. Hz, ensemble des interactions modales prises en compte. La courbe rouge correspond au calcul effectué avec le post-processeur parallélisé (introduit dans la partie 5.3.1) Dans cet outil, les interactions modales ne sont pas prises en compte

. Dans-ce-dernier-calcul, pour chaque fréquencé etudiée, seuls les modes dont la fréquence propre est proche sont considérés. Les résultats de ces trois calculs diffèrent un peù a cause des hypothèses simplificatrices, La figure 11 démontre cependant que l'influence de ces hypothèses est très faible alors que le gain en temps de calcul est considérable

. Hz, En revanche le terme cos(??/U c ) a une influence très importante sur la réponse structuralè a partir de 800

. Hz, Demanì ere générale, ce terme peutêtrepeutêtre négligé lorsque la fréquence est inférieurè a U c

S. J. Beresh, J. F. Henfling, R. W. Spillers, and B. Pruett, Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer, Physics of Fluids, vol.23, issue.7, 2011.
DOI : 10.1063/1.3609271

M. K. Bull, Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow, Journal of Fluid Mechanics, vol.28, pp.4-719, 1967.

R. Camussi and A. D. Marco, Wall pressure fluctuations induced by supersonic turbulent boundary layer. In Flinovia-Flow Induced Noise and Vibration Issues and Aspects, pp.67-89, 2015.

K. M. Casper, Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations, 39th AIAA Fluid Dynamics Conference, 2009.
DOI : 10.2514/6.2009-4054

J. A. Cockburn and J. And-robertson, Vibration response of spacecraft shrouds toin-flight fluctuating pressures, Journal of Sound and Vibration, vol.33, issue.4, pp.399-425, 1974.
DOI : 10.1016/S0022-460X(74)80226-9

G. M. Corcos, Resolution of Pressure in Turbulence, The Journal of the Acoustical Society of America, vol.35, issue.2, pp.192-199, 1963.
DOI : 10.1121/1.1918431

B. M. Efimtsov, Characteristics of the field of turbulent wall pressure fluctuations at large reynoldsnumbers, Soviet Physics Acoustics, vol.28, issue.4, pp.289-292, 1982.

T. M. Farabee and M. J. Casarella, Spectral features of wall pressure fluctuations beneath turbulent boundary layers, Physics of Fluids A: Fluid Dynamics, vol.3, issue.10, pp.2410-2420, 1991.
DOI : 10.1063/1.858179

J. C. Houbolt, Structural response of re-entry vehicles to boundary layer noise Aeronautical Research Associates of Princeton hc, ARAP Report, issue.65, 1965.

A. L. Laganelli and J. Howe, Prediction of pressure fluctuations associated with maneuvering reentry vehicles, 1977.

M. V. Lowson, Prediction of boundary layer pressure. Tech. rep., Air Force Flight Dynamics Laboratory, 1968.

A. Martellucci, L. Chaump, D. Rogers, and D. Smith, Experimental Determination of the Aeroacoustic Environment about a Slender Cone, AIAA Journal, vol.11, issue.5, pp.635-642, 1973.
DOI : 10.2514/3.50503

J. Robertson, Prediction of in-flight fluctuating pressure environments including protuberence induced flow, 1971.

A. V. Smol-'yakov and V. M. Tkachenko, Model of a field of pseudosonic turbulent wall pressures and experimental data. Soviet physics, Acoustics, vol.37, issue.6, pp.627-631, 1991.

W. W. Willmarth and C. Wooldridge, Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer, Journal of Fluid Mechanics, vol.28, issue.02, pp.2-187, 1962.
DOI : 10.1121/1.1908224