proof is in
linear logic consisting in a particular graph named proof net [6, 10].

But before considering the computational aspect and the synthesis of programs from proof
nets, for example using an adequate refinement of typed A-calculus [16], one should be able to
mechanize the construction of proofs in linear logic. We know that propositional linear logic
is undecidable [14] but it is not the case for multiplicative part of it. In this paper, we give
an algorithm to mechanize the construction of a proof net for a given sequent in multiplicative
linear logic (MLL) sequent calculus. Moreover proofs of correction, correctness and completeness
are given. From this point it will be able to study from an automated deduction point of view
the application of deduction in linear logic in different fields as programming logic [2, 13] or
plans generation [15]. In section 2, we give a concise presentation of linear logic and in section
3 we make precise the concepts of logical structure and of proof net. In section 4, we focus
on multiplicative linear logic where the proof net notion is clearly defined and present the
principle of automatic construction of proof net. In section 5, before considering the algorithm,
we illustrate the principle by an example. Section 6 contains the complete presentation of the
algorithm for the automatic proof net construction with the proofs of termination, correctness
and completeness. Section 7 presents some conclusions.

2 Linear logic

Linear logic (LL) has been introduced recently by Girard [10] as a logic of actions. Born from
the semantics of second order lambda-calculus, linear logic is more expressive than traditional
logic (classical or intuitionistic ones). Characterized by the absence of structural rules and of a
specific treatment of the negation, linear logic has proofs that can be considered as actions and
introduces a dynamical resource management in these proofs without directional character (no
distinction between input and output).

2.1 Sequent calculus for LL

The deduction, in the linear meaning, is viewed as an interaction between hypotheses and
conclusions. We list the rules of inference of the calculus of sequents for linear logic. Using a
presentation with sequents without left-hand side, we have:

Identity rule
Id FILA FASA
HA AL FT,A

Clut

Structural rules

el
FT7

Ex where IV is the result of a permutation of T'.

Logical rules

Negation
Att=A (A®@B)t=AtpBt (4pB)t =4t @Bt
(A&B)t = A+t ¢ B (A® B)t = AL&Bt
(1A)t =74+ (74)+ =14t
(VzA)L = Jz AL (FzA)Lt =vVzAL

Multiplicative operators
FT, A1 FTg, A T, Aq, A
FTy Ty, A0 Ay © FT, AjpA;, ¥

Additive operators

FT,A T, Ay % FT, A FT, Ay
FT, A& A, FT, A DAy, U TFT, A 0 Ay 2
Exponential operators
F71, A FT,A T FT,74,7A
! d? = w? Y ¢
F70, 1A FT,74 FT,7A FT,7A
Quantifiers
T, A . . FT, Alt/2]
TTveA Y where z is not free in I’ T34 =

The logic nature is determined by the structural rules. In linear logic, the weakening rule
is rejected to establish a linear dependence between hypothesis and conclusion. Moreover, the
contraction rule is rejected to establish a strict and explicit resources management. The exzchange
rule is conserved but it is possible to consider a linear logic without this rule that would be
called a non commutative linear logic. Then linear logic is a refinement of the classical one. To
be complete, let us precise that the rejected structural rules are reintroduced through modal
operators (7, !) allowing a local and controlled use.

Linear negation can be introduced by

TAFA I'FB,A
TFALA T,BLFA

giving a fundamental symmetry that can transform each sequent into a sequent without left
hand side: one does not distinguish hypothesis and conclusion. For example: A, B,C*++ D, E+
can be written - A+, B+, C++ D, EL.

The rejection of weakening leads to the dissociation of the classical and and or:

- and is translated by @ (times) and & (with), both connectors expressing that the conditions
Ay and Ay are realizable, both, at the same time, with ®, and only one, at once, with &.

- or is translated by p (par) and & (plus). The p connector expresses a dependance between
the two conditions A; et Ay: if A; is not realized then A will be and if A5 is not realized A;
will be. The connector @ expresses the choice of one condition Ay or As, these being completely
independent.

@is the dual of ® and & is the dual of &. In fact, (A@B)J‘ = AJ‘pBJ‘ and (A&B)J‘ = AteBL.
times and par do not modify the resources range but only the structure. That is why the
operators times and par have intensional or multiplicative character.

with and plus modify the resources range. That is why one says that with and plus have an
extensional or additive character.

