Linear vs non-linear learning methods A comparative study for forest above ground biomass, estimation from texture analysis of satellite images

Abstract : The aboveground biomass estimation is an important question in the scope of Reducing Emission from Deforestation and Forest Degradation (REDD framework of the UNCCC). It is particularly challenging for tropical countries because of the scarcity of accurate ground forest inventory data and of the complexity of the forests. Satellite-borne remote sensing can help solve this problem considering the increasing availability of optical very high spatial resolution images that provide information on the forest structure via texture analysis of the canopy grain. For example, the FOTO (FOurier Texture Ordination) proved relevant for forest biomass prediction in several tropical regions. It uses PCA and linear regression and, in this paper, we suggest applying classification methods such as k-NN (k-nearest neighbors), SVM (support vector machines) and Random Forests to texture descriptors extracted from images via Fourier spectra. Experiments have been carried out on simulated images produced by the software DART (Discrete Anisotropic Radiative Transfer) in reference to information (3D stand mockups) from forests of DRC (Democratic Republic of Congo), CAR (Central African Republic) and Congo. On this basis, we show that some classification techniques may yield a gain in prediction accuracy of 18 to 20%
Type de document :
Article dans une revue
Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2014, 18, pp.114--131
Liste complète des métadonnées


https://hal.inria.fr/hal-01300087
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 8 avril 2016 - 16:37:55
Dernière modification le : mardi 23 mai 2017 - 11:29:37
Document(s) archivé(s) le : mardi 15 novembre 2016 - 00:05:41

Fichier

vol.18.pp.114-131.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01300087, version 1

Collections

Citation

Hippolyte Tapamo, Adamou Mfopou, Blaise Ngonmang, Pierre Couteron, Olivier Monga. Linear vs non-linear learning methods A comparative study for forest above ground biomass, estimation from texture analysis of satellite images. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2014, 18, pp.114--131. <hal-01300087>

Partager

Métriques

Consultations de
la notice

444

Téléchargements du document

164