Skip to Main content Skip to Navigation
Journal articles

Segmentation d’Images Texturées Couleur à l’aide de modèles paramétriques pour approche la distribution des erreurs de prédiction linéaires

Résumé : We propose novel a priori parametric models to approximate the distribution of the two dimensional multichannel linear prediction error in order to improve the performance of color texture segmentation algorithms. Two dimensional linear prediction models are used to characterize the spatial structures in color images. The multivariate linear prediction error of these texture models is approximated with Wishart distribution and multivariate Gaussian mixture models. A novel color texture segmentation framework based on these models and a spatial regularization model of initial class label fields is presented. For the proposed method and with different color spaces, experimental results show better performances in terms of percentage segmentation error, in comparison with the use of a multivariate Gaussian law.
Document type :
Journal articles
Complete list of metadata

Cited literature [10 references]  Display  Hide  Download

https://hal.inria.fr/hal-01299422
Contributor : Coordination Episciences Iam <>
Submitted on : Thursday, April 7, 2016 - 4:12:20 PM
Last modification on : Thursday, October 8, 2020 - 11:50:06 AM
Long-term archiving on: : Monday, November 14, 2016 - 9:16:53 PM

File

Vol.14.pp.31-43.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : hal-01299422, version 1

Citation

Imtnan-Ul-Haque Qazi, Olivier Alata, J.-C. Burie, A. Moussa, Christine Fernandez-Maloigne. Segmentation d’Images Texturées Couleur à l’aide de modèles paramétriques pour approche la distribution des erreurs de prédiction linéaires. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2011, 14, pp.31-43. ⟨hal-01299422⟩

Share

Metrics

Record views

355

Files downloads

741