A mixture of local and quadratic approximation variable selection algorithm in nonconcave penalized regression

Abstract : We consider the problem of variable selection via penalized likelihood using nonconvex penalty functions. To maximize the non-differentiable and nonconcave objective function, an algorithm based on local linear approximation and which adopts a naturally sparse representation was recently proposed. However, although it has promising theoretical properties, it inherits some drawbacks of Lasso in high dimensional setting. To overcome these drawbacks, we propose an algorithm (MLLQA) for maximizing the penalized likelihood for a large class of nonconvex penalty functions. The convergence property of MLLQA and oracle property of one-step MLLQA estimator are established. Some simulations and application to a real data set are also presented.
Type de document :
Article dans une revue
Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2013, 16, pp.29-46
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01299521
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 7 avril 2016 - 17:28:47
Dernière modification le : lundi 11 décembre 2017 - 17:04:02
Document(s) archivé(s) le : lundi 14 novembre 2016 - 21:34:52

Fichier

Vol.16.pp.29-46.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01299521, version 1

Collections

Citation

Assi N'Guessan, Ibrahim Sidi Zakari, Assi Mkhadri. A mixture of local and quadratic approximation variable selection algorithm in nonconcave penalized regression. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2013, 16, pp.29-46. 〈hal-01299521〉

Partager

Métriques

Consultations de la notice

72

Téléchargements de fichiers

273