N

N
N

HAL

open science

The Norwegian State Railway System GTL (1976)
Tor Olav Steine

» To cite this version:

Tor Olav Steine. The Norwegian State Railway System GTL (1976). 4th History of Nordic Com-
puting (HiNC4), Aug 2014, Copenhagen, Denmark. pp.290-298, 10.1007/978-3-319-17145-6_30 .

hal-01301420

HAL Id: hal-01301420
https://inria.hal.science/hal-01301420

Submitted on 12 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01301420
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Norwegian State Railway System GTL (1976)

Tor Olav Steine, with the help of former colleagues

tos@alfatroll.com

Abstract. In 1976 the Norwegian State Railway System (NSB) planned a new
system to keep track of al its freight cars. Among the duties were these:
arranging trains at the shifting station in Alnabru outside Oslo, following
(tracking) the trains as they moved aong the tracks inside Norway,
optimization of car maintenance and statistics. The system could save millions
of Norwegian Crowns by better utilization of the car pool. It was named GTL
for Gods Transport Ledelse (there is no Divine link; “Gods’ smply means
cargo in Norwegian). Norsk Data won the contract in competition with US-
based mainframe vendors and, against all odds, delivered a system on time that
“never failed” for the many yearsit was in operation.

Keywords. computer, minicomputer, Norsk Data, administrative system,
transaction processing, data network, database.

1 The Background

We are back in time to the early childhood of computing as we know it these days.
There were no personal computers - they were either shared or used by one user at the
time. Users might either punch cards in separate card punching rooms and thereafter
read these into the computer for processing, or share one computer through a multi-
user facility called time-sharing. In the first case, the output was ready either later in
the day or the day after, while time sharing allowed several users access to the
computer simultaneously. On-line computing was expensive and not common. Yet, in
the early 1970s minicomputers had arrived with time-sharing systems (TS systems for
short) that allowed users to interact directly with software for on-line editing of code,
with subsequent compiling and testing of the same. It was, however, not common for
users to have access to screens with graphic displays - it was all pure text.

For non-computer people one could now make systems where the end users had
direct access to central databases, and even update and modify these. But most large
mainframe computers had operating systems that were optimized for batch processing
(large quantities of datain, large quantities of data and printouts out).

Hence, one was forced to develop “operating systems within the operating
system” — or teleprocessing monitors (TP monitors for short) to allow alarge number
of usersto have online or simultaneous access to a large, shared database.

TP monitors differed from time-sharing systems in that they were running
specialy developed software systems, tailored to what the users were allowed to do,
while TS systems might allow skilled users to do whatever the available software let
them have access to, including developing their own solutions.



TP monitors also had ancther important property: Systems sharing a common
database might fail and cause damage to the central database, thereby corrupting the
data. Therefore, one must have a solution allowing the user to reconstruct the database
into a non-corrupted state. This solution was called “ Rollback/Recovery”, and it could
either work for all users combined or work for only a single user and his’her session
with the online computer system.

Norsk Data regarded itself mainly as a vendor to technica and scientific
organizations. In 1974 the company had 140 employees, and a revenue of 38 million
Norwegian Kroner (ca. 5 million USD), growing to 211 employees and 81 million
Crownsin 1976.

In 1976 the Norwegian State Railway System (NSB) distributed its request for
bids for a new system to keep track of al itsfreight cars. Norsk Data possessed a few
basic technologies for use in the desired solution, but far from all. Norsk Data had
never delivered any similar system. The competitors, however, were skilled in this
game and could provide references in large numbers. This was the situation when the
request for bids arrived to deliver the GTL system.

2 The Bidding Process

The request for bids called for an on-line system with many functions. Among the
duties were: arranging trains at the shifting station in Alnabru outside Odlo, following
(tracking) the trains as they moved along the tracks inside Norway, and optimization
of car maintenance. The system might save millions of Norwegian Crowns by
providing better utilization of the car pool and was named GTL for Gods Transport
Ledelse (there is no Divine link, “Gods’ simply means cargo in Norwegian).