Moreover the cut rule has a dynamical character, allowing the construction of complex actions
from elementary ones. This creation power of the rule is linked to the Gentzen Haupsatz
[9], proved for linear logic by Girard [10]. The linear logic introduces a dynamic resources
managementin the proofs. Moreover, we have a symmetry : involution of negation, no distinction
between hypotheses and conclusion. We can associate different semantics to linear logic: for

example, a phase semantics and a coherent space semantics. A broad explanation for the meaning
and the purpose of linear logic is given in [10]. Here we only consider the multiplicative part of
linear logic (MLL) from the deduction theory point of view.

3 The proof nets

This concept has been created by J.Y. Girard [10] to precise the particular nature of proofs
in linear logic. We give here a precise and little different (compared to the classical one) pre-
sentation of this concept. It corresponds in multiplicative linear logic to the double worry of
machine implementation and study of information circulation in such structure. Here the nodes
correspond to the information processors and the edges to channels for information circulation.

3.1 From sequential proofs to proof nets

With the rules of linear logic, we can develop proofs in linear logic. For example:

Faar 14 Tppr 1d

FA@B, AL BE ¢ Foor 1
FA@ B,B*oC*t AL C
FA®B,BToCT, ATpC p

is a proof (II;) of the sequent - A ® B, Bt @ C+, Atp C.

But it is not the only one; here is another one (Ily):.

B, BT 11 Foor 1

Fa ar 1d FBLoCL.B.C ®
FAo B, BLoCL AL C ®
FA®B,BroCT, AToC &

These two proofs differ only by the order in which rules are used which is not essential.

The idea is to represent a proof by a graph called proof net: A sequent - Ay, ..., A, is represented
by a box with n inputs-outputs labelled respectively Ay, ..., A,. The internal structure of this
box will represent a proof of the sequent and will constitute the proof net .

A sequent being an aziom has, by definition, no proof associated. It will be represented by a
black box only defined by its interface.

Let us define the proof nets by precising at first their syntactic form named logical structure.

3.1.1 Logical structure definition

The edges are oriented and labelled by formulas of multiplicative linear logic. We have five
node types and the node type determines the number of edges to which it is connected and the
particular relationship linking formulas attached to these edges.

Node types of a logical structure

Input-output

Identity
A 1d At
Cut
1
A @ A
Times
A B
@
lA © B
Par
A B
§
lAg@B

A graph respecting this syntactic form is a logical structure. Of course, a given logical
structure does not represent necessarily a proof in linear logic. It has to verify certain criteria
to become a proof net. We will define it inductively from elementary proof nets associated
with identity axioms. To each inference rule of linear logic corresponds a rule for the proof net
construction.

3.1.2 Proof nets construction rules

Identity

To identity rule corresponds the construction rule:

A, AL

The logical structure below is an elementary proof net

(—A2 1w |0

Cut
FI,A FAHA

FT,A
If Ty and Ty are proof nets of the form:

To cut rule:

corresponds the construction rule:

o A m

then the following logical structure is a proof net:

Times

FTy, A FTy, Ay
ET, T2, AL @ Az
If T, and Tl are proof nets:

To times rule: corresponds the construction rule:

Par
HI1, A, Ag

+ F7 Al WAz
If T is a proof net of the form below:

To the par rule: corresponds the construction rule:

Remark 3.1 If one considers a particular theory defined by a set of proper axioms, one asso-
ciates to each azxiom Ax of the form F Ay, As, ..., A, an elementary proof net of the form:

Ax

\AL) \An

@ @

Remark 3.2 We can extend the construction rules for the treatment of the additives connectives
but we consider here only classical proof nets in MLL.

3.1.3 Correspondence between sequential proofs and proof nets

The rules defined above allow to associate naturally a proof net II to a sequential proof II in
multiplicative linear logic. Hence the following theorem:

Theorem 3.1 (Girard)
A unique proof net 11 corresponds to a sequential proof 11 in multiplicative linear logic. The
application: T1 — 11 is surjective but not injective.

3.1.4 Example

Let us illustrate how one can construct at the same time the sequential proof 1I; and the proof
net II;. We want to construct the proof net corresponding to the proof of the sequent:
FA®B,B+*®Ct, AtpC

The result is the following proof net:

AtpC
1d AL/ 9N, C 1d
P ;’l
B Bl
3 Id 2
ASB BLoct

Whatever order is used to apply the construction rules, the final proof net is the same. The
set of input/output with the opening on edges constitutes the external interface of the box
associated to the sequent. This presentation of proof nets is adapted to our problem. Now
having presented the logical framework and the concept of proof net, we can begin to give the
general basic principle of our algorithm to automate the proof net construction from a given
sequent (in multiplicative linear logic).

