Functional connectivity outperforms scale-free brain dynamics as fMRI predictive feature of perceptual learning underwent in MEG

Abstract : Perceptual learning sculpts ongoing brain activity [1]. This finding has been observed by statistically comparing the functional connectivity (FC) patterns computed from resting-state functional MRI (rs-fMRI) data recorded before and after intensive training to a visual attention task. Hence, functional connectivity serves a dynamic role in brain function, supporting the consolidation of previous experience. Following this line of research, we trained three groups of individuals to a visual discrimination task during a magneto-encephalography (MEG) experiment [2]. The same individuals were then scanned in rs-fMRI. Here, in a supervised classification framework, we demonstrate that FC metrics computed on rs-fMRI data are able to predict the type of training the participants received. On top of that, we show that the prediction accuracies based on tangent embedding FC measure outperform those based on our recently developed multivariate wavelet-based Hurst exponent estimator [3], which captures low frequency fluctuations in ongoing brain activity too.
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01297845
Contributeur : Philippe Ciuciu <>
Soumis le : mardi 5 avril 2016 - 09:32:23
Dernière modification le : lundi 4 juin 2018 - 15:42:02
Document(s) archivé(s) le : lundi 14 novembre 2016 - 15:58:20

Fichier

paper_ss.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01297845, version 1

Citation

Mehdi Rahim, Philippe Ciuciu, Salma Bougacha. Functional connectivity outperforms scale-free brain dynamics as fMRI predictive feature of perceptual learning underwent in MEG. 2016. 〈hal-01297845〉

Partager

Métriques

Consultations de la notice

553

Téléchargements de fichiers

335