Skip to Main content Skip to Navigation
Journal articles

Varying the s in Your s-step GMRES

David Imberti 1 Jocelyne Erhel 1 
1 FLUMINANCE - Fluid Flow Analysis, Description and Control from Image Sequences
IRMAR - Institut de Recherche Mathématique de Rennes, IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Inria Rennes – Bretagne Atlantique
Abstract : Krylov subspace methods are commonly used iterative methods for solving large sparse linear systems, however they suffer from communication bottlenecks on parallel computers. Therefore, $s$-step methods have been developed where the Krylov subspace is built block by block, so that $s$ matrix-vector multiplications can be done before orthonormalizing the block. Then Communication-Avoiding algorithms can be used for both kernels. This paper introduces a new variation on $s$-step GMRES in order to reduce the number of iterations necessary to ensure convergence, with a small overhead in the number of communications. Namely, we develop a $s$-step GMRES algorithm, where the block size is variable and increases gradually. Our numerical experiments show a good agreement with our analysis of condition numbers and demonstrate the efficiency of our variable $s$-step approach.
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download
Contributor : Jocelyne Erhel Connect in order to contact the contributor
Submitted on : Thursday, December 7, 2017 - 10:18:31 AM
Last modification on : Friday, May 20, 2022 - 9:04:52 AM


Files produced by the author(s)


  • HAL Id : hal-01299652, version 3


David Imberti, Jocelyne Erhel. Varying the s in Your s-step GMRES. Electronic Transactions on Numerical Analysis, Kent State University Library, 2017, 47, pp.206-230. ⟨hal-01299652v3⟩



Record views


Files downloads