4 Principle of automatic proof nets construction

Usually proofs, in a given logic, can be constructed in two different ways: either by forward
chaining, guided by hypotheses, or by backward chaining, guided by the conclusion.

We can consider these two methods for proof nets construction. The first one considering
elementary proof nets, associated with identity axioms and using construction rules: it is a step
by step construction through successive connections, resulting in more complex proof nets. The
second one, considering the final proof net as a goal characterized by the inputs and ouputs, we
split it into subgoals until we obtain elementary proof nets. The latter approach is the subject
of other works not mentioned in this paper and we only consider the former one.

Let us begin to explain our problem. It consists in having an algorithm allowing to decide if a
given sequent - Ay, Ay, ..., A, in multiplicative linear logic is provable and if it is the case, to
construct an associated proof net. According to the Gentzen Haupsatz, we can only consider
proofs without cuts.

4.1 Terminal branches

The formulae Ay, A, ..., A, of the sequent to prove determine what we call the terminal branches
of the net to construct.

Definition 4.1 A terminal branch is defined by induction by the three following rules.

1. If A is an atom (positive or negative)) then the following graph is a terminal branch.
£

2. If By and By are terminal branches (as indicated in the figure)

where op is @ or p.

Considering this definition, we can associate a terminal branch B; with each formula A; of the
sequent to prove.

4.2 Free edges association by duality

After the creation of the terminal branches By, Bs, ..., B,, we have to associate their free edges
by duality.

Definition 4.2 i) An edge is free, in a terminal branch, if it has no start node.
ii) Two edges are dual if they are labelled by two formulae that are negation of the other ones.

If we are not careful, an association by duality of two free edges can lead to several disjoint
proof nets. For example, the sequent - A, AL, B, B+ is not provable. But what about a proof
net construction attempt from it ? It begins by considering 4 terminal branches

6 6 6 o

An association by duality of free edges can lead to the following result:

id id
A At B Bt
(9 (9 (9 (9

To avoid such a schema, we distinguish one the terminal branches chosen as start point of the
proof net in construction G.

Definition 4.3 A proof net in construction G is a connected graph obtained by association of
dual free edges of terminal branches, using identity axioms.

Then, we associate only from free edges of G so as to preserve the connexity. The construction
stops when G has no more free edges. There are two possibilities: 1) terminal branches remain
that are not connected to G (it is not the expected result). 2) No terminal branches remain that
is the expected result provided that we can prove that the logical structure obtained is a proof
net.

4.3 Correction verification and chaining activation

In the second case mentioned above, we are not sure that the structure is a proof net. But rather
than make an a posteriori verification (including a complete reconstruction in case of negative
result), we prefer to make it during the construction. To do it, we construct, at the same time
and step by step, G and a set R of proof nets that are fragments of G.

At the beginning R is empty. But each new association produces an elementary net added to R.
Moreover the elements of R are nets opening on known nodes that are either inputs/outputs or
connectors times or par. When two elements IT; and Il in R open on the same times connector,
we activate this one. Then II; et II, are replaced in R by a unique more complex net. Likewise,
when an element Il of R has two edges opening on the same connector par, this one is activated
and Il is replaced in R by the new net resulting of this activation. Each new association can
thus start a chaining activation of binary connectors. During the construction, the elements of
R are more and more complex. At the end, if the construction succeeds, R consists of a unique
net: the expected one.

4.4 Incorrectness and backtracking

The construction of R is not necessarily linear. It is possible to create incorrect intermediate
nets. For example, it can happen that an element of R element has two inputs/outputs opening

on the same connector times. In this case, we make a backtracking on the last association. This
possibility of backtracking imposes us to conserve an important quantity of knowledge : for
each element of R an history of its construction and an history of dual free edges of effective
associations.

4.5 Duality property

Before considering the net construction, it would be interesting to have simple criteria easy to
verify that allow to filter certain classes of non provable sequents with a view to eliminating it
directly. There exists one deduced property from the restricted framework of multiplicative linear
logic named duality property. In a proof in multiplicative linear logic, we have a conservation of
the atoms and the duality property is a consequence of this fact.

Duality Property: If a sequent is provable in multiplicative linear logic then the multi-set of
these atoms can be split into pairs of dual atoms.

5 An example

Before to present the algorithm and its proofs, we want ot illustrate it through an example.
We aim to prove the sequent: - A ® B, (AtpB+)® A, At ® B, B+ .

