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Abstract— In this paper, wedealwith the problemof extracting
meaningful textural features leading to good segmentationson
satellite images of natural envir onments. Standard texture fea-
tur es using graylevel co-occurrence matrices have been widely
applied on remote sensedimages but they impose limitations
(due to finite window sizes)as poor spatial localization. We have
generalized the definition of texture features using a multiscale
framework, in order to take advantageof multiscale propertiesof
natural images.The new definition impr oves spatial localization
and the relevance of the parameters. We then investigate the
dependenciesamongdiffer ent featuresfor classificationpurposes.
An unsupervised scheme of classification was performed on
differ ent satellite infrar ed images.We seethat natural, chaotic
imagesshould be tr eatedwith a differ ent methodology.

I . INTRODUCTION

Texture segmentationis one of the central problems in
imageprocessingandhasgiven rise to an abundantscientific
literature[11]. Techniqueswhich usetextural (combinedwith
spectral)informationareamongthemethodswhichhavegiven
the bestresultsin satelliteimagery[12].Themain problemin
the segmentationof naturalenvironment imagesis the large
variability of texture characteristicsover them.

Segmentation of images is usually performed in two
stages[9]. In a first stage,featurescharacterizingthe texture
are calculated.In a secondstage,thosefeaturesare usedto
determineuniform regionsover the image.The main purpose
of texture featureextraction is to find relationsamongpixels
belonging to a similar texture. As satellite imagesdisplay
fine-grainedtextures, a statisticalapproachis often adopted
for remotely senseddata: statistical measuresof the spatial
distribution of graylevels are computed.The most common
method consistsin computing local co-occurrencematrices
representingjoint probabilitiesof graylevel pairs[8] andfrom
that to derive some statistical measures[13]. Classification
schemesbasedon thosemethodsprovidegoodresultsin cloud
classification[13] [7] or landcoversegmentation[5], andshow
alsogoodperformanceon benchmarkimages[11].

In this paper, we focus on the use of multiscale textural
featuresfor the segmentationof infrared imagesof natural
environments. We show the limitation of a classification

schemeon meteorologicalimages,as the featuresappearto
be mutually functionally dependent.In the next section,we
introduce the conceptof multiscale textural featureswhich
generalizethe classicaldefinition. In sectionIII, we present
measuresof functionalcorrelationbetweenfeaturescomputed
on Landsat,SpotandMeteoSatinfrared images.We perform
then a classicalK-Meansclassificationon thosedata in sec-
tion IV andwe interpretthe different resultsin sectionV.

I I . MULTISCALE TEXTURAL FEATURES

Information in a natural image is not containedat only
onescale:multiple objectsof differentrealandapparentsizes
appearintervowedin a complicatedmesh.It is thusnecessary
to relate somehow information from the different scalesof
resolution.Approachesbasedon co-occurrencematrices,gen-
erally obtainedover fixed sizewindows, needto be extended
in order to acquiretextural featuresat several scales[10].

We proposeto generalizeco-occurrencein a multiscale
framework by introducing a non-uniform, scale-invariant
weightingfunctionin thecomputationof spatialdistributionof
grey-levelsvariations.The standardway for the evaluationof
gray-level distribution consistsin definingsmall (overlapping
or not) windows of predefinedsize aroundeachpixel, then
computing the relative frequency of the observed pairwise
graylevels and finally calculating a representative feature
(GLCM approach[13]). In our approach,insteadof defining
a small window around the pixel � , we considera rather
large window ������� but eachpair of graylevels is assigned
a weight so that pairsof pixels further and further away will
contribute less and less. In such a way, a good localization
is obtained,even for large windows. We definethe multiscale
joint probability 	�
��
 ����� of a graylevel pair ��������� by: 	�
��
 ������������ ����� 
! �"$#&% '� � #)( � � '* ��� #)( 
,+ �!-.�0/213/�4��6587 +�9�: . We choosethe
exponent ;�<=7 . Due to the scaleinvariant characterof this
weight function,the resultdoesnot in principledependon the
sizeof thewindow [6], althoughwe limit thecalculationsto a7�>�?,7@> window to avoid divergencesandto fastencalculations.
For that reason,the computationof the features[13] doesnot
dependeither on any fixed scale: it is scale invariant. This



Fig. 1. Examplesof multiscaletextural featurescomputedon an infrared
MeteoSatimage. From top to bottom, from left to right: original image,
contrast,correlation,homogeneity, energy andentropy.

methodprovidesa betterspatiallocalizationthanthe classical
methodsand reducesthe overestimationin feature(Fig. 1).
Moreover, for somefeatures(like entropy, energy or contrast),
assumingstatistical translationalinvariance,it is possibleto
considermarginal probabilities	 
� �0�A��� �B�DC '� � #)( �E+ �F-G/ +H9A:(GLV approach[2]) insteadof joint probabilities,whatleadsto
featuresattaininga betterperformancein spatiallocalization,
significancy, computerstorageandcomputationtime.

I I I . CORRELATION IN FEATURE SPACE

By calculatingmany features,we form a multidimensional
classificationspacewhich helps to determinethe classeach
pixel belongsto. Decidingwhich featuresarethemostrelevant
hasbeenthe focusof many researchefforts [12]. A selection
processis usuallyappliedon thefeaturespace,which consists
in determiningthe mostdiscriminanttextural features[7] [4].
It reducesthe cost of classificationby reducingthe number
of featuresthat need to be collected and provides a better
classificationaccuracy.

However, these conventional methods treat the different
featuresas independentones.The selectionof uncorrelated
featuresis necessaryto performefficient segmentation.In [1],
the authorsconcludethat energy and contrastare the most
efficient in termsof visualassesment,and,hence,they recom-
mendthecombineduseof thoseparametersfor discriminating
textures. Other studies [5] show that energy, contrast and
correlationare the lesscorrelatedparametersand that energy
is the besttexture parameter. In [12], homogeneityis chosen
as the mosteffective textural parameter.