The system required a Transaction Processing (TP) monitor capable of handling
150 terminals and heavy online traffic with a 24/7 operational capability. If not
delivered on time, daily penalty fees were due. ND’s competitors were al US-based
mainframe vendors, with systems like CICS in the bag aready (IBM). Y et Honeywell
Bull was the fiercest competitor, with its TDS TP Monitor (later TP8), IDS database,
and afirm vendor relationship to Norwegian public institutions.

ND had aready delivered a network (ARPANET style, named Nordnet) where all
terminals were connected, and the only link between the GTL system and the
terminals would be via a single pair of wires and a network protocol. Dave Walden
made the basics for the network while he worked for ND during 1970-71. Dave
Walden was one of the original developers of the ARPANET, and his implementation
on ND machines proved to be highly reliable and efficient.

The Oslo-based research institute, Sentralingtituttet (Sl - later to become SINTEF)
aready in 1971 made the world’s first minicomputer with full virtual memory, and in
1974 they made one of the firss CODASYL database management systems for
minicomputers, SIBAS.

Almost in parallel ND hired Bo Lewendal, a young Swedish developer, and he
made one of the first time-sharing systems for minicomputers, Nord TSS. Starting in
1974, ND combined most of these components into its next generation of computers
and operating system: Nord-10 with the Sintran 111 operating system. This system was
capable of doing real-time, time-sharing, batch and virtual memory — al at the same
time.



3 TheChallenge

ND knew that a single minicomputer would be unable to deliver the required
capacity. The TP system would have to split the job between four Nord-10 machines,
each handling specific tasks. The machines would have to serve as individua backup
for each other, and the Nordnet was used for inter-CPU communication even here.
The database management component of the freight car system was the SIBAS
system (just developed by SINTEF in Odo) - a traditional CODASYL DBMS, first
implemented on a Nord-1 and performing incredibly slowly in the beginning. The
project was one of the largest software projects in Norway to date, with an estimated
35 man-years for the software alone. 150 TTY (Teletype) terminalsin an ARPANET-
style network were to have 24/7 operationa access to the common database through a
number of application programs - with "no errors', and a considerable transaction
volume,

The main competitors were IBM and Honeywell Bull. Both had the skills, the
hardware equipment, and the software solutions to deliver the solution. They were
both huge organizations compared to Norsk Data, and with their mainframe
computers they operated in a different league altogether.

The only asset ND had was its successful delivery of the networking system, and
the fact that the other competitors also needed to interface to it. That required some
detailed expertise.

The competitors had well-proven TP monitors: CICS (IBM) and TDS (Honeywell
Bull) and databases: IMS (IBM) and IDS (HB).

ND had Nord-10 minicomputers with the Sintran |11 operating system, capable of
simultaneous real-time and time-sharing with a maximum of 32 terminals per CPU.
ND did not have a TP monitor and only posessed a newly developed DMBS system,
SIBAS. In short: ND had no previous experience with on-line administrative
projects of this order of magnitude.

4 The Solutions

When bidding for such an awesome contract, one realy had to review one's
inventory. The following is a reconstruction of the components that were vita for
putting together a viable solution.

Bo Lewendal, as previoudy stated, was working aone during the summer of
1971, developing Norsk Data's first TS system, based upon a Nord-1. Bo had fresh
background from a similar project from California. It subsequently lead to Norsk Data
winning a large contract with deliveries of a large number of Nord-10 machines to
CERN both for administrative use and for the controlling the SPS ring (SPS: Super
Proton Synchrotron), which was CERN’s largest particle accelerator at the time.

Sl had aso experimented with virtual memory on a Nord-1 computer aready in
1971, and this became the first minicomputer with virtual memory worldwide!

In 1974 Norsk Data launched its first really smooth time-sharing system, based
upon the new Nord-10 computer and the Sintran I11 virtual memory operating system.
Sintran |11 alowed a moderate number of time-sharing users to have simultaneous



online access to the shared resources, such as editors, compilers and other online
applications. In addition a number of real-time processes might operate in the
background, invisible to the time-sharing users. These processes could, for example,
control communication lines or perform process control in a production plant.

Since al users competed for the same common resources, such as CPU, memory,
disk, and communication lines, inevitable delays occurred from time to time. Sintran
Il was, however, very efficient for itstime, due to its virtual memory system and fast
context switching ability.