It corresponds to the search of a proof net that would be the internal structure of the following
box:

@ A®B BL @

(AtpBL) @ A AL @B

The sequent verifies the duality property and then we can begin the proof net construction. Let
us consider the terminal branches

At B+
A B AtpBL | A | AL B
&) &) &)
\A@B (AtpBLYyR A|AL® B Bt
branch 1 branch 2 branch 3 branch 4

Let us choose the branch 1 as starting point of the construction of G. It has two free edges (A
and B) and we decide to associate the edge A. There are two possibilities: edge A+ of branch
2 or of branch 3. Let us consider the edge AL of branch 2 for the association with A. A first
consequence of this association is to extend G to branch 2. A second one is the creation of the

10

elementary net (D(to indicate it in the figure we numerate their terminal edges). This new proof
net is the first element of the set R.
Hence, the figure below (intermediate proof nets created during the construction are in bold)

AtoBL| A AL B
&) &)
(AtpBlyp A AL e B B+
branch 1 branch 2 branch 3 branch 4

G now constituted of branches 1 and 2 together with the net @) has three free edges. Let us
choose the edge B of branch 1 and associate it, for example, with the edge B+ of branch 2. We
note @this new elementary net that we add to R. Then R = {D, @}.

We are trying a chaining connection of elements of R from the edge B (just considered) and then
from BL. The function connections-propagation realizes this task in the algorithm proposed in
the next section. Seeing that B opens on a times connector, that is the arrival of the net Dof
R, this connector can be activated. It means we gather the nets Dand @to constitute a new
one @) We verify that the connection is correct because the nets Det @)are independent. Then
we can replace in the set R the nets Dand @by @) Then R = {®}.

The successor node of current node times is an input-output then the chaining connection from
the edge B from branch 1 stops. We attempt the same process from the previous free edge B+
of branch 2. The connector par of branch 2 can now be activated. Let us connect two terminal
edges of net @) we obtain the net named @) We verify that this creation is correct, considering
that the connected edges belong to the same net. Then we can replace in R the net @by the
net @ The successor of the current node paris a times with a free initial edge then the chaining
connection stops. Hence the following figure:

| id 1 2
1 B L
£
D O
A B 7 ALtpBL |A AL B
® ;
(AtpBLipA At oB Bt
g @
branch 1 branch 2 branch 3 branch 4

11

Now G has only one free edge: the edge A of branch 2 that can only be associated with the
edge AL of branch 3. This association leads to the creation of the elementary net ¢)that is
added to the set R. Then R = {@, G&)}. The connector times of branch 2 can then be actived
because the two initial edges are connected and it allows the union of nets @and Gto give a new
net @that replaces it in the set R. Then R ={ ©}. Moreover, G is now extended to branch 3.
Hence the figure:

AL Bt

A B 3 AtoBL |A AL B
o Y
e)(AtpBLYye A |ALl®B \BJ-
1/ @ @
branch 1 branch 2 branch 3 branch 4

We have now to associate the edge B of the branch 3 with the edge B* of the branch 4. We
then create an elementary net @) that will be added to R. Then R = { ©, @}.
The connector times of the branch 3 can be actived and allows the union of the nets @and @)
resulting in a new net @that takes their place in R. Then R = { @}. The graph G is now
extended to the branch 4 and there is no more free edge. Consequently, the construction is
terminated and is successful because there is no more terminal branch not connected to G. The
final net has the following form:

|— ld —1 id
— id \
At B+
5 id s
A |4t B
&)
(AJ-pBJ-)(X)A AL @B (7) B+
©.i
1/0
branch 3 branch 4

12

6 Proof net construction algorithm

6.1 Algorithm presentation

Definition 6.1 The following definitions are function or predicate definitions used in the proof
net construction algorithm:

1) The set duality-test(A) is the set of free edges AL that have already been tested for the
association with A.

2) The set assoc-edges is the set of the edges that have been associated.

3) The set R is the set of the (already constructed) intermediate nets. 4) The graph G is the net
under construction.

5) The set term-branch(I') is the set of the terminal branches of =T

6) duality (- I') is true if the sequent = ' verifies the duality property.

7) exist-free-edge(S) is true if there exists a free edge in S.

8) property-free-edge(E) is true if E is a free edge leading, if possible, to a binary connector that
is the opening of a net from R and situated as high as possible in G.

