Y. Yamamato and M. Kubo, Invitation to the Traveling Salesman's Problem, Asakura, 1997.

T. Yamada, K. Watanabe, and S. Katakoa, Algorithms to solve the knapsack constrained maximum spanning tree problem, International Journal of Computer Mathematics, vol.43, issue.1, pp.23-34, 2005.
DOI : 10.1287/mnsc.18.7.401

S. Pirkwieser, A Lagrangian Decomposition Approach Combined with Metaheuristics for the Knapsack Constrained Maximum Spanning Tree Problem, 2006.

V. Aggarwal, Y. Aneja, and K. Nair, Minimal spanning tree subject to a side constraint, Computers & Operations Research, vol.9, issue.4, pp.287-296, 1982.
DOI : 10.1016/0305-0548(82)90026-0

K. Jörnsten and S. Migdalas, Designing a minimal spanning tree network subject to a budget constraint, Optimization, vol.17, issue.4, pp.475-484, 1988.
DOI : 10.1016/0166-218X(85)90007-1

M. L. Fisher, The Lagrangian Relaxation Method for Solving Integer Programming Problems, Management Science, vol.27, issue.1, pp.1-18, 1981.
DOI : 10.1287/mnsc.27.1.1

M. L. Fisher, An Applications Oriented Guide to Lagrangian Relaxation, Interfaces, vol.15, issue.2, pp.10-21, 1985.
DOI : 10.1287/inte.15.2.10

J. E. Beasley, Lagrangian relaxation, Modern Heuristic Techniques for Combinatorial Problems, pp.243-303, 1993.

J. B. Kruskal, On the shortest spanning subtree of a graph and the travelling salesman problem, Proc. of the AMS, pp.48-50, 1956.

R. C. Prim, Shortest Connection Networks And Some Generalizations, Bell System Technical Journal, vol.36, issue.6, pp.1389-1401, 1957.
DOI : 10.1002/j.1538-7305.1957.tb01515.x

M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, The pairing heap: A new form of self-adjusting heap, Algorithmica, vol.7, issue.1-4, pp.111-129, 1986.
DOI : 10.1007/BF01840439

S. Martello, D. Pisinger, and P. Toth, Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem, Management Science, vol.45, issue.3, pp.414-424, 1999.
DOI : 10.1287/mnsc.45.3.414

F. Barahona and R. Anbil, The volume algorithm: producing primal solutions with a subgradient method, Mathematical Programming, vol.87, issue.3, pp.385-399, 2000.
DOI : 10.1007/s101070050002

M. Haouaria and J. C. Siala, A hybrid Lagrangian genetic algorithm for the prize collecting Steiner tree problem, Computers & Operations Research, vol.33, issue.5, pp.1274-1288, 2006.
DOI : 10.1016/j.cor.2004.09.017

T. L. Magnanti and L. A. Wolsey, Optimal trees, Handbooks in Operations Research and Management Science, pp.503-615, 1995.

B. A. Julstrom and G. R. Raidl, Edge sets: an effective evolutionary coding of spanning trees, IEEE Transactions on Evolutionary Computation, vol.7, issue.3, pp.225-239, 2003.