In 1975 Norsk Data took over marketing and sales of the SIBAS Codasyl-type
Database Management System (SIBAS DBMS) from Sl. SIBAS allowed time-sharing
users to have access to a common database, but without full rollback/recovery
functions for other than the database itself. The first versions of the system were
reportedly very slow.

In 1970 Dave Walden, previously with Bolt, Beranek & Newman (and developer
of large parts of the ARPANET), had made a communication system that alowed
Nord computers to act as front ends for Oslo University’s CDC mainframe computers.
Norsk Data's developers converted this into an ARPANET-like network system.
When delivered to NSB, it tied together approximately 150 teletype-like terminals in
alarge packet switched network, in operation from 1974.

Most of the necessary solutions were in place: a smart and highly efficient
operating system with time-sharing and virtua memory capabilities, a database
system with rollback/recovery, and an interface to the NSB ARPANET-like network.

What was missing, however, was the capability to handle a hundred or more
simultaneous users. Norsk Data needed a TP monitor - Sintran Il style. This TP
monitor should be able to handle software and users spread across a number of CPUSs,
a number that could be altered if a fault occurred and the system needed to be
restarted with afailed CPU taken out of theloop. Thisishow Nord TPS was born.

5 Organizing of the Project Leader
Project "

The technical chalenge is one

side of the problem. There are also a Applications

number of people that need to be {ND&ASL 5-7)

organized and put into effective work TPS & Network Sy
(ND&Computas 3-5) Model (ND 1)

for obtaining the final solution. These
were the playersin the project game:

5.1 Norges Statsbaner, NSB

NSB was the customer. They wanted an efficient system with error-free 24/7
operation, readily accessible by all 150 terminals simultaneoudly. If the system
operated successfully as planned, NSB could save millions of Norwegian Crowns.



5.2 Anderson Consulting

NSB hired a skilled project leader from Anderson Consulting as their project

|eader.

5.3 Norsk Data

Norsk Data appointed Harald Eide as its general project leader, with Dag Spilde
being responsible for the TP-monitor and networking. Lars Lind was appointed
responsible for application program development, while Peter Bonne designed the

database.

54 Computas

Norsk Data hired Computas, a subsidiary of Det norske Veritas, for the
networking and TP monitor part. The author worked there at the time.

55 ADB System Logikk (ASL)

ASL was hired as developers of
the application part. In order to let the
application development start
immediately, one decided to use time-
sharing for the application
devdlopment, in a simulated TPS
environment. Thus, the TPS
development could take place
undisturbed in the background, and
application development and database
testing could take placein parallel.

User

S Application

Below the surface:

Network Access, Session Management,
Message Sequences, Intermachine Comm,,
Memory management, Virtual Database
Machine, all Real-Time issues, Exception

handling, Rollback-Recovery, (application and
DBMS),



6 System Solutions

6.1 TheHardware Structure
As previoudly stated, a group of 4 CPUs was selected:

Mutual
BACKUP

Two pairs of CPUs were mutual backup for each other. In normal operation one
CPU interfaced to the NSB network, the next one contained all application programs,
and the remaining two CPUs were both database machines. The database machines
split the database between themselves in order to share the load, and trains would
literally move between the database machines as they moved along the rail network in
red life.

6.2 The Software Structure

In software the components looked dightly different. The software structure
allowed a customer organization to utilize the TP monitor in the most flexible way,
with as many elements as possible being automated.

The software structure allowed the users to organize &l the components in one
single CPU, or spread the components across any practical number of CPUs.

MESSAGE DOMAIN j | k. derice



During normal operation on a full hardware configuration, the GTL system'’s
network CPU contained the Network & Front End module, the next CPU contained
the Application Control part, and the remaining two CPUs contained one SIBAS
DBMS system each. For communication between the CPUs, a mini version of the
previoudy mentioned Nordnet was used.

6.3 Program Module Structure

The main challenge was, asit alwaysisin large project, to maintain simplicity and
order. In a message-based system, this even includes the messaging structure.