9) good-link(A,AL) is true if the union of G (including A) and the terminal branch of B including
AL has another free edges when B is not reduced to this union.

10) new-graph(G,A,At)is the graph obtained from G by associating the open edge A of G with
the open edge A+ of G or B.

11) elem-proof-net(A,AL) is the new elementary proof net constructed through the association

of A and A*.

The algorithm uses the intermediate function connections-propagation, the specification of
which is given below:

function connections-propagation

inputs: a net G under construction,
a set R of intermediate already constructed proof nets,
a node current-node of G.

output: an incorrectness message or a set R’ of intermediate proof nets.

specification:

Activation by chaining the binary connectors of G from the node
current-node following the order determined by the edges of G and going
as far as possible.

If, during this chaining connection, we detect an incorrectness, the func-
tion returns a message giving it else R’ is the result of the successive
activations of ”times” and ”par”.

A complete presentation of this function is given in appendix A.

13

function net-construction
input: a sequent F I' of multiplicative linear logic.
output: a proof net II or a failure message
specification: If F I is provable in linear logic then II is a proof net of - I else the function.
returns a failure message
begin
if not duality-property(-I') then return "failure” endif
B := term-branch(I');
for each free edge A of terminal branches in B
do duality-test(A) := () endfor;
assoc-edges = ();
R = 0;
G := one of the terminal branches of B; B:= B - {G};
while ezist-free-edge(G)
do choose a free edge A of G with property-free-edge(A);
nosuccessassoc := true;
while there exists in the graphs in B a free edge AL ¢ duality-test(A)
such that good-link(A,A') and nosuccessassoc.
do choose a free edge AL of B ¢ duality-test(A) such that
good-link(A,AL) and property-free-edge(AL);
duality-test(A) = {A+} U duality-test(A);
G = new-graph(G,A,AL); update(B);
R := R U {elem-proof-net(A,A+)};
R := connections-propagation (g, R, A);
if R # incorrectness
then R:=connections-propagation(G,R,A+t)
endif
nosuccessassoc := (R=incorrectness);
if nosuccessassoc
then give back to G, B, R the initial values before the associa-

tion attempt of A with AL
endif
endwhile

if not(ezist-free-edge(G)) and card(R) # 1
then nosuccessassoc := true
endif.
if nosuccessassoc
then duality-test(A) = 0;

if assoc-edges =)

then return ”failure”

else extract the head A’ of assoc-edges ;

Give back to G, B, R the initial values before the associa-

tion attempt of A’ with AL
endif

else assoc-edges ;= cons(A ,assoc-edges)
endif

endwhile

return the unique net II element of R:
end

14

6.2 Proofs of the algorithm

In this section we want to present the different proofs of the algorithm that are the termination,
correctness and completeness proofs.

6.2.1 Termination proof

This proof consists in proving the termination by associating with each loop in the algorithm a
function with parameters characterizing the execution state of the algorithm. The value of the
function will strictly decrease during the execution of the loop.

A complete presentation of this proof is given in appendix B.

6.2.2 Correctness proof

Proposition 6.1 the function net-construction, if it succeeds, returns a net 11, being correct
and constituting a proof of the sequent = I' given as input.

Proof 6.1 1) Let us prove that 11 is correct.

It is sufficient to prove that the set R of intermediate created nets is, at any time of the execution
of the algorithm, a set of correct nets.

Let Ry, be the value of R after the execution of the k" step of the algorithm. Because of the ter-
mination of the algorithm, the sequence of values of R is finite and can be written Ro, R1, ..., Rn
where Ro is) and R, = {1} (considering that we are in the case where construction succeeds).
Property: After the execution of the k** step, the resulting set Ry is a set of correct sets.
proof: by induction on k.

- if k = 0, we have Rg = 0 and the property is true.

- Let us assume the property to be true for all k < n, and show that it is true for k+1.
If there is no modification of Ry during the execution of k' step, it is trivial else the
modification can be of four types:

— when the association of two dual free edges A et AL succeeds, an elementary net is

added to Ry,.

— when the association of two dual free edges A et AL, there is backtracking on a
previous value Ry, (h < k) of R.

— when the activation is on a times connector, there is a replacement in Ry of two nets
by their union with this connector.

— when the activation is on a par connector, there is a replacement in Ry of a net by
another obtained by connecting two inputs-outputs of the former one with par.

It is clear that, as a result of one of these four modifications, Ry41 is a set of correct nets.
Then the property is true for k+1. O

Then, the property is true for all k < n particularly for n. Consequently 11 is a correct net.