We investigatehere the statisticalmeaningof six textural
features:entropy, energy, contrast,variance,homogeneityand
correlation[8]. We measuretheirmutualdependenciesin order
to excluderedundant,lesssignificantfeatures.For any couple
of features IG�6IJ4 we will calculatethe mutual informationK$L ��IM�NIO4�� (which is a measureof the independency of both
variables)andthecorrelationratio

KQP �0IG�6IJ4)� (which measures

their functionalcorrelation)[3]:R K L �0IG�6IJ4���<�S3��IT�U-VS3��I + IJ4W�K P �0IG�6IJ4���<BX!��Y[Z I + IJ4]\)�N5^XT��IT� (1)

wherethefunctionsS , Y and X standfor entropy, expectation
and varianceand where the symbol + denotesconditioning.
The closer

K$L
and

KQP
are to their maximumvalues( S3�0I!� in

the caseof
K_L

, > in the caseof
KQP

) the more dependentthe
featuresare, while valuesof

K_L
and

KQP
close to zero imply

independency of the features.

features̀ cont. homo. corr. ener. var.

MeteoSatdata: a�b 1.416 0.987 0.280 2.621 1.533adc 0.756 0.668 0.331 0.899 0.744

Spotdata: a b 0.812 0.517 0.236 1.622 1.104adc 0.402 0.389 0.202 0.680 0.533

(a) Mutual information e b (in bits) and correlationratio e c of different
featuresf with respectto the entropy.
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(b) Conditional distributions of featureswith respectto entropy for
MeteoSat(top) and Spot data (bottom). Left : contrast;Middle : ho-
mogeneity;Right: energy.

Fig. 2. Functionalcorrelationbetweenfeatures,computedon samplesof
MeteoSat(20 g6h�i�jlknm�o*j images)andSpotdata(20 g6j*j*jlkFg6j*j*j images).

Thesemeasuresareperformedfor differentkindsof infrared
images:SpotNIR images(TOCchannel3, p@q�r�s^t m -upvq wxs^t m),
LandsatNIR images(band 4, p@q�r�y8t m -zp@q s8p8t m) and also
MeteoSatthermalIR images( >Dpvq {^t m -|>_7�qH{�t m). In Figure2,
we presentthevaluesof

K L
and

K P
for somefeaturescomputed

on large samplesof suchimagesand the correspondingcon-
ditional distributions.The dependencebetweenhomogeneity,
contrast,varianceenergy andentropy turnsout to be stronger
for MeteoSatdata than for Spot data. For Spot data, this
dependenceis multivalued. Correlation and entropy are the
lessmutually dependentfeatures;however correlationis not
very significantas it poorly locatesstructures(Fig. 1).

IV. INTERPRETATION FOR CLASSIFICATION PURPOSE

Using setsof computedtextural features,we can perform
a segmentationof infrared imageswith a classicalK-Means



method [9]. The resultsof the segmentationson land-cover
images can be comparedwith those basedon all spectral
channels(Fig. 3); textural featuresallow to characterizesome
well textured regions (fields andwater)but have difficulty to
extract small texturedareas(cities).For MeteoSatimages,the
segmentationsare not so good, and they are not improved
whennew featuresareincludedin theclassificationprocedure
(Fig. 4).

Fig. 3. Left : Landsat (top) and Spot (bottom) NIR land-cover images.
Middle : K-Meansclassificationwith spectralfeatures.Rigth: K-Meansclas-
sificationwith textural features.

V. DISCUSSION AND CONCLUSION

We have investigatedthemutualdependenciesof multiscale
featureswhen computedon two types of infrared images:
land cover images (from Spot and LandSat satellites)and
higher atmospheretemperatureimages(from MeteoSat).We
seethat for land-cover imagesthe different textural features
aredependenton theunderlyingregion,whatallows to classify
thoseregions by applying standardalgorithms(as K-means)
in the featurespace.This dependenceof the featureson the
spatialregion is evidencedby theweakfunctionaldependence
among features(measuredby the mutual information and
correlation ratio) and by the multi-valued characterof the
conditionaldistributions (asdifferent texturesare represented
by differentclustersin featurespace).

On the contrary, segmentationmethodsbasedon texture
extraction do not work when applied to MeteoSatIR data,

Fig. 4. Left : MeteoSatIR image. Middle : K-Means classificationwith
textural features.Right: segmentationobtainedwith entropy featureonly.

a fact already pointed out by Gu [7] and Ebert [4] in the
classificationof clouds.Oneof the reasonsof this failure lies
in the fact that thosemethodsassumeregularity conditions
that are not satisfiedby MeteoSatimages(thoseimagesare
relatedto thermodynamicalpropertiesof a turbulent, chaotic
flow). A more detailed analysis of the features shows a
remarkabledegree of mutual dependency among features,
togetherwith narrow, uni-valuedconditional distributions of
pairsof features.This dependency meansthat all the features
are sensitive to the sameproperty of imagesand multiple
featureclassificationdoesnot provide new meaningful fea-
tures.Henceforth,the segmentationhas to be carriedout by
meanswhich take into accountthe propertiesof the flow, as
for instanceperformingmultiscalesingularityanalysis[6].

To conclude,the resultsshown so far meansthat, unlike
what is discussedin [1], there is not an image-independent
methodologyfor featureselection,andin particularclassifica-
tion techniqueson multi-featurespacesdo not work efficiently
for every kind of data disregarding inherent structure of
images.Methodologieswhich are relatedto the propertiesof
the object of study, specially in the caseof natural,chaotic
images,shouldbe considered.
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