For each of the modules in the system, a message/state diagram was used for
maintai ning the simplicity, the so-called state-vector principle:

Any arriving message was
handed over to a specific program Program Module States 1.n
element for treatment. Selection _MsgQueue

was done via a message/state W
vector. Modules would always be in

/
a defined state, such as, eg., “in ﬁ}
X . ? State/ e 3
normal session with a user in the Msg table
network, synchronized checkpoint (’“_“i
is going on”. Upon receipt of a
message, a state vector identified which piece of code to invoke at the receipt of this
particular message type while in the particular state. The resulting code was extremely
compact and easy to maintain.

All aspects of the software solutions were subject to thorough code inspections,
where the author had to describe his/her solution to the scrutiny of critical fellow
project participants.

In hindsight, the combination of state vectors and code inspections were the vital
reason for the success of this project.

State + Msg type =
Routine to deal
with the situation

6.4 Message Structure

The effect of the state-vector principle was that most of the complexity resided in
the message system, while the software itself was very simple and “if-then-else-less’.
Hereis an example of the message sequences for “Make a synchronized checkpoint”



TPS Message structure
Other (example Synchronlqed Chckpoint)

sources |
1
]

-.m_... - -' i DBMS1
)

DBMS2
A :
..-_.m E
I
|
] ] :
1 1 \
R v Al active TCMs AlLactive TPTs Al DBMS: 1-n

In order to leave control with the user developers, TPSinitiated so-called “ Special
Applications” at distinct points during the operation. Such Special Applications were
either Global, i.e. common for all users, or Local, i.e. meant for a specific user session
only.

The user organization decided, what should happen when these defined incidents
occurred, by modifying the content of the standard Special Applications.

6.5 The System Builder

TPS and its components were not trivial, yet it managed to
hide a large amount of complexity for the users, the application
programmers, and the operators of the system, once it went into
operation.

The final element in this strategy was to make a system builder, which reduced
complexity for the personnel that aready had many problems to
solve and had no need for new problems to deal with.

The developer called the system builder “The Queen of the
Night”, since heavy batch processing capacity was required once
it started.

Actudly, there was a complete version (as seen below), and
a short-cut version, which skipped some of the more time-
consuming parts, when they were not needed.




Parameter
setup

Pre-process:
Macrolanguage

Compile:
Applications
and system

Load Modules:

CPU #1 Load Module Load Modules:
Load Module
CPU #2 CPU #4
CPU #3

Load & Go...

The output of the system builder was load images for each of the CPUs at hand,
and the total system was initiated by loading the CPUs and typing the “initialize”
command on the system console.

7 Epilogue

The NSB GTL system was a success. It was delivered as agreed to the customer site
close to therail linesin Odo, although the delivery time was delayed 2-3 months due
to new functionality wanted by the customer. Actual operation started afew days over
the agreed time, and had very few operationa 'hickups during its entire lifetime.
Some strange hardware errors occurred, though. The memory of one of the computers
broke down on several occasions. Later it was explained by the passing of nearby
electric trains, during which they disturbed the power lines, thereby causing
breakdowns in the sensitive MOS memory circuits.

Summing it al up: ND possessed a few ingredients that might be used in the total
solution, yet a formidable job remained for a complete solution to be put together, let
alone to be delivered on time. Still, the system was delivered according to the agreed
on time, it functioned as planned, and served with an impressive stability and
performance during its entire lifetime. The required up-time for the system was
99,75%, yet 99,98% was achieved during itslifetime.

The system was delivered as planned, on time, and without atering the origina
number of project participants.

In ND’s history, this was one of the more successful projects. TPS was used only
a handful of times in addition to the NSB GTL system. Once it was used in a vita
project for the Swedish Defense LEO system (6 CPUs in the entire configuration),
and once for the Swedish Foreign Debt Organization, “Riksgalden”.

The project opened the road for ND to be a serious vendor even in the
administrative market. It also illustrates how ND could become such a tremendous
successin ashort time.

Weall know how it ended, but that is another story.



Acknowledgements

Many thanks to Dave Walden, Bo Lewendal, Dag Spilde, Lars Lind, Peter Bonne,
Harald Eide, Per Ivar Danielsen, and Stig Nyberg, for their valuable contributions and
inputs.