2) Let us prove that 11 is a proof of = T, i.e., the set of formulae constituting the inputs-
outputs of 11, is the set of the formulae of - T'. At first, we prove that each input-output of 11 is
a formula of FI'. As G is connected and has its inputs-outputs coinciding with the formulae of
F T we have the result.

15

6.2.3 Completeness proof

Before beginning the completeness proof, we need to introduce the notion of construction-trace
of a net and two propositions that will be necessary to obtain the completeness proof.

Definition 6.2 A trace-construction of a proof net 11 is a finite sequence Rg, R1, ..., R, of net
sets that verifies:

- R, = {11}

- for all k such that 0 < k < n, Rir41 is obtained from Ry by the connection of two elements of
Ry with a times or the connection of two terminal edges of an Ry element with par.

Proposition 6.2 If (Ri)o<k<n s a trace-construction of a proof net 1T and if there exists h
such that 0 < h < n and Rpy1 obtained from Ry, by activation of a par on two edges that were
terminal edges of a net of Ro, then there erists a trace-construction (R'y)o<k<n of 11 such that
R'o = Ro and R’y are obtained from R'q by activation of the considered operator " par” .

Proof 6.2 By induction on h.

Proposition 6.3 If (Ri)o<k<n is a trace-construction of a proof net 1T and if there exists h
such that 0 < h < n and Rp4q obtained from Ry by activation of a times on two edges that
were terminal edges of two distinct nets of Rq, then there exists a trace-construction (R’k)0§k<n
of II such that R'g = Ry and R’y are obtained from R’y by activation of the considered operator
?times” .

Proof 6.3 By induction on h.

Definition 6.3 A set of generator nets of a proof net 11 is a part of the first term of a trace-
construction of 11.

Proposition 6.4 (completeness) If = ' is a provable sequent in the multiplicative linear logic
then the function net-construction applied to & I' returns a proof net of - I

Proof 6.4 Let us reason by refutation. We assume that the function net-construction returns
a failure message and want to show that it leads to a contradiction.

Let 11 a particular proof net of = 1" and n the number of the identity arioms it contains (n is
strictly positive and depends only on = 1).

Let us prove the following property P(k) for 0 < k < n:

Property P(k): At a certain time during the execution of the algorithm net-construction, one
succeeds in associating k free edges, and R is then a set of generators net of II.

proof:

1) P(0) is true.

At the beginning of the execution, we do not try to associate a free edge with another one and
R is empty.

2) Let us assume P(k) is true for 0 < k < n and prove that P(k+1) is true.

Let us consider the time when one has succeeded in associating k free edges and then R is a set
of generator nets of Il (it is possible because P(k) is true).

k < n and free edges remain in G because G is never closed while all terminal branches are
not linked. Let A be the free edge that is going to be selected by the algorithm and At the one

16

to which A is linked by an identity axiom in I1. R is a set of generator nets of Il and A+ is
necessarily a free edge at this time.

By hypothesis, the algorithm fails to construct a proof net of = I' and then all the eventual as-
soctations of A with a dual edge are going to fail; it implies that, at one time, we attempt to
associate A with A*.

Let us consider the time when A and A+ are linked by an identity axiom and when we call the
function connections-propagation for A.

We have to prove that the propagation succeeds and that the resulting R is a set of generator
nets of I1.

Let p the number of iterations of loop 3) that will be executed, we can prove by induction for
0 < h < p the following property Q(h):

Property Q(h): After h executions of loop 3) there is no incorrectness and the set R remains
formed with generators of II.

proof:

1) Q(0) is true.

At call of connections-propagation, there is no incorrectness founded and from the induction
hypothesis relative to P, R is composed of generators of 1.

2) Let us assume that Q(h) true for 0 < h < p and let us prove that Q(h+1) is true.
Considering the beginning of the (h+1)th execution of the loop 3), two cases can be considered:
a) current-node trains on a par connector.

If 1y = Il then 11y is replaced in R by 11} obtained by activation of this connector par. The
set R becomes R'. R being a set of generators of 11, by the induction hypothesis relative to
@), one can then, from the proposition 6.1, consider the activation of par as a first step of the
construction of 11 from R. Consequently, R’ is a set of generators of T1.

If 11y # g, there is no incorrectness founded because by induction hypothesis relative to G, 11y
and Iy are generator nets of 11.

b) node-current trains on a connector "times”

I1y and 11y cannot be identical because by induction hypothesis related to G they are generator
nets of 11 and no incorrectness can be found. Moreover, 111 and Il are replaced in R by 1l
obtained by activation of the times pointed. The set R becomes then R'. R being a set of gen-
erators of 11, by the induction hypothesis relative to @), one can then, from the proposition 6.2,
consider the activation of times as a first step of the construction of Il from R. Consequently,
R’ is a set of generators of II.

Then Q(h+1) is true and Q(h) is true for all h such that 0 < h < p.

O

Particularly Q(p) is true and then the propagation of the connections from A has succeeded and
the resulted R is a set of generator nets of 1.

We can do the same proof for the connections propagation from A*.

The association of A and A+ has succeeded and the set R is a set of generators of I1.

Then P(k+1) is true.

We proved that P(k) is true for all k such that 0 < k < n.

O P(n) is true and consequently the algorithm succeeds for the construction of I1.

That is in contradiction with the initial hypothesis.

To conclude, if & T' is provable then the algorithm succeeds in constructing a proof net for
this sequent.

17

7 Conclusion

We have shown we can construct a proof net automatically for a given sequent in multiplicative
linear logic. This direct way to answer if a sequent is provable is a way to express the decidability
of multiplicative linear logic. From this study we have a better view of the concept of proof net
in linear logic and we can consider some applications with it as logical framework.

The connections between proof nets and proof-search algorithms for matrix-methods (connec-
tions [5] or matings [3]) would be studied and this algorithm could be helpful for such a work.

Linear logic seems an adequat framework to consider plans generation from a logical point of
view [15]. If we consider the conjonctive planification using MLL with proper axioms, a plan
corresponds to a proof net. The direct extension of the algorithm for the proper axioms treat-
ment is possible but presents some difficulties because of the cuts on these axioms. Considering
logic programming, we can extend Prolog in the framework of MLL, in the same spirit as [2], but
the expressivity gain is not obvious and moreover @ sets some performance problems. But some
works, like [13], emphasize the necessity to extend the work, for logic programming application,
to additive and multiplicative linear logic (AMLL) and even to complete linear logic (LL). Then
if we do not want to restrict our point to classical proof nets in MLL but to consider proofs
in AMLL or LL, we have two possibilities. The first one is to extend the proof net notion to
AMLL [4] and to abord its automated construction by a similar approach. Let us note that
a direct extension of the presented algorithm appears problematic because it will not consist
only in connecting open edges and considering the additive connectors terminal branches are
not given a priori with the conclusion - I'. A second one is to consider the problem of proof
construction directly in AMLL with a specific, and completely different, decision procedure [8]
and to study its relationship with extension of proof nets notion. Even so, the mechanization
of proof net construction in MLL, presented here, is a first attempt for the use of proof net and
linear logic, having in mind the computational interpretation and its applications.

References

[1] S. Abramsky. Computational interpretations of linear logic. technical report, Department
of Computing, Imperial College, London SW7 2Bz, England, 1991.

[2] J.M. Andreoli and R. Pareschi. Logic programming with sequent systems: A linear logic
approach. In Int. Workshop on Fxtensions of Logic Programming, LNCS /75, pages 1-30,
Tiibingen, Germany, December 1989.

[3] P. Andrews. Theorem proving via general mating. Journal of ACM, 28(2):193-214, 1981.

[4] G. Bellin. Proof nets for multiplicative and additive linear logic. Technical Report ECS-
LFCS 91-161, Department of Computer Science, Edinburgh University, May 1991.

[5] W. Bibel. On matrices with connections. Journal of ACM, 28(4):633-645, 1981.

[6] V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathematical Logic,
28:181-203, 1989.

[7] D. Galmiche. Constructive system for automatic program synthesis. Theoretical Computer
Science, 71(2):227-239, 1990.

18

[8] D. Galmiche and G. Perrier. Automated deduction in additive and multiplicative linear
logic. To appear in Logic at Tver 92, Symposium on Logical Foundations of Computer
Science, Tver, Russia, July 1992.

[9] G. Gentzen. Collected papers. Edited by M. E. Szabo, Amsterdam, 1969.
[10] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, 1987.

[11] J.-Y. Girard. Towards a geometry of interaction. In J.-W. Gray and A. Scedrov, edi-
tors, AMS Conference on categories in computer science and logic, pages 69108, Boulder-
Colorado, June 1987.

[12] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press,
1989.

[13] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic.
In 6th IEFE symposium Logic in Computer Science, pages 32-42, Amsterdam, July 1991.

[14] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propositional
linear logic. In 31st annual IEFE Symp. on Foundations of Computer Science, St-Louis,
Missouri, October 1990.

[15] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic. In Foundations of
Software Technology and Theoretical Computer Science, LNCS 472, pages 63-75, Bangalore,
India, December 1990.

[16] U. Solitro. A typed calculus based on a fragment of linear logic. Theoretical Computer
Science, 68:333-342, 1989.

[17] A.-S. Troelstra and D. Van Dalen. Constructivism in Mathematics, an Introduction. North-
Holland, Amsterdam, 1988.

19

A The function connections-propagation

The algorithm uses the auxiliary function connections-propagation whose specification is given
below:
function connections-propagation
inputs: a net G under construction,
a set R of intermediate already constructed nets,
a node current-node of G.

output: an incorrectness message or a set R’ of intermediate proof nets.
specification: Activation by chaining the binary connectors of G from the node
current-node following the order determined by the edges of G and
going as far as possible.
If, during this chaining connection, we detect an incorrectness, the
function returns a message giving it, else R’ is the result of the
successive activations of "times” and ”par”.

Definition A.1 i) connector-link(N) is true if N is a connector linking two edges of two nets
Iy and 1Ty of R (not necessarily distinct).

ii) activation(c,n) gives as result the net obtained by activation of the connector ¢ of node n,
conserving the history of the net construction.

iii) succ(n) is the arriving node corresponding to the edge starting from n.

function connections-propagation (G : net;R : set of nets; current-node : node).
begin
propagation := true
while connector-link(current-node) and propagation
do if current-node is a ”par”
then if 1, = II,
then R := R - {II;} U activation(”par”, current-node);
current-node = succ(current-node)
else propagation := false;
if II, and II; do not have a terminal edge linked

to a connector ”times”
then return ”incorrectness

_endif

endif L
elseif II; = Il,
then return ”incorrectness”
else R:=R-{Il;, Iy} U activation(”times” current-

node);
current-node := succ(current-node)
_endif
endif
endwhile
return(R)

end

20

B Termination proof

The algorithm for the net-construction function has four while loops:
- the loop 1 (iteration) attempting to associate a free edge of G with another one;
- the loop 2 attempting to associate a free edge AL with a given free edge A;
- the loop 3 for the activation of the binary connectors following a given edge A;
- the loop 4 for the activation of the binary connectors following a given edge A*.

We will prove the termination of the algorithm by associating with each loop a function on
integer with parameters characterizing the execution state of the algorithm. The value of the
function will strictly decrease during the execution of the loop.

e Let us consider the loops 3 and 4.
We associate the function that returns, at each iteration, with the number of binary
connectors following the value of the current-node. This function decreases of 1 at each
iteration, that proves the termination of these loops.

e Let us consider the loop 2.
We associate it with the function that returns the number of free edges A1 that are not
member of duality-test(A). This function decreases (of 1) at each iteration, which proves
the termination of the loop 2.

e Let us finally consider the loop 1.

The function to associate is less evident to determine because of the backtracking on edges

associations (soon realized) Let Ay, Ay, ..., A, be the finite sequence of free edges that the

algorithm attempt to associate in the order where they are met for the first time.

We associate, for each step of execution, with each edge A; an integer «;, that represents

the number of free edges A+ not member, at this time, of duality-test(A;). The set of a;

is upper bounded by a number independently of the step where we are in the algorithm.

Let us note n such an upper bound.

Let us consider the function ¢ to which corresponds, at each execution step, the value:
fop o

We have to study it along the execution. Let us consider the beginning of an iteration

where the edge to associate is A (1 < k < n). At the end of the iteration, two situations

are possible:

— either the association successes and the value of the function ¢ decreases of n”~* that
is strictly positive;

— or the association fails and we have to do a backtracking. After a finite number of
iterations that will follow, either the algorithm terminate with a definitive failure, or
we succeed in obtaining a new association of an edge Aj, such that h < k. From the
beginning of the association attempt of A to the end of the successful association of
Ap. ap has decreased of one and o4, h < ¢ < k, has again its maximal value and then
is affected by a variation less than or equal at n — 1.

The function ¢ has supported a variation equal (at maximum) to :

—n"h 4 (n - 1) Zf:h-u "= P 4 (0 — 1)M = -—n""F <0.

n—1

The function ¢ does not strictly decrease at each iteration but its properties are sufficient
to assert that the loop terminates.